715 Commits

Author SHA1 Message Date
greg
93e96acc66 Some initial work on a better repl 2019-02-10 01:00:40 -08:00
greg
be90a859db Try adding some libraries
Just playing around for now
2019-02-09 05:45:13 -08:00
greg
f3f1dcc0a4 Add some notes 2019-01-27 22:38:20 -08:00
greg
c0111e30bc SymbolTable: Add Record type 2019-01-25 00:57:01 -08:00
greg
c225e469ee Change Record variant representation 2019-01-24 20:47:20 -08:00
greg
1ce06bc0ef More symbol-table refactoring 2019-01-20 22:32:58 -08:00
greg
10c3a60515 Some symbol-table refactoring 2019-01-20 00:23:08 -08:00
greg
ff73ce7b36 Get rid of LLVM wrapper
Not using this code right now
2019-01-10 20:57:13 -08:00
greg
ede8a9076a Simplify some struct definitions 2019-01-10 20:57:13 -08:00
greg
a63dcf91b0 Replace // with quot 2019-01-10 20:57:13 -08:00
greg
479a098e0f Make note to fix parsing bug 2019-01-09 17:37:51 -08:00
greg
1085b528fe Don't care about case-sensitivity 2019-01-08 02:38:10 -08:00
greg
9b3b5c5541 Token offsets 2019-01-08 02:11:19 -08:00
greg
ab8e24a276 ParseError always has token now 2019-01-08 01:04:46 -08:00
greg
09e2d8579d Remove all ParseErrors that don't return the failed token 2019-01-08 01:00:40 -08:00
greg
ee7861cbd0 Fix how impl blocks work
This gets rid of a token-less parseerror
2019-01-08 00:51:56 -08:00
greg
b88def8a2e Make error msg better 2019-01-07 16:52:46 -08:00
greg
30676722a3 Transition to edition 2018 2019-01-07 13:00:37 -08:00
greg
801c90aaa7 Reorder parameters in pass functions 2019-01-07 02:43:31 -08:00
greg
02667b018c Kill most LLVM references
I'm probably going to refactor this so much, there's no point in keeping
this around
2019-01-07 02:38:15 -08:00
greg
1032c7c7a2 Add note 2019-01-07 01:59:12 -08:00
greg
fa295aab28 Show location of error in parse error 2019-01-07 01:52:54 -08:00
greg
a0f4abb9a3 Add SourceReference 2019-01-06 01:58:16 -08:00
greg
78b454fb32 Delete this line 2019-01-05 20:41:49 -08:00
greg
5491169d55 Refactor parsing structure
TokenHandler should contain all the methods for actually manipulating
tokens, Parser should only contain the recursive descent methods
2019-01-05 20:23:07 -08:00
greg
2b338fd3c9 Move .next() onto token_handler 2019-01-05 18:29:24 -08:00
greg
821f321261 More Node-wrapping of Expression 2019-01-05 18:11:51 -08:00
greg
846eeae04c More use of Token instead of TokenKind 2019-01-05 17:50:54 -08:00
greg
22f2750853 More use of Token in error messages 2019-01-05 17:40:05 -08:00
greg
f2f8ac7ee8 Make parserrors have token 2019-01-05 17:32:49 -08:00
greg
d0c5dce92b Use get_kind() 2019-01-05 17:28:35 -08:00
greg
8eda74c9a5 Starting to keep track of locations of errors in file 2019-01-05 17:18:10 -08:00
greg
2efac109ef Node for TupleLiteral 2019-01-05 16:06:55 -08:00
greg
215e2bbb0d PrefixOp have Node 2019-01-05 16:02:30 -08:00
greg
2590def3be More Node-wrapping 2019-01-05 15:54:03 -08:00
greg
879a7de83d Wrap Expression in Node 2019-01-05 15:47:44 -08:00
greg
4c2e0b8a21 Get rid of old code from old ideas 2019-01-05 15:35:51 -08:00
greg
282c42da3c Adding Node intermediate type to AST 2019-01-05 01:44:32 -08:00
greg
87e68988c8 Update some dependencies 2019-01-01 02:22:12 -08:00
greg
7ac97ca6e8 Kill ast_visitor 2018-11-26 01:57:44 -08:00
greg
26a8ff307f Add generic Node type 2018-11-20 03:21:10 -08:00
greg
6be208b51d Minor fix for parsing error messages 2018-11-20 03:03:08 -08:00
greg
e00948cad9 Add ast_visitor mod 2018-11-17 02:09:16 -08:00
greg
0af6fed505 Clear up some code a bit 2018-11-17 01:10:23 -08:00
greg
1f527f7949 Rename TokenType -> TokenKind 2018-11-16 23:17:34 -08:00
greg
8680c4faf6 Just some notes for myself about how to redesign the AST type 2018-11-16 15:53:27 -08:00
greg
b198984fc5 implement From for Expression-types 2018-11-16 14:06:04 -08:00
greg
58779f8470 Rename method, make sourcemap optional 2018-11-16 12:58:10 -08:00
greg
a0fa50392c Fix compile error 2018-11-16 12:46:29 -08:00
greg
d357876b16 WIP source map stuff 2018-11-16 04:12:07 -08:00
greg
e42f0c644c Introduce source map 2018-11-16 03:56:55 -08:00
greg
2ec7bf3b9a Some initial work on passing token metadata to AST 2018-11-16 03:51:03 -08:00
greg
5147e1a3eb Handle underscores in identifiers 2018-11-15 16:19:53 -08:00
greg
955c073174 Got typechecker unused errors down to one 2018-11-13 02:39:02 -08:00
greg
7c46a29141 Start adding doc comments 2018-11-11 18:04:44 -08:00
greg
0adc761e72 Kill an unimplemented!() 2018-11-11 02:48:51 -08:00
greg
b2039a7b67 Parameterize Type type over existential/universal 2018-11-10 16:33:42 -08:00
greg
b4c4531e4d Rename for more concision 2018-11-10 14:11:29 -08:00
greg
2d36ad44d6 Converting over types
WIP
2018-11-09 02:50:29 -08:00
greg
21132a369c Paramaterize Type 2018-11-09 02:05:59 -08:00
greg
ff0294c56e Typechecking shouldn't fail yet 2018-11-09 02:02:08 -08:00
greg
bc80c8f9ad Updated readme some 2018-11-09 01:51:25 -08:00
greg
e39356c0e5 Even more type work 2018-11-09 00:21:34 -08:00
greg
d44bb02d61 Even more types 2018-11-08 20:30:17 -08:00
greg
9056e9b0e1 More type work2 2018-11-08 02:29:54 -08:00
greg
e9b90412ce More type work 2018-11-08 02:12:01 -08:00
greg
65c47c20fc Change name of monad in which type inference happens 2018-11-07 17:01:07 -08:00
greg
fab3fb8ec2 More basic types + test 2018-11-07 16:39:32 -08:00
greg
0d5ccd21fe TConst 2018-11-07 15:39:40 -08:00
greg
69b7b9f528 Print out types to REPL 2018-11-07 13:44:28 -08:00
greg
9a09f40222 More typing work 2018-11-07 03:39:31 -08:00
greg
020819550b More typechecking infrastructure 2018-11-06 16:47:34 -08:00
greg
15f9dbe7a6 Typechecking infrastructure 2018-11-06 13:44:52 -08:00
greg
836bed1207 Added janky map to prelude 2018-11-06 03:02:32 -08:00
greg
cee5b085d5 Simpler syntax for single param in lambdas
This kind of implies that I might want -> for function types after all,
instead of :
2018-11-06 02:58:57 -08:00
greg
837a55c718 Test for nested function call 2018-11-06 02:42:28 -08:00
greg
f4f89b39b6 Handle nested function calls 2018-11-06 02:40:10 -08:00
greg
c6b4ed7ee4 Basic lambdas 2018-11-06 01:19:16 -08:00
greg
be425860af Starting on lambdas 2018-11-05 21:13:31 -08:00
greg
17e88b33f2 Eval test doesn't need to be a macro
Can be a fn
2018-11-05 21:07:06 -08:00
greg
47f7eb1ef6 Make prelude be separate file 2018-11-05 20:55:03 -08:00
greg
72d0cfe466 More macro test consolidation 2018-11-05 20:52:18 -08:00
greg
cea2f63b44 Use macros to make types more concise 2018-11-05 20:12:10 -08:00
greg
eec315dd58 Get rid of exprstatement! macro
For shorter exst! one
2018-11-05 19:58:55 -08:00
greg
1e9aa91c5d More concise test macros 2018-11-05 19:57:11 -08:00
greg
9813609ad7 Minor test refactoring 2018-11-05 19:17:53 -08:00
greg
5953d9d815 type annotations on lambdas 2018-11-05 19:10:34 -08:00
greg
a74e09c761 Change lambda syntax 2018-11-05 18:51:01 -08:00
greg
ad53d4394b Get rid of println 2018-11-05 14:52:51 -08:00
greg
151246e1c5 Test for pattern-matching 2018-11-05 14:11:49 -08:00
greg
77d2826918 Pattern-match on structured objects 2018-11-05 14:01:14 -08:00
greg
1bd48ed5db Fix problem with parsing commas
I should probably rethink how delimited block expressions like if-blocks
(and eventually for-blocks) work
2018-11-05 13:07:08 -08:00
greg
c394b81746 More pattern-matching 2018-11-05 04:02:04 -08:00
greg
ec29077247 More tuple-matching
Also discovered parser bug
2018-11-05 03:41:03 -08:00
greg
62043ac2d1 Starting on pattern-matching tuples
Lots of duplicated code here
2018-11-05 03:17:03 -08:00
greg
bada386979 More work on subpattern matching 2018-11-03 12:53:09 -07:00
greg
e71d404071 Finished this refactor 2018-11-02 19:54:04 -07:00
greg
cab4702bd6 Refactoring matching - WIP
doesn't work yet
2018-11-01 02:43:47 -07:00
greg
ec5a9d457e String patterns 2018-10-31 01:45:16 -07:00
greg
bfbc1580aa Make tag optional 2018-10-30 23:36:55 -07:00
greg
2d6c9010b9 More work here 2018-10-30 18:53:34 -07:00
greg
f4ff92302f Use subpattern abstraction 2018-10-30 18:46:06 -07:00
greg
e88ed97b06 Add subpattern struct 2018-10-30 18:39:25 -07:00
greg
b8df09e956 Change eval strategy to use conditional sigil 2018-10-29 01:50:43 -07:00
greg
d7f0147a4f Add conditional target placeholder expr 2018-10-28 12:45:45 -07:00
greg
f883512882 New abstraction layer in Schala-lang parser
Just for manipulating tokens
2018-10-21 16:33:21 -07:00
greg
37070a6b3e Move pass chain generation from macro to codegen 2018-10-20 18:00:05 -07:00
greg
ffe7deb00a Starting to move pass_chain logic into codegen 2018-10-20 15:54:46 -07:00
greg
d7baf065fb Changing what method to call to start parsing 2018-10-20 15:41:09 -07:00
greg
6b42f8b8de Change how parsing works 2018-10-20 14:27:00 -07:00
greg
d9e67a6341 Delete this old grammar file 2018-10-20 11:43:12 -07:00
greg
7de536ade0 Install failure crate 2018-10-20 11:17:18 -07:00
greg
f62b4c6906 Change format of error msg 2018-10-20 11:14:40 -07:00
greg
4679a9fc7f Remove compiler warnings 2018-10-20 00:55:37 -07:00
greg
c25354b2c7 Get rid of typechecking code (for now)
I'm tired of seeing the errors. See branch last_commit_with_typechecking
2018-10-20 00:41:56 -07:00
greg
5f8b842bf2 Delete newline 2018-10-20 00:22:41 -07:00
greg
fef66e345b Subpattern field 2018-10-19 17:43:22 -07:00
greg
e57d33eae7 More work on more patterns
-need to convert guard into a possibly-empty vec
2018-10-19 17:27:06 -07:00
greg
dca9ad06c3 Handle HalfExpr closer to correct 2018-10-19 11:02:10 -07:00
greg
354148c5ba rename codegen -> chala-lang-codegen 2018-10-19 09:57:35 -07:00
greg
6219a06d6f Converted all parser methods to use the annotation 2018-10-19 02:56:11 -07:00
greg
3b20b40eb7 Proc macro generated code for parsing seems to work 2018-10-19 02:45:35 -07:00
greg
4ecf63c54d Okay the proc_macro is actually doing something
At the cost of breaking code
2018-10-19 02:36:23 -07:00
greg
3d00667caf Add test for ignored pattern 2018-10-18 15:55:24 -07:00
greg
4b9c7e38dd Rename TypeName -> TypeIdentifier 2018-10-18 13:27:09 -07:00
greg
03317233c6 Don't need this import 2018-10-18 10:31:55 -07:00
greg
dff204069f Starting to implement Ignored pattern 2018-10-18 01:54:36 -07:00
greg
f2282f0101 case_match_expression split out into its own method 2018-10-18 01:49:42 -07:00
greg
40ccea8c05 Separate assign_expression method 2018-10-18 01:46:30 -07:00
greg
cae6f2f768 Rename schala-codegen -> schala-repl-codegen 2018-10-18 01:09:29 -07:00
greg
1be6991f55 Making eval expression method a bit less complex
by splitting it into submethods
2018-10-17 20:46:16 -07:00
greg
1b60bd38ff Add codegen crate for schala-lang 2018-10-17 15:29:32 -07:00
greg
3b20b9e209 Put schala-lang crates into a subdirectory 2018-10-17 14:51:48 -07:00
greg
de0e150536 Fix if-block parsing to handle newlines 2018-10-17 13:44:29 -07:00
greg
baf51fb147 Boolean patterns 2018-10-17 12:43:09 -07:00
greg
dc9e493fa1 Handle more patterns at reduce_ast level 2018-10-16 17:18:03 -07:00
greg
d57a8045a9 Rename test helper 2018-10-16 04:11:18 -07:00
greg
50d5176b45 Fix bug add test 2018-10-16 04:10:28 -07:00
greg
501eaeee87 Implement numeric pattern matching 2018-10-16 03:54:08 -07:00
greg
8619c94217 Start handling numeric patterns
Still need to add eval support for this
2018-10-16 01:38:41 -07:00
greg
fc7c86be1a nonterminal() constructor function 2018-10-15 21:46:27 -07:00
greg
77e0d639c2 Make repl mod structure more complex 2018-10-15 20:52:34 -07:00
greg
9927a6b1fd Implement custom interpreter directives - and a wtf?
See the comment about &mut self vs &self
2018-10-15 20:29:23 -07:00
greg
e8dfc2be34 Refactor codegen some 2018-10-15 20:14:56 -07:00
greg
abe2db25b2 full if matching working with basic patterns 2018-10-15 19:54:17 -07:00
greg
a99a5f10a4 Indicate index explicitly in SymbolTable debug 2018-10-15 19:37:02 -07:00
greg
c52bc65bb9 Change NonTerminal format 2018-10-02 01:37:43 -07:00
greg
819c422cee Start making CommandTree abstraction include implementation 2018-10-02 00:46:23 -07:00
greg
1c11fec803 Move hardcoded string file names into vars 2018-10-01 20:53:41 -07:00
greg
a5c3c383dc Reduce some String clones 2018-10-01 20:46:58 -07:00
greg
76046b134a Make timing toggle-able 2018-10-01 02:05:07 -07:00
greg
c24223f28e Got rid of some old code 2018-09-29 12:46:52 -07:00
greg
79e02b0999 Tightened code some in codegen 2018-09-29 03:23:48 -07:00
greg
80eb703f5e Finally got get_doc hookup in codegen macro working 2018-09-29 01:20:31 -07:00
greg
4fccff5e27 Working on improved proc_macro handling 2018-09-27 04:07:42 -07:00
greg
e934d7bdc5 Update syn, quote libs 2018-09-26 01:41:58 -07:00
greg
de199e785a Update versions 2018-09-26 01:33:19 -07:00
greg
81ac918a59 Add some type annos to make this easier 2018-09-25 13:44:06 -07:00
greg
5d4505241a get rid of completed todo 2018-09-22 00:26:38 -07:00
greg
f67793308e Part of the work for a doc handler 2018-09-22 00:24:27 -07:00
greg
693766fa59 Proc macros are stable now 2018-09-21 19:46:31 -07:00
greg
f9f29dd0dd Move repl stuff to separate file 2018-09-21 19:43:50 -07:00
greg
3c1823510f use get_cur_language() 2018-09-21 19:32:39 -07:00
greg
92078ef7d8 Add :doc interpreter directive 2018-09-21 19:25:58 -07:00
greg
1abbe2e448 Add guard to Alternative
The semantics are:
    -if tag is Some(_), assume the condition is a constructor,
    and compare tags
    - if guard is Some(_), evaluate true/false *after* having
    applied any bound variables

With this, I can technically get rid of bare conditionals now, since
they are the same as an Alternative with a None tag
2018-08-27 12:45:08 -07:00
greg
065bdd6bda Starting custom operators
Can now parse custom operators. Maybe I want to make it so that you
have to put explicit backticks if you define a custom operator,
currently you can just do: fn +() { .. }
2018-08-24 16:49:59 -07:00
greg
e125e8b440 Add spaceship operator for getting an ord 2018-08-24 16:29:28 -07:00
greg
8565c7dfb3 Some work on reduced ast pattern 2018-08-24 16:04:18 -07:00
greg
f885d5dfb6 Remove type alias 2018-08-22 23:22:08 -07:00
greg
b85725125c Start using HalfExp 2018-08-22 16:41:31 -07:00
greg
2d961d6402 Fix other pattern parsing bugs 2018-08-21 20:02:10 -07:00
greg
fa7b6ce96b Handle negatives in patterns correctly 2018-08-21 19:57:45 -07:00
greg
5c9180efc2 Some updates to Schala source files 2018-08-20 19:03:55 -07:00
greg
1d5e5aa735 Some type renaming in builtins
Builtins will remain entirely separate from the actual type
representation, whatever that ends up being
2018-08-19 22:00:20 -07:00
greg
2c298c7247 Add warning for undefined operator
In practice this will probably always not typecheck, but it's a valid
parse
2018-08-19 21:40:30 -07:00
greg
f00fee0e37 Rename StateStack -> ScopeStack 2018-08-19 21:31:45 -07:00
greg
0d13b5e3bc Preliminary support for binops in if-discriminators
The BNF grammar is a bit more liberal than any successfully-compiled
schala program should be, in that it allows things like `if x < is
pattern`. It's okay if that parses successfully and then is an error at
typechecking.
2018-08-19 21:25:07 -07:00
greg
98f597f00a Implement comparison operators correctly 2018-08-19 21:11:43 -07:00
greg
fb71881409 Refactor binop parsing 2018-08-19 20:33:50 -07:00
greg
d1c3b4a81b Starting on halfexprs / binops 2018-08-19 18:44:54 -07:00
greg
f9181b5786 use expr_or_block where appropriate 2018-08-19 15:58:31 -07:00
greg
0e914cf057 Error message for parsing guards 2018-08-19 15:12:34 -07:00
greg
04ea8c5ebc More unused code removal 2018-08-19 15:06:01 -07:00
greg
492ef4ae19 Clear up some unused code to reduce compile noise
And add some notes to the README
2018-08-19 15:03:41 -07:00
greg
75a7a4499d Added some more cases to the match handling 2018-08-19 10:53:43 -07:00
greg
99e6668c9a Add rusty-tags to .gitignore 2018-08-18 23:28:06 -07:00
greg
1d38a07cf8 Add timing debugging print 2018-08-16 01:47:21 -07:00
greg
0fa844bcf9 Print timing in debug info 2018-08-16 01:43:42 -07:00
greg
97bee58fbe More work with guards 2018-08-15 22:34:04 -07:00
greg
34c2b43371 More work on if matching 2018-08-15 18:32:44 -07:00
greg
88b617de52 More atlernatives work 2018-08-15 11:44:55 -07:00
greg
482674b19a Start on expr_or_block
WIP doesn't work yet
2018-08-15 09:34:00 -07:00
greg
a72b387ceb Remove some more dead code warnings 2018-08-14 23:19:27 -07:00
greg
864e932e9f Getting rid of more unused items 2018-08-14 23:09:11 -07:00
greg
d7e73be44c Getting rid of some unused warnings 2018-08-14 23:07:00 -07:00
greg
6a548c9086 Keep track of durations of each pipeline stage 2018-08-14 22:56:22 -07:00
greg
0c0690e86e Provide error message here 2018-08-14 21:53:57 -07:00
greg
6d18f80185 Use Result in test 2018-08-14 21:46:48 -07:00
greg
6825de3916 new_frame -> new_scope 2018-08-14 21:45:45 -07:00
greg
1b78fbff82 Tests for basic pattern matching 2018-08-14 21:39:33 -07:00
greg
897c1181a9 Basic pattern matching working 2018-08-14 21:17:43 -07:00
greg
6833bc4f00 Start on CaseMatch eval 2018-08-14 12:43:06 -07:00
greg
f2ded78776 ReducedAST: Match -> CaseMatch
makes it easier to grep for
2018-08-14 12:37:18 -07:00
greg
9debdd8d66 Primitive tuple 2018-08-14 02:03:05 -07:00
greg
8067c862f3 Switch out types for evaluator 2018-08-14 00:11:13 -07:00
greg
f9c2fc3f9d Make code more concise 2018-08-07 17:09:53 -07:00
greg
5ead1e5d44 NewConstructor -> Constructor 2018-08-05 19:14:02 -07:00
greg
348a6f7c76 More work on pattern-matching
I think I need to entirely change the types in the evaluator.
ReducedAST should only care about NewConstructor (which I gotta rename),
and the evaluator is the only place that an implementation of a
primitive constructed type should live (see Peyton-Jones implementing a
functional langauge p. 70)
2018-08-05 19:11:42 -07:00
greg
5f336ec1a9 Add lookup_by_name to symbol table 2018-08-05 18:19:48 -07:00
greg
da59fae0d3 More work on pattern-matching 2018-08-05 18:01:42 -07:00
greg
5b5689accf Changing representation of primitive objects 2018-08-05 17:15:58 -07:00
greg
32acf89814 New Constructor 2018-08-05 16:04:52 -07:00
greg
c637a922a9 Start implementing constructors/matches
as per Implementing Functional Programming Languages by Peyton-Jones
2018-08-05 14:23:08 -07:00
greg
42d0aba21c Add index of variants to symbol table
Also new prelude type, just for testing
2018-08-05 13:59:13 -07:00
greg
7548bdbb78 Add note 2018-07-31 01:59:49 -07:00
greg
bc6d4d19b5 reduced ast match 2018-07-26 00:52:46 -07:00
greg
a2b1b0f953 Pattern-matching in reduced AST 2018-07-26 00:52:46 -07:00
greg
75bf4b5697 Fill out variants to be reduced 2018-07-26 00:52:46 -07:00
greg
35f5a9623a Check out cranelift 2018-07-26 00:52:46 -07:00
greg
98e812968b Fix parsing additional options 2018-07-26 00:52:46 -07:00
greg
250c486143 Fix derive code 2018-07-26 00:52:46 -07:00
greg
38eb065511 Broken proc macro custom derive code 2018-07-26 00:52:46 -07:00
greg
9e24c3b336 update rocket version 2018-07-26 00:52:46 -07:00
greg
1d2f1624a1 Some codegen work to make pass options work 2018-07-26 00:52:46 -07:00
greg
4ca57e4aea Change name of debug options struct 2018-07-26 00:52:46 -07:00
greg
82502ad0ad Move some parsing code around 2018-07-26 00:52:46 -07:00
greg
7d68b2a05a Get rid of code related to old match stuff 2018-07-26 00:52:46 -07:00
greg
c2db212c78 Some more guard arm stuff + dealing with split binexp
... in if-blocks. Need to do some re-architecture I think
2018-07-26 00:52:46 -07:00
greg
837a180b09 Starting work on guard arms 2018-07-26 00:52:46 -07:00
greg
5ecd298e6a Record Pattern 2018-07-26 00:52:46 -07:00
greg
8aa33d0872 Starting on guards 2018-07-26 00:52:46 -07:00
greg
21a8868bcf Fixed test 2018-07-26 00:52:46 -07:00
greg
5a91957fa1 Some incomplete parse work 2018-07-26 00:52:46 -07:00
greg
176d43e56f Remove old comment 2018-07-26 00:52:46 -07:00
greg
90ecde89c9 Mutable types 2018-07-26 00:52:46 -07:00
greg
65c2cd521b Mutable types
This bit of syntax is meant for extendable enum types
2018-07-26 00:52:46 -07:00
greg
f7dbbddad1 Let and let mut syntax 2018-07-26 00:52:46 -07:00
greg
43ff08b04c Add some debugging info around parse error 2018-07-26 00:52:46 -07:00
greg
00692aa89e Support for underscores 2018-07-26 00:52:46 -07:00
greg
0ec29f6dd0 Fix repl 2018-07-26 00:52:46 -07:00
greg
5e48eb2dee Broken - some pass abstraction work 2018-07-26 00:52:46 -07:00
greg
3597ad4eef Compact parsing 2018-07-26 00:52:46 -07:00
greg
072eab1a80 Thread debug opts around where they need to be 2018-07-26 00:52:46 -07:00
greg
1761d11d36 Infrastructure for adding more debug options 2018-07-26 00:52:46 -07:00
greg
d075f613f9 Hook help messages into command data structure 2018-07-26 00:52:46 -07:00
greg
ee55729d5f Halfway through implementing help text on CommandTree 2018-07-26 00:52:46 -07:00
greg
17a4028185 Generate commandtree on repl 2018-07-26 00:52:46 -07:00
greg
947f4f2ea6 Command heirarchy for tab completion 2018-07-26 00:52:46 -07:00
greg
41c9dfae06 Some more tab completion work 2018-07-26 00:52:46 -07:00
greg
fe1a508e25 Switch back to line feed for better tab completion 2018-07-26 00:52:46 -07:00
greg
55a8cabd7c Some basic pattern stuff 2018-07-26 00:52:46 -07:00
greg
46b6aeb4db Add note to check out Gluon 2018-07-26 00:52:46 -07:00
greg
3c022fc4ef Clarified BNF 2018-07-26 00:52:46 -07:00
greg
0a02c21e70 Some more Patterns work
-at first brush, a pattern is like a single Variant with a list of free
vars
2018-07-26 00:52:46 -07:00
greg
927f427a86 Starting work on patterns 2018-07-26 00:52:46 -07:00
greg
005aba7a10 Test alt form 2018-07-26 00:52:46 -07:00
greg
7882e92ab5 Fix old style if 2018-07-26 00:52:46 -07:00
greg
f582ab4eaa Test for new style parsing 2018-07-26 00:52:46 -07:00
greg
f2dce38647 Broken, but compiling, move to new if paradigm 2018-07-26 00:52:46 -07:00
greg
ba4cd9da39 Kill match keyword + data structures
And add new unified keywords
2018-07-26 00:52:46 -07:00
greg
ba319a7bc3 Finally figured out unified condition syntax 2018-07-26 00:52:46 -07:00
greg
2d052d34f7 More thinking 2018-07-26 00:52:46 -07:00
greg
654eeef428 Clarified grammar BNF some 2018-07-26 00:52:46 -07:00
greg
a96fbc9592 Fix match expression parsing 2018-07-26 00:52:46 -07:00
greg
196954326e Print bare data constructor 2018-07-26 00:52:46 -07:00
greg
3f2fff276c Constructor eval 2018-07-26 00:52:46 -07:00
greg
e6679ff523 Playing around with conditional syntax 2018-07-26 00:52:46 -07:00
greg
ebcea685f3 Fix looking up functions 2018-07-26 00:52:46 -07:00
greg
3b9084810e Add constructor reduced ast node; fix test 2018-07-26 00:52:46 -07:00
greg
7809cda240 Pass symbol_table to ast reduce
To distinguish between values and data constructors
2018-07-26 00:52:46 -07:00
greg
f1679e83b7 Start trying to fix tests 2018-07-26 00:52:46 -07:00
greg
f98d8e2bb0 Move AST into its own module 2018-07-26 00:52:46 -07:00
greg
d0a0cc8209 Rename ast_reducing -> reduced_ast 2018-07-26 00:52:46 -07:00
greg
5aa0e10e7a Some ADT work 2018-07-26 00:52:46 -07:00
greg
27729cefdf Some improvements to the thing 2018-07-26 00:52:46 -07:00
greg
df76e7c120 Pretty-print type table 2018-07-26 00:52:46 -07:00
greg
889610f0b0 Pretty-print Symbol Table 2018-07-26 00:52:46 -07:00
greg
3beabf4678 Start eval-ing data constructors 2018-07-26 00:52:46 -07:00
greg
25790f8643 Added super-janky prelude capability 2018-07-26 00:52:46 -07:00
greg
ff5446af3f Add symbols from symbol table into global type context 2018-07-26 00:52:46 -07:00
greg
5d84153c9e Want bin expressions typed soon 2018-07-26 00:52:46 -07:00
greg
0b0f6b6b50 Symbol table handles functions better 2018-07-26 00:52:46 -07:00
greg
856a360aba Types need handle to symbol table 2018-07-26 00:52:46 -07:00
greg
81ca9ee20f Add some data structures back 2018-07-26 00:52:46 -07:00
greg
4caf8096b3 Add Scheme, TypeEnv, Substitution data structs 2018-07-26 00:52:46 -07:00
greg
c65907388d Some ADT work 2018-07-26 00:52:46 -07:00
greg
33c22c8bbc Typecheck values 2018-07-26 00:52:46 -07:00
greg
4a27af2136 Add a super-basic test 2018-07-26 00:52:46 -07:00
greg
07af54b78a More work 2018-07-26 00:52:46 -07:00
greg
c4666b82ec Basics 2018-07-26 00:52:46 -07:00
greg
274dd1ccb0 Basic stuff 2018-07-26 00:52:46 -07:00
greg
70ec79c4b3 Lol starting over from scratch again
H-M is hard :/
2018-07-26 00:52:46 -07:00
greg
f88d2331e3 printf debugs for problems with function typing 2018-07-26 00:52:46 -07:00
greg
c8f961abbf Functions 2018-07-26 00:52:46 -07:00
greg
d040d76bfa Start handling function case 2018-07-26 00:52:46 -07:00
greg
887ba46b0b Fix this thing 2018-07-26 00:52:46 -07:00
greg
a80db9e4c2 Debug types
WIP
2018-07-26 00:52:46 -07:00
greg
c986233a95 Adding bindings seems to work?
I'm playing real fast and loose though
2018-07-26 00:52:46 -07:00
greg
bb29df4a73 Variable binding insertion infrastructure 2018-07-26 00:52:46 -07:00
greg
4db3595d7c More work on variables 2018-07-26 00:52:46 -07:00
greg
217ee73fc9 Literals 2018-07-26 00:52:46 -07:00
greg
93309c025e Some work 2018-07-26 00:52:46 -07:00
greg
b67512a9e1 Add Infer struct 2018-07-26 00:52:46 -07:00
greg
8e6f605fab Type alias "TypeName" 2018-07-26 00:52:46 -07:00
greg
ba4185b0fb Back to including typechecking code in pipeline 2018-07-26 00:52:46 -07:00
greg
7a2a4df297 Clearing out most of the cruft from typechecking 2018-07-26 00:52:46 -07:00
greg
642e9da8ee Move everything symbol-table-related into a separate module 2018-07-26 00:52:46 -07:00
greg
cea7427847 put TypeEnvironment on TypeContext 2018-07-26 00:52:46 -07:00
greg
3156c31dfc Variable lookup 2018-07-26 00:52:46 -07:00
greg
2e457cd5e8 First real inferring 2018-07-26 00:52:46 -07:00
greg
843d895f2b infer infra 2018-07-26 00:52:46 -07:00
greg
734c53ce0d Starting to deal with actual expr inferring 2018-07-26 00:52:46 -07:00
greg
3a3b8dd440 TypeEnvironment lives in Infer 2018-07-26 00:52:46 -07:00
greg
c96a56a7ac fresh 2018-07-26 00:52:46 -07:00
greg
4017857a3a Unification 2018-07-26 00:52:46 -07:00
greg
131c83b64d Consult these haskell programs from https://github.com/quchen/articles/tree/master/hindley-milner 2018-07-26 00:52:46 -07:00
greg
9e0f8b8a14 InferError 2018-07-26 00:52:46 -07:00
greg
7121624f77 Type Env 2018-07-26 00:52:46 -07:00
greg
48e795decc apply_substitution for PolyTypes
If I made an error it's likely here...
2018-07-26 00:52:46 -07:00
greg
a26da934f4 Substitution monotypes 2018-07-26 00:52:46 -07:00
greg
1de1cd9cfd For H-M, add types and some impls 2018-07-26 00:52:46 -07:00
greg
6f639b9030 Type type structure 2018-07-26 00:52:46 -07:00
greg
8f0104ebc7 Deletion 2018-07-26 00:52:46 -07:00
greg
36cd7e080d Even more deletions 2018-07-26 00:52:46 -07:00
greg
f48a25779c Lol just get rid of all the old code, start from scratch again 2018-07-26 00:52:46 -07:00
greg
808a1bfc98 Still more deletions 2018-07-26 00:52:46 -07:00
greg
c7e46c1cfa KIll any commented code 2018-07-26 00:52:46 -07:00
greg
98cfcfc18d Eval shouldn't be aware of types 2018-07-26 00:52:46 -07:00
greg
b4c7ea3d02 Show bindings too in debug 2018-07-26 00:52:46 -07:00
greg
e7c89ed840 Some more refactoring 2018-07-26 00:52:46 -07:00
greg
b0e38f7f5b Refactor 2018-07-26 00:52:46 -07:00
greg
276662d98a Some code rearrangements 2018-07-26 00:52:46 -07:00
greg
e8e9265b26 Use less verbose match syntax 2018-07-26 00:52:46 -07:00
greg
cb316a973e Getting back to hindley-milner
First, clear out some of this cruft in the compiler warnings
2018-07-26 00:52:46 -07:00
greg
e64861b602 Some eval tests 2018-07-26 00:52:46 -07:00
greg
1673fd1cf9 Fix test 2018-07-26 00:52:46 -07:00
greg
c00effcbdd Add _ 2018-07-26 00:52:46 -07:00
greg
8378170fbd Kill comments 2018-07-26 00:52:46 -07:00
greg
7ab385d398 Bring custom ADTs to the repl 2018-07-26 00:52:46 -07:00
greg
9fb148bb02 Make compile again 2018-07-26 00:52:46 -07:00
greg
97df2fa344 I dunno 2018-07-26 00:52:46 -07:00
greg
a08134a747 Delete old code in eval 2018-07-26 00:52:46 -07:00
greg
6707b2bb9c debug outputs in order 2018-07-26 00:52:46 -07:00
greg
3ac50f974d Pass around reference to type context in evaluator 2018-07-26 00:52:46 -07:00
greg
160ce95e5f Fully comment example source file 2018-07-26 00:52:46 -07:00
greg
afc4281e7f Evaluate function arguments in context before applying them 2018-07-26 00:52:46 -07:00
greg
8d6fea942f Handle function definition before use
And some other ReducedAST - Evaluation niceties
2018-07-26 00:52:46 -07:00
greg
6d93c758a2 Add function to symbol table 2018-07-26 00:52:46 -07:00
greg
aff421cd99 Working with symbol table
Note that symbol table is a different object now than the previous
binding table that was used for type-checking. That binding table is not
currently debugged and should be debugged in a separate debug output with
typechecking proper.
2018-07-26 00:52:46 -07:00
greg
493d76da0b Add symbol table data structure to typechecking 2018-07-26 00:52:46 -07:00
greg
eb681fbff9 Make parse error message nicer 2018-07-26 00:52:46 -07:00
greg
f3e3843528 Decomplexify delimited! 2018-07-26 00:52:46 -07:00
greg
6b90e19eb1 Simplify expect! macro
Ends up printing a debug print, but whatever, will fix later
2018-07-26 00:52:46 -07:00
greg
210ae47c8b Get rid of lambda 2018-07-26 00:52:46 -07:00
greg
70794d8ff1 For expression parsing 2018-07-26 00:52:46 -07:00
greg
532c8c45b4 Parse while expressions
Decided to add while expressions to the language to make for-parsing
easier. Plus some other random notes
2018-07-26 00:52:46 -07:00
greg
24b532df06 This doesn't need to be a closure 2018-07-26 00:52:46 -07:00
greg
ac576be604 Trim newline in getline()
Ineffiicent but whatever
2018-07-26 00:52:46 -07:00
greg
6bf106a1a3 Equality 2018-07-26 00:52:46 -07:00
greg
161e47fe91 Add schala source file test.schala 2018-07-26 00:52:46 -07:00
greg
1a58f3b7af Add fizzbuzz source
Next goal will be, to implement enough to make this work
2018-07-26 00:52:46 -07:00
greg
44e585fca2 Conditionals 2018-07-26 00:52:46 -07:00
greg
3f836eb74f Kill some warnings 2018-07-26 00:52:46 -07:00
greg
abf25d648d Change repl behavior of strings 2018-07-26 00:52:46 -07:00
greg
1f6e6d9b31 Tuples 2018-07-26 00:52:46 -07:00
greg
e2703121d8 Kill unneeded import 2018-07-26 00:52:46 -07:00
greg
e5b6b41422 Error msg 2018-07-26 00:52:46 -07:00
greg
6c5e3dea5d Assignment 2018-07-26 00:52:46 -07:00
greg
bd8bf1945c Super simple janky input 2018-07-26 00:52:46 -07:00
greg
9e393d2753 Kill old type structure 2018-07-26 00:52:46 -07:00
greg
822420a9d5 Add an eval test 2018-07-26 00:52:46 -07:00
greg
6f8dc9bedd rename IntLiteral -> NatLiteral 2018-07-26 00:52:46 -07:00
greg
3b134d7fb6 very simple code 2018-07-26 00:52:46 -07:00
greg
e0cec8b8a6 print, println as builtins 2018-07-26 00:52:46 -07:00
greg
1a84f62818 Kill some old code, make very_simple example print 2018-07-26 00:52:46 -07:00
greg
b1966d7199 Function calling works kind of 2018-07-26 00:52:46 -07:00
greg
fdbb21990d Retrieve function from memory when called 2018-07-26 00:52:46 -07:00
greg
1011ff08f3 Use new rust 1.26 less verbose syntax 2018-07-26 00:52:46 -07:00
greg
6d8d2aecbd Functions 2018-07-26 00:52:46 -07:00
greg
848306ad1a Reduce defined function 2018-07-26 00:52:46 -07:00
greg
e6f0710e41 Debug ast rewrite 2018-07-26 00:52:46 -07:00
greg
d7e3f695b7 Very simple source file 2018-07-26 00:52:46 -07:00
greg
78ba4e1ed3 Variable lookup 2018-07-26 00:52:46 -07:00
greg
481afb0f87 Fix debugging and debug eval 2018-07-26 00:52:46 -07:00
greg
01986e7474 starting bindings 2018-07-26 00:52:46 -07:00
greg
9cf5260d4b Use impl Trait to simplify type signatures 2018-07-26 00:52:46 -07:00
greg
b50d87b85b Idea 2018-07-26 00:52:46 -07:00
greg
18c8176134 Get rid of unneeded imports 2018-07-26 00:52:46 -07:00
greg
2cb7d35008 Use EvalResult type 2018-07-26 00:52:46 -07:00
greg
bd1eed884f State type manipulations 2018-07-26 00:52:46 -07:00
greg
67917612e6 Swap over eval code to new paradigm
While keeping the old code commented for reference
2018-07-26 00:52:46 -07:00
greg
b4a16cdc55 Prefix ops 2018-07-26 00:52:46 -07:00
greg
4d5ab95946 Fix bug with / parsing 2018-07-26 00:52:46 -07:00
greg
ce71254b69 Implement a lot more ops 2018-07-26 00:52:46 -07:00
greg
065e58f87e Successfully interpreting addition 2018-07-26 00:52:46 -07:00
greg
29cabb119f Save interpreter directives in history 2018-07-26 00:52:46 -07:00
greg
6768cebc48 Literals 2018-07-26 00:52:46 -07:00
greg
ec5580d20b prefix op reduction 2018-07-26 00:52:46 -07:00
greg
9de66a9af3 Unimplemented sigil 2018-07-26 00:52:46 -07:00
greg
633b4fe7a4 Nats, some binop reduction 2018-07-26 00:52:46 -07:00
greg
87c3b8e234 Some work 2018-07-26 00:52:46 -07:00
greg
16a463b1a0 Method-style 2018-07-26 00:52:46 -07:00
greg
c3be644133 Optional scope name 2018-07-26 00:52:46 -07:00
greg
e7615fda8b Add new_frame method 2018-07-26 00:52:46 -07:00
greg
111657b567 Add generic stack data structure
I'll want to use this soon enough
2018-07-26 00:52:46 -07:00
greg
c5e8d3e080 Random notes re: symbol table
I'm proably gonna want to redo the symbol table stuff after reading Language
Implementation Patterns, esp. to accomodate scopes
2018-07-26 00:52:46 -07:00
greg
4f49c183b0 Float + reduce binop/prefixop 2018-07-26 00:52:46 -07:00
greg
81368179bb More boilerplate 2018-07-26 00:52:46 -07:00
greg
30128d7d34 Easy work 2018-07-26 00:52:46 -07:00
greg
6c718e5d4f Start AST-reducing 2018-07-26 00:52:46 -07:00
greg
774ddd665b Infrastructure to evaluate reduced AST 2018-07-26 00:52:46 -07:00
greg
0bb0ecea76 Add new ast reducing pass 2018-07-26 00:52:46 -07:00
greg
59a7c11031 Hook --debug flag to new debug framework 2018-07-26 00:52:46 -07:00
greg
b54a9774ed Rename schala source files to be clearer 2018-07-26 00:52:46 -07:00
greg
a9c0341d38 Half-assed implemention of tab completion
Bah this is boring. Maybe I want to switch back to linefeed?
2018-07-26 00:52:46 -07:00
greg
2d260c14d7 Add Unified Construction Syntax article 2018-07-26 00:52:46 -07:00
greg
7686707602 Type alias Vec<String> -> Block 2018-07-26 00:52:46 -07:00
greg
670833185b Start adding tab completion API 2018-07-26 00:52:46 -07:00
greg
012c50b7c3 Kill commented lines 2018-07-26 00:52:46 -07:00
greg
f1a64adfd9 Kill a few lines of code 2018-07-26 00:52:46 -07:00
greg
e46eeb91f3 Highlight enabled debug passes 2018-07-26 00:52:46 -07:00
greg
d524389f1d Kill old DebugOptions struct 2018-07-26 00:52:46 -07:00
greg
890e6bd4c5 Minor wording changes 2018-07-26 00:52:46 -07:00
greg
8826d5b0d4 For now, don't error out with typechecking 2018-07-26 00:52:46 -07:00
greg
8ad5dd9056 Rename passes 2018-07-26 00:52:46 -07:00
greg
fb168da8bd Kill comments 2018-07-26 00:52:46 -07:00
greg
78fdea180e Rename stages -> passes 2018-07-26 00:52:46 -07:00
greg
00e68d09c7 Kill comment 2018-07-26 00:52:46 -07:00
greg
73c3eeb69d stage -> pass 2018-07-26 00:52:46 -07:00
greg
86e88ee1bf Greatly fleshed out custom derive 2018-07-26 00:52:46 -07:00
greg
d1a2473bb2 More derive work 2018-07-26 00:52:46 -07:00
greg
57ccdd5ead Extract out attr parsing code into a separate function 2018-07-26 00:52:46 -07:00
greg
c0746028f4 Automate language name 2018-07-26 00:52:46 -07:00
greg
c6f038a307 Successfully parse language name 2018-07-26 00:52:46 -07:00
greg
e498e19ffc Use extra attribute 2018-07-26 00:52:46 -07:00
greg
51cdedb9cc Actually autogenerate the trait 2018-07-26 00:52:46 -07:00
greg
50236ac942 Kill unused mut 2018-07-26 00:52:46 -07:00
greg
1e4554258f KIll old code 2018-07-26 00:52:46 -07:00
greg
9ade0dd1e2 Kill unnecessary mutable 2018-07-26 00:52:46 -07:00
greg
7ba8c9dab9 Tokenize errors 2018-07-26 00:52:46 -07:00
greg
774ab5f72e Token errors WIP 2018-07-26 00:52:46 -07:00
greg
50499c8a33 Remove some compiler warnings 2018-07-26 00:52:46 -07:00
greg
a10df92ab8 Debug work 2018-07-26 00:52:46 -07:00
greg
fe64cbcd3a Refactor 2018-07-26 00:52:46 -07:00
greg
061d54702f Implement debug stages as a HashSet of strings
Change to custom enum type later
2018-07-26 00:52:46 -07:00
greg
27885500fd Show debug stages 2018-07-26 00:52:46 -07:00
greg
aaf98db2b7 Starting to move debug options around
+ add method to ProgrammingLanguageInterface that is a list of stages
2018-07-26 00:52:46 -07:00
greg
fff587cd6a Change "set" to "debug" 2018-07-26 00:52:46 -07:00
greg
83fe71f721 Kill old trait infrastructure 2018-07-26 00:52:46 -07:00
greg
491face68b More autoderive things 2018-07-26 00:52:46 -07:00
greg
258e813a39 Starting to write custom derive for ProgrammingLanguageInterface 2018-07-26 00:52:46 -07:00
greg
5d69b530c5 Remove comments 2018-07-26 00:52:46 -07:00
greg
8a5b8619fa Kill old execute method 2018-07-26 00:52:46 -07:00
greg
832d0d4ee3 Add more debug jank entries 2018-07-26 00:52:46 -07:00
greg
57a18a0768 Make (some) stages configurable
This is janky and needs to be more general
2018-07-26 00:52:46 -07:00
greg
2c5ebd636f Pass EvalOptions to macro 2018-07-26 00:52:46 -07:00
greg
06638dc030 Minor syntax changes 2018-07-26 00:52:46 -07:00
greg
3a181dd0ac Add passing debug into via &mut pointer 2018-07-26 00:52:46 -07:00
greg
1d1a5fb6fc Pass mutable handle to unfinishedcomputation 2018-07-26 00:52:46 -07:00
greg
fb4de6f2d6 Making use of UnfinishedComputation 2018-07-26 00:52:46 -07:00
greg
18c86c26f0 Passing comp around 2018-07-26 00:52:46 -07:00
greg
ac44df8d1e Semicolon 2018-07-26 00:52:46 -07:00
greg
12c7cebb38 Clarify comment 2018-07-26 00:52:46 -07:00
greg
f22f089b9b finish method on UnfinishedComputation 2018-07-26 00:52:46 -07:00
greg
3d960d5697 Implement most of pipeline 2018-07-26 00:52:46 -07:00
greg
1f4228b887 Successfully passing state handle to pass functions 2018-07-26 00:52:46 -07:00
greg
5abaadc0ca Add self 2018-07-26 00:52:46 -07:00
greg
fd89de77cc Making pipeline macro nicer 2018-07-26 00:52:46 -07:00
greg
a305610a39 Some kind of pipeline working
thanks to the rust syn crate guy for the macro idea
2018-07-26 00:52:46 -07:00
greg
14f31a5186 Adding proc macro for codegen
This should hopefully make the compiler pass thing I want to do possible
2018-07-26 00:52:46 -07:00
greg
b936132ca6 Backtick operators supported in tokenizing 2018-07-26 00:52:46 -07:00
greg
a1016293ac Show artifacts on failure 2018-07-26 00:52:46 -07:00
greg
8e42f7e0bc TODO note 2018-07-26 00:52:46 -07:00
greg
b8a25dbaac Put this stuff back
More complicated to separate out repl than I thought
2018-07-26 00:52:46 -07:00
greg
66b6ddcf93 Start refactoring how interpreter options are split up 2018-07-26 00:52:46 -07:00
greg
1c0365529d Swap sigil from . to : 2018-07-26 00:52:46 -07:00
greg
f795612884 Want to change 'trait' to 'interface' 2018-07-26 00:52:46 -07:00
greg
c9ea48e9d1 Fix history adding 2018-07-26 00:52:46 -07:00
greg
65f42981ff Trait -> Interface 2018-07-26 00:52:46 -07:00
greg
e2970dbc42 Kill old advanced_slice_patterns 2018-07-26 00:52:46 -07:00
greg
7d2bc4188d Debug stages from command line 2018-07-26 00:52:46 -07:00
greg
eb987bb5b0 Make REPL interpreter return a value 2018-07-26 00:52:46 -07:00
greg
0de504eb9e Kill unused items in schala-repl 2018-07-26 00:52:45 -07:00
greg
635887f7a5 Start killing old code in language 2018-07-26 00:52:45 -07:00
greg
ecebbb2eae Fix interspersing of newlines in tokenizer infra 2018-07-26 00:52:45 -07:00
greg
78f12c8f1d Show err output when evaluating non-interactively 2018-07-26 00:52:45 -07:00
greg
ebda79e5fd Colored repl command output 2018-07-26 00:52:45 -07:00
greg
819a06503f Hook schala function up to debug booleans
Not sure if I like this API, but eh, it's what I've got
2018-07-26 00:52:45 -07:00
greg
664003a9d7 Add back color 2018-07-26 00:52:45 -07:00
greg
e1398bd063 rename schala_main -> repl_main 2018-07-26 00:52:45 -07:00
greg
898b185509 Add version string 2018-07-26 00:52:45 -07:00
greg
7592209cdb Get rid of all top-level dependencies 2018-07-26 00:52:45 -07:00
greg
6f43c3b81d move schala into separate crate 2018-07-26 00:52:45 -07:00
greg
072eeaa127 Color in terminal error output 2018-07-26 00:52:45 -07:00
greg
6bd3ed7b65 Move robo to separate crate 2018-07-26 00:52:45 -07:00
greg
8f19f2e414 Move rukka to crate 2018-07-26 00:52:45 -07:00
greg
5f279cb400 Move maaru into separate crate 2018-07-26 00:52:45 -07:00
greg
795b4adc6b Rename schala-lib -> schala-repl 2018-07-26 00:52:45 -07:00
greg
9d4082463a Removed (for now) LLVMCodeString 2018-07-26 00:52:45 -07:00
greg
43ade31f3e new thing compiles 2018-07-26 00:52:45 -07:00
greg
9f2fbda31f Switch over schala to new system 2018-07-26 00:52:45 -07:00
greg
b31325c315 Update schala example code 2018-07-26 00:52:45 -07:00
greg
95a2620754 Nested comments 2018-07-26 00:52:45 -07:00
greg
e67b22d109 Changing comments to use //, /* 2018-07-26 00:52:45 -07:00
greg
61eccba173 Starting to improve infrastrucutre for lang output
To make repl vs non-repl output better
2018-07-26 00:52:45 -07:00
greg
f56d7120c4 Hacky fix for displaying error output non-interactively 2018-07-26 00:52:45 -07:00
greg
6140de9f9c Some changes necessary to handle non-interactive code 2018-07-26 00:52:45 -07:00
greg
b54c71633c Eval list literals 2018-07-26 00:52:45 -07:00
greg
1eeafb80dc Parse list literals 2018-07-26 00:52:45 -07:00
greg
59d621ed75 Tighten some code 2018-07-26 00:52:45 -07:00
greg
76fadf0701 Rename ReplOutput -> LanguageOutput 2018-07-26 00:52:45 -07:00
greg
6e6d494d50 Make directory for schala source files 2018-07-26 00:52:45 -07:00
greg
a0bb2837c1 Index evaluation 2018-07-26 00:52:45 -07:00
greg
a4dd492c26 Proper index exprs 2018-07-26 00:52:45 -07:00
greg
d0b6840670 Some macro simplifications 2018-07-26 00:52:45 -07:00
greg
b65eb0e459 Trying to make tests less verbose 2018-07-26 00:52:45 -07:00
greg
3f1e83dfda Added test for lambda call 2018-07-26 00:52:45 -07:00
greg
5ddfc132e7 Changed BNF grammar of call statements
To allow calling lambdas
2018-07-26 00:52:45 -07:00
greg
f1f7f43e20 lambdas 2018-07-26 00:52:45 -07:00
greg
86d9e90e7c Print output of tuples 2018-07-26 00:52:45 -07:00
greg
a7672171a6 Handle tuple literals in type system 2018-07-26 00:52:45 -07:00
greg
08e10739e5 Sum types in type schema 2018-07-26 00:52:45 -07:00
greg
a300f78e19 Kill unused import 2018-07-26 00:52:45 -07:00
greg
0423017125 Kill some compiler warnings 2018-07-26 00:52:45 -07:00
greg
8ef5a28aff Evaluator now only prints when a builtin print is called 2018-07-26 00:52:45 -07:00
greg
a92a2e4454 Kill comments 2018-07-26 00:52:45 -07:00
greg
8d79074ea9 Fix bug in delimited macro
Had to do with bad strictness testing.
2018-07-26 00:52:45 -07:00
greg
4e7806d053 Improve tokenizer debug output 2018-07-26 00:52:45 -07:00
greg
507e0b7255 Cleanup 2018-07-26 00:52:45 -07:00
greg
9b760244d5 Include line count in token debug 2018-07-26 00:52:45 -07:00
greg
88e027f536 Munged types to make tokenizer compile 2018-07-26 00:52:45 -07:00
greg
2e41f8ffe3 SOme work
WIP
2018-07-26 00:52:45 -07:00
greg
b18c2eee96 Fixed bug w/ lines in functions
Also improved debugging
2018-07-26 00:52:45 -07:00
greg
0c78f50568 Frame-aware lookups 2018-07-26 00:52:45 -07:00
greg
2dc9b4c09f Kill debug 2018-07-26 00:52:45 -07:00
greg
73206d345e Better debugging for types 2018-07-26 00:52:45 -07:00
greg
1a74e16af5 Use UVars in type signatures of functions 2018-07-26 00:52:45 -07:00
greg
ae2182db5d Add history saving 2018-07-26 00:52:45 -07:00
greg
ad450469a5 Switch to rustyline library 2018-07-26 00:52:45 -07:00
greg
df88e33579 Introduced fresh type variable method 2018-07-26 00:52:45 -07:00
greg
9d72a92f0b Continuing work 2018-07-26 00:52:45 -07:00
greg
fa6c2a6f45 Re-added symbol table infra 2018-07-26 00:52:45 -07:00
greg
92e6830979 Some logic for function call inferring 2018-07-26 00:52:45 -07:00
greg
ef9cd04605 Starting on function application typechecking 2018-07-26 00:52:45 -07:00
greg
1eaf201145 Move some code around 2018-07-26 00:52:45 -07:00
greg
876373c9fd Function calls work 2018-07-26 00:52:45 -07:00
greg
63f5f155ae Temporarily disable type-erroring
and tighten some code
2018-07-26 00:52:45 -07:00
greg
51cf8a4824 Handle variable lookups 2018-07-26 00:52:45 -07:00
greg
e0cc12276c Evaluate binding declarations 2018-07-26 00:52:45 -07:00
greg
d69970a806 Separate Value and NamedStruct syntactic categories 2018-07-26 00:52:45 -07:00
greg
522d9fc951 Fixed | 2018-07-26 00:52:45 -07:00
greg
63c3e0a4db More operator stuff 2018-07-26 00:52:45 -07:00
greg
547def990e Operator changes 2018-07-26 00:52:45 -07:00
greg
6e105bac55 Fixed tests w/ respect to binop
There's a few unnecessary conversions of &str 's to Rc<String> and back
2018-07-26 00:52:45 -07:00
greg
a396c448ec Centralize data for prefix ops too 2018-07-26 00:52:45 -07:00
greg
d3ef980dc5 Added type information to binop definitions
Also started centralizing precedence there too
2018-07-26 00:52:45 -07:00
greg
df86e0c16e Make sigil field private 2018-07-26 00:52:45 -07:00
greg
274bf80b5d Function evaluation work 2018-07-26 00:52:45 -07:00
greg
f0a39ac88a Give State a pointer to its parent
For function call lookups
2018-07-26 00:52:45 -07:00
greg
85e65273fe Finished initial BinOp/PrefixOp 2018-07-26 00:52:45 -07:00
greg
413c5afe67 Starting to munge BinOp types
Incomplete, doesn't yet compile
2018-07-26 00:52:45 -07:00
greg
36174140bc ReplState -> State
Not everythign is a repl
2018-07-26 00:52:45 -07:00
greg
75ecfb4e86 Move bx! macro up to mod.rs
And make use of it in parser
2018-07-26 00:52:45 -07:00
greg
e86d401c90 Move anno-to-type to a method on TypeName 2018-07-26 00:52:45 -07:00
greg
b2319f0971 Fix tests too 2018-07-26 00:52:45 -07:00
greg
d423e88845 Separate tokenizing module
Parsing was getting too long
2018-07-26 00:52:45 -07:00
greg
5cb0e6715d Some work on binops 2018-07-26 00:52:45 -07:00
greg
5bb2c319e8 Some more type-checking work 2018-07-26 00:52:45 -07:00
greg
440783bb64 More work on evaluating applications
for later testing + to kill a compiler warning
2018-07-26 00:52:45 -07:00
greg
9834ee295e Fix traits, silence warnings 2018-07-26 00:52:45 -07:00
greg
9346bb9581 type of a declaration should be Void, not Unit
I think this makes sense

Also kill some compiler warnings
2018-07-26 00:52:45 -07:00
greg
f46f593c44 Types in bindings 2018-07-26 00:52:45 -07:00
greg
ec7d185ed5 Simplified match 2018-07-26 00:52:45 -07:00
greg
3f1cf1d975 Added trait declaration 2018-07-26 00:52:45 -07:00
greg
39ee550b54 More static type work 2018-07-26 00:52:45 -07:00
greg
d5df868f10 Finished basic constant type inference 2018-07-26 00:52:45 -07:00
greg
55629e6d9d More type implementing - WIP
This has a borrowing bug currently
2018-07-26 00:52:45 -07:00
greg
9d99971f49 Fix some integer overflows with binary and hex 2018-07-26 00:52:45 -07:00
greg
76575e9ba3 Starting basic type stuff 2018-07-26 00:52:45 -07:00
greg
a50d8d9e3f Starting over with types 2018-07-26 00:52:45 -07:00
greg
c2cd419e5a Additional TODO 2018-07-26 00:52:45 -07:00
greg
bcec8e27f8 Add todo note 2018-07-26 00:52:45 -07:00
greg
e6a015090c More type things 2018-07-26 00:52:45 -07:00
greg
c18bf9c29f Type singletons test work 2018-07-26 00:52:45 -07:00
greg
cfc507a2df TypeSingletonName broken out 2018-07-26 00:52:45 -07:00
greg
f7e88c7cab Fix struct literals in if expressions
With special case-ing, sigh :( Also will need to do this for match
expressions but I'll cross that bridge when I come to it
2018-07-26 00:52:45 -07:00
greg
4d0bfa2a52 Don't need clone() here 2018-07-26 00:52:45 -07:00
greg
99e5d86764 Kill separate is_digit method
I care about 10 vs 16 distinction
2018-07-26 00:52:45 -07:00
greg
17e8ebe789 Hex parsing done 2018-07-26 00:52:45 -07:00
greg
253a85005c Save settings on ctrl-D 2018-07-26 00:52:45 -07:00
greg
967e5cc436 Added a bunch of notes 2018-07-26 00:52:45 -07:00
greg
7a6ace5db1 Fix parse level calculation 2018-07-26 00:52:45 -07:00
greg
129af43e69 Proper indentation of parser debug 2018-07-26 00:52:45 -07:00
greg
17dccf65c8 Move some code around 2018-07-26 00:52:45 -07:00
greg
95c6a23bf1 Better hex literals 2018-07-26 00:52:45 -07:00
greg
2bff53846c Starting hex parsing 2018-07-26 00:52:45 -07:00
greg
514d117c7e Simplify some code 2018-07-26 00:52:45 -07:00
greg
ae65687a93 Assign a specific rocket version 2018-07-26 00:52:45 -07:00
greg
9ec983dc20 unified BoolAtom 2018-07-26 00:52:45 -07:00
greg
cab0ca6f47 Rukka source file 2018-07-26 00:52:45 -07:00
greg
8f6c80ac8c Print operation 2018-07-26 00:52:45 -07:00
greg
7f546fa879 Refactoring 2018-07-26 00:52:45 -07:00
greg
48a35aa382 Delete some unneeded code 2018-07-26 00:52:45 -07:00
greg
0c64b14be0 Forgot to change name here 2018-07-26 00:52:45 -07:00
greg
5d9fa6679b Name change
builtin -> primitive
2018-07-26 00:52:45 -07:00
greg
ea24ae1bb5 Get rid of some printlns 2018-07-26 00:52:45 -07:00
greg
0d2a0e3536 Implement lambda application 2018-07-26 00:52:45 -07:00
greg
339e3464e3 Plus and multiply 2018-07-26 00:52:45 -07:00
greg
c35b684bdd Builtins - + 2018-07-26 00:52:45 -07:00
greg
d11c518721 Framework for multiple environments 2018-07-26 00:52:45 -07:00
greg
8dde8c7381 Apply wokr 2018-07-26 00:52:45 -07:00
greg
47cad3712c Fixing quote 2018-07-26 00:52:45 -07:00
greg
ffcc0ef379 Starting builtins 2018-07-26 00:52:45 -07:00
greg
6766791627 Lambda abstraction 2018-07-26 00:52:45 -07:00
greg
05de5ebe61 Kill this linker thing 2018-07-26 00:52:45 -07:00
greg
98fa8403b3 Flesh out TODO, README 2018-07-26 00:52:45 -07:00
greg
ce83306581 Add Rukka to README 2018-07-26 00:52:45 -07:00
greg
29ebd35165 Kill unused code 2018-07-26 00:52:45 -07:00
greg
622b50a40c Some lambda work 2018-07-26 00:52:45 -07:00
greg
9f916c7c02 Remove a unimplemented 2018-07-26 00:52:45 -07:00
greg
85375bb9df Add fn literal variant 2018-07-26 00:52:45 -07:00
greg
d11500c643 Even more concise 2018-07-26 00:52:45 -07:00
greg
8493233b69 Refactoring 2018-07-26 00:52:45 -07:00
greg
60644ba3d7 Starting lambdas 2018-07-26 00:52:45 -07:00
greg
254f2ae4b8 Make var methods better 2018-07-26 00:52:45 -07:00
greg
e243b99d3b If expressions 2018-07-26 00:52:45 -07:00
greg
3d023a6704 Rukka - Variables 2018-07-26 00:52:45 -07:00
greg
857b77f2e3 Add schala idea 2018-07-26 00:52:45 -07:00
greg
4d89dcc85e Can specify language name with -l in any case 2018-07-26 00:52:45 -07:00
greg
fe0e58efe7 Go directly to langauge by name 2018-07-26 00:52:45 -07:00
greg
73612d1465 Define half-working 2018-07-26 00:52:45 -07:00
greg
afd2b018f4 Language name in prompt 2018-07-26 00:52:45 -07:00
greg
d1a15b64ff Get rid of old import 2018-07-26 00:52:45 -07:00
greg
66e8643382 eq? 2018-07-26 00:52:45 -07:00
greg
ad58fc1ad1 True and False primitives 2018-07-26 00:52:45 -07:00
greg
adc7be30a9 Some primitive implementations 2018-07-26 00:52:45 -07:00
greg
72097fa125 Fix pointer alias problem 2018-07-26 00:52:45 -07:00
greg
ae9d93f6dc Still tryign to make the pointer-munging work 2018-07-26 00:52:45 -07:00
greg
3d421c7039 This has broken sexp parsing 2018-07-26 00:52:45 -07:00
greg
166bc3b3cb Fix print bug 2018-07-26 00:52:45 -07:00
greg
2f263de8ba Convert to more lispish Cons 2018-07-26 00:52:45 -07:00
greg
46ae176498 Special forms list 2018-07-26 00:52:45 -07:00
greg
d84def35e7 Unwraps 2018-07-26 00:52:45 -07:00
greg
07e55ca04e Handle top-level empty list 2018-07-26 00:52:45 -07:00
greg
6dcf5c7945 print list 2018-07-26 00:52:45 -07:00
greg
568ee88f3a Tighten code 2018-07-26 00:52:45 -07:00
greg
8749ed984d Some more code 2018-07-26 00:52:45 -07:00
greg
559eaf54de Type simplification 2018-07-26 00:52:45 -07:00
greg
bf42b58ca5 State for eval 2018-07-26 00:52:45 -07:00
greg
ecdcb7ff3d Numbers 2018-07-26 00:52:45 -07:00
greg
766209e5b2 Fixed string parsing 2018-07-26 00:52:45 -07:00
greg
e9429ed62a Strings partway working 2018-07-26 00:52:45 -07:00
greg
6e188976f9 Quotes 2018-07-26 00:52:45 -07:00
greg
d235b47bc5 Change Symbol -> Word for token 2018-07-26 00:52:45 -07:00
greg
3fcb840ce5 Fix bug 2018-07-26 00:52:45 -07:00
greg
523bd179a4 Tighten code 2018-07-26 00:52:45 -07:00
greg
35e715dfd6 Intersperse 2018-07-26 00:52:45 -07:00
greg
6eb0fc8834 Parsing correctly yay 2018-07-26 00:52:45 -07:00
greg
c0a5418c27 Tokens 2018-07-26 00:52:45 -07:00
greg
42749c1ff6 Sexp parsing 2018-07-26 00:52:45 -07:00
greg
42b9507af0 Parses ( 2018-07-26 00:52:45 -07:00
greg
38e85e2c78 Some halfwritten stuff 2018-07-26 00:52:45 -07:00
greg
7c5fef49f8 List datatype 2018-07-26 00:52:45 -07:00
greg
c1e214c701 Add a new language - Rukka
This is a (simple) lisp, partially for fun, partially for testing the
generic interfaces
2018-07-26 00:52:45 -07:00
greg
66e3de41dd Make schala-lib::language private and reexport 2018-07-26 00:52:45 -07:00
greg
9545130fd3 Take TokenError type out of schala-lib 2018-07-26 00:52:45 -07:00
greg
ef7412dcd5 I don't need this syntax 2018-07-26 00:52:45 -07:00
greg
dee470cb8b Kill some packages from schala bin 2018-07-26 00:52:45 -07:00
greg
c057f068ef Get rid of unused imports 2018-07-26 00:52:45 -07:00
greg
c4dbdf1fe7 Refactor into libs part II
woo it compiles
2018-07-26 00:52:45 -07:00
greg
4c7174e4c4 Halfway done to library-ifying schala 2018-07-26 00:52:45 -07:00
greg
d0538faef3 PLIGenerators can be authoritative, not the instances themselves 2018-07-26 00:52:45 -07:00
greg
b97da01370 Some simplification 2018-07-26 00:52:45 -07:00
greg
b09efd3660 Passing things along as generators 2018-07-26 00:52:45 -07:00
greg
a42a58b155 Don't need mutex, kill it 2018-07-26 00:52:45 -07:00
greg
708c0ab103 Finally removed schala dependency
Now need to clena up everything
2018-07-26 00:52:45 -07:00
greg
1d9d0c4395 Okay this compiles
The secret (from #rust) appeared to be that Fn() needed to have + Send
explicitly annotated on it
2018-07-26 00:52:45 -07:00
greg
ffb87ebb82 Working on solution to Rocket state problem 2018-07-26 00:52:45 -07:00
greg
30c741f459 Some linker bullshit
I don't know why I needed to do this
2018-07-26 00:52:45 -07:00
greg
d19541b3e1 Splitting up some code
In preparation for splitting schala into crates
2018-07-26 00:52:45 -07:00
greg
3651461bbc Some more structure in evaluator 2018-07-26 00:52:45 -07:00
greg
7730457878 Revert "Starting to split project into multiple crates"
This reverts commit e3b0f4a51e.
Bah, this was a bad idea, wrong way to do it
2018-07-26 00:52:45 -07:00
greg
46dbac7f69 Starting to split project into multiple crates 2018-07-26 00:52:45 -07:00
greg
f68167f3a2 Halfway done with evaluating tuples 2018-07-26 00:52:45 -07:00
greg
c9625ffa77 Add module keyword 2018-07-26 00:52:45 -07:00
greg
cc3833754d Switch from request to superagent
For doing HTTP requests. Makes the js bundle a lot smaller.

Also I should do something about the fact that I now have to change the
js and also rebuild the rust binary to change code
2018-07-26 00:52:45 -07:00
greg
9afbd2305f Literal non-primitive values 2018-07-26 00:52:45 -07:00
greg
d7564f81c9 Starting work on literal non-primitve values 2018-07-26 00:52:45 -07:00
greg
2fbb8f2b2f Can eval custom data constructors now 2018-07-26 00:52:45 -07:00
greg
1884eae191 Float literals, kill old code 2018-07-26 00:52:45 -07:00
greg
bb880d44fa Some more primitive types + binop-checking 2018-07-26 00:52:45 -07:00
greg
22b4738726 Add required imports 2018-07-26 00:52:45 -07:00
greg
0202aab181 Some partial work on refactoring type infer fn 2018-07-26 00:52:45 -07:00
greg
f9c9ed6b29 Add colored output to non-interactive 2018-07-26 00:52:45 -07:00
greg
04cb1616f7 Convert webapp to using included files 2018-07-26 00:52:45 -07:00
greg
5f1c46cb87 Fix type check macro to add symbol table 2018-07-26 00:52:45 -07:00
greg
0ea9bd3d95 More work with unification 2018-07-26 00:52:45 -07:00
greg
0cf56eea4f the evar table
TODO find a better way to represent this
2018-07-26 00:52:45 -07:00
greg
ab53c5394e Unify work 2018-07-26 00:52:45 -07:00
greg
f6c85951fe Move type-level func up 2018-07-26 00:52:45 -07:00
greg
c530715671 Okay I am figuring things out about hindley-milner again 2018-07-26 00:52:45 -07:00
greg
617a30b967 rename type_var to ty 2018-07-26 00:52:45 -07:00
greg
cd11d18385 String and () types 2018-07-26 00:52:45 -07:00
greg
f82c6199c0 Change around some stuff 2018-07-26 00:52:45 -07:00
greg
f75cd763f8 Change Variable to Value 2018-07-26 00:52:45 -07:00
greg
54c16f0190 Partial handling of user defined types 2018-07-26 00:52:45 -07:00
greg
8d8e3cd565 Starting to make unify actually work 2018-07-26 00:52:45 -07:00
greg
47975cf8f6 Convert unify to are types
b/c Type implements Clone
Maybe wanna kill this later for efficiency
2018-07-26 00:52:45 -07:00
greg
ddd861fbea Have + do something different with strings
Needed to introduce polymorphism soon
2018-07-26 00:52:45 -07:00
greg
200d0f9867 Operator typing a little bit 2018-07-26 00:52:45 -07:00
greg
3e44bd3a18 Slight refactoring 2018-07-26 00:52:45 -07:00
greg
e2a94280c2 Renamed all the type-related types 2018-07-26 00:52:45 -07:00
greg
c5b3bafe43 Move some type checking code around 2018-07-26 00:52:45 -07:00
greg
b417451536 Basic typing test 2018-07-26 00:52:45 -07:00
greg
a0faed3603 String types 2018-07-26 00:52:45 -07:00
49 changed files with 6180 additions and 3279 deletions

1
.gitignore vendored
View File

@@ -2,3 +2,4 @@ Cargo.lock
target
.schala_repl
.schala_history
rusty-tags.vi

View File

@@ -6,11 +6,12 @@ authors = ["greg <greg.shuflin@protonmail.com>"]
[dependencies]
schala-repl = { path = "schala-repl" }
schala-codegen = { path = "schala-codegen" }
schala-repl-codegen = { path = "schala-repl-codegen" }
maaru-lang = { path = "maaru" }
rukka-lang = { path = "rukka" }
robo-lang = { path = "robo" }
schala-lang = { path = "schala-lang" }
schala-lang = { path = "schala-lang/language" }
schala-lang-codegen = { path = "schala-lang/codegen" }
[build-dependencies]
includedir_codegen = "0.2.0"

31
Grammar
View File

@@ -1,31 +0,0 @@
<program> := <statements> EOF
<statements> := <statement>
| <statement> SEP <statements>
<statement> := let <id> = <expr>
| <expr>
| <fn_block>
<fn_block> := fn <id> ( <arg_list> ) <statements> end
<arg_list> := e
| <id>
| <id> , <arg_list>
<expr> := if <expr> then <statements> end
| if <expr> then <statements> else <statements> end
| while <expr> SEP <statements> end
| ( <expr> )
| <binop>
<binop> := <simple_expr>
| <simple_expr> <id> <binop>
<simple_expr> := <id>
| <number>
| <string>

920
HindleyMilner.hs Normal file
View File

@@ -0,0 +1,920 @@
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE OverloadedStrings #-}
-- | This module is an extensively documented walkthrough for typechecking a
-- basic functional language using the Hindley-Damas-Milner algorithm.
--
-- In the end, we'll be able to infer the type of expressions like
--
-- @
-- find (λx. (>) x 0)
-- :: [Integer] -> Either () Integer
-- @
--
-- It can be used in multiple different forms:
--
-- * The source is written in literate programming style, so you can almost
-- read it from top to bottom, minus some few references to later topics.
-- * /Loads/ of doctests (runnable and verified code examples) are included
-- * The code is runnable in GHCi, all definitions are exposed.
-- * A small main module that gives many examples of what you might try out in
-- GHCi is also included.
-- * The Haddock output yields a nice overview over the definitions given, with
-- a nice rendering of a truckload of Haddock comments.
module HindleyMilner where
import Control.Monad.Trans
import Control.Monad.Trans.Except
import Control.Monad.Trans.State
import Data.Map (Map)
import qualified Data.Map as M
import Data.Monoid
import Data.Set (Set)
import qualified Data.Set as S
import Data.String
import Data.Text (Text)
import qualified Data.Text as T
-- $setup
--
-- For running doctests:
--
-- >>> :set -XOverloadedStrings
-- >>> :set -XOverloadedLists
-- >>> :set -XLambdaCase
-- >>> import qualified Data.Text.IO as T
-- >>> let putPprLn = T.putStrLn . ppr
-- #############################################################################
-- #############################################################################
-- * Preliminaries
-- #############################################################################
-- #############################################################################
-- #############################################################################
-- ** Prettyprinting
-- #############################################################################
-- | A prettyprinter class. Similar to 'Show', but with a focus on having
-- human-readable output as opposed to being valid Haskell.
class Pretty a where
ppr :: a -> Text
-- #############################################################################
-- ** Names
-- #############################################################################
-- | A 'name' is an identifier in the language we're going to typecheck.
-- Variables on both the term and type level have 'Name's, for example.
newtype Name = Name Text
deriving (Eq, Ord, Show)
-- | >>> "lorem" :: Name
-- Name "lorem"
instance IsString Name where
fromString = Name . T.pack
-- | >>> putPprLn (Name "var")
-- var
instance Pretty Name where
ppr (Name n) = n
-- #############################################################################
-- ** Monotypes
-- #############################################################################
-- | A monotype is an unquantified/unparametric type, in other words it contains
-- no @forall@s. Monotypes are the inner building blocks of all types. Examples
-- of monotypes are @Int@, @a@, @a -> b@.
--
-- In formal notation, 'MType's are often called τ (tau) types.
data MType = TVar Name -- ^ @a@
| TFun MType MType -- ^ @a -> b@
| TConst Name -- ^ @Int@, @()@, …
-- Since we can't declare our own types in our simple type system
-- here, we'll hard-code certain basic ones so we can typecheck some
-- familar functions that use them later.
| TList MType -- ^ @[a]@
| TEither MType MType -- ^ @Either a b@
| TTuple MType MType -- ^ @(a,b)@
deriving Show
-- | >>> putPprLn (TFun (TEither (TVar "a") (TVar "b")) (TFun (TVar "c") (TVar "d")))
-- Either a b → c → d
--
-- Using the 'IsString' instance:
--
-- >>> putPprLn (TFun (TEither "a" "b") (TFun "c" "d"))
-- Either a b → c → d
instance Pretty MType where
ppr = go False
where
go _ (TVar name) = ppr name
go _ (TList a) = "[" <> ppr a <> "]"
go _ (TEither l r) = "Either " <> ppr l <> " " <> ppr r
go _ (TTuple a b) = "(" <> ppr a <> ", " <> ppr b <> ")"
go _ (TConst name) = ppr name
go parenthesize (TFun a b)
| parenthesize = "(" <> lhs <> "" <> rhs <> ")"
| otherwise = lhs <> "" <> rhs
where lhs = go True a
rhs = go False b
-- | >>> "var" :: MType
-- TVar (Name "var")
instance IsString MType where
fromString = TVar . fromString
-- | The free variables of an 'MType'. This is simply the collection of all the
-- individual type variables occurring inside of it.
--
-- __Example:__ The free variables of @a -> b@ are @a@ and @b@.
freeMType :: MType -> Set Name
freeMType = \case
TVar a -> [a]
TFun a b -> freeMType a <> freeMType b
TList a -> freeMType a
TEither l r -> freeMType l <> freeMType r
TTuple a b -> freeMType a <> freeMType b
TConst _ -> []
-- | Substitute all the contained type variables mentioned in the substitution,
-- and leave everything else alone.
instance Substitutable MType where
applySubst s = \case
TVar a -> let Subst s' = s
in M.findWithDefault (TVar a) a s'
TFun f x -> TFun (applySubst s f) (applySubst s x)
TList a -> TList (applySubst s a)
TEither l r -> TEither (applySubst s l) (applySubst s r)
TTuple a b -> TTuple (applySubst s a) (applySubst s b)
c@TConst {} -> c
-- #############################################################################
-- ** Polytypes
-- #############################################################################
-- | A polytype is a monotype universally quantified over a number of type
-- variables. In Haskell, all definitions have polytypes, but since the @forall@
-- is implicit they look a bit like monotypes, maybe confusingly so. For
-- example, the type of @1 :: Int@ is actually @forall <nothing>. Int@, and the
-- type of @id@ is @forall a. a -> a@, although GHC displays it as @a -> a@.
--
-- A polytype claims to work "for all imaginable type parameters", very similar
-- to how a lambda claims to work "for all imaginable value parameters". We can
-- insert a value into a lambda's parameter to evaluate it to a new value, and
-- similarly we'll later insert types into a polytype's quantified variables to
-- gain new types.
--
-- __Example:__ in a definition @id :: forall a. a -> a@, the @a@ after the
-- ∀ ("forall") is the collection of type variables, and @a -> a@ is the 'MType'
-- quantified over. When we have such an @id@, we also have its specialized
-- version @Int -> Int@ available. This process will be the topic of the type
-- inference/unification algorithms.
--
-- In formal notation, 'PType's are often called σ (sigma) types.
--
-- The purpose of having monotypes and polytypes is that we'd like to only have
-- universal quantification at the top level, restricting our language to rank-1
-- polymorphism, where type inferece is total (all types can be inferred) and
-- simple (only a handful of typing rules). Weakening this constraint would be
-- easy: if we allowed universal quantification within function types we would
-- get rank-N polymorphism. Taking it even further to allow it anywhere,
-- effectively replacing all occurrences of 'MType' with 'PType', yields
-- impredicative types. Both these extensions make the type system
-- *significantly* more complex though.
data PType = Forall (Set Name) MType -- ^ ∀{α}. τ
-- | >>> putPprLn (Forall ["a"] (TFun "a" "a"))
-- ∀a. a → a
instance Pretty PType where
ppr (Forall qs mType) = "" <> pprUniversals <> ". " <> ppr mType
where
pprUniversals
| S.null qs = ""
| otherwise = (T.intercalate " " . map ppr . S.toList) qs
-- | The free variables of a 'PType' are the free variables of the contained
-- 'MType', except those universally quantified.
--
-- >>> let sigma = Forall ["a"] (TFun "a" (TFun (TTuple "b" "a") "c"))
-- >>> putPprLn sigma
-- ∀a. a → (b, a) → c
-- >>> let display = T.putStrLn . T.intercalate ", " . foldMap (\x -> [ppr x])
-- >>> display (freePType sigma)
-- b, c
freePType :: PType -> Set Name
freePType (Forall qs mType) = freeMType mType `S.difference` qs
-- | Substitute all the free type variables.
instance Substitutable PType where
applySubst (Subst subst) (Forall qs mType) =
let qs' = M.fromSet (const ()) qs
subst' = Subst (subst `M.difference` qs')
in Forall qs (applySubst subst' mType)
-- #############################################################################
-- ** The environment
-- #############################################################################
-- | The environment consists of all the values available in scope, and their
-- associated polytypes. Other common names for it include "(typing) context",
-- and because of the commonly used symbol for it sometimes directly
-- \"Gamma"/@"Γ"@.
--
-- There are two kinds of membership in an environment,
--
-- - @∈@: an environment @Γ@ can be viewed as a set of @(value, type)@ pairs,
-- and we can test whether something is /literally contained/ by it via
-- x:σ ∈ Γ
-- - @⊢@, pronounced /entails/, describes all the things that are well-typed,
-- given an environment @Γ@. @Γ ⊢ x:τ@ can thus be seen as a judgement that
-- @x:τ@ is /figuratively contained/ in @Γ@.
--
-- For example, the environment @{x:Int}@ literally contains @x@, but given
-- this, it also entails @λy. x@, @λy z. x@, @let id = λy. y in id x@ and so on.
--
-- In Haskell terms, the environment consists of all the things you currently
-- have available, or that can be built by comining them. If you import the
-- Prelude, your environment entails
--
-- @
-- id → ∀a. a→a
-- map → ∀a b. (a→b) → [a] → [b]
-- putStrLn → ∀∅. String → IO ()
-- …
-- id map → ∀a b. (a→b) → [a] → [b]
-- map putStrLn → ∀∅. [String] -> [IO ()]
-- …
-- @
newtype Env = Env (Map Name PType)
-- | >>> :{
-- putPprLn (Env
-- [ ("id", Forall ["a"] (TFun "a" "a"))
-- , ("const", Forall ["a", "b"] (TFun "a" (TFun "b" "a"))) ])
-- :}
-- Γ = { const : ∀a b. a → b → a
-- , id : ∀a. a → a }
instance Pretty Env where
ppr (Env env) = "Γ = { " <> T.intercalate "\n , " pprBindings <> " }"
where
bindings = M.assocs env
pprBinding (name, pType) = ppr name <> " : " <> ppr pType
pprBindings = map pprBinding bindings
-- | The free variables of an 'Env'ironment are all the free variables of the
-- 'PType's it contains.
freeEnv :: Env -> Set Name
freeEnv (Env env) = let allPTypes = M.elems env
in S.unions (map freePType allPTypes)
-- | Performing a 'Subst'itution in an 'Env'ironment means performing that
-- substituion on all the contained 'PType's.
instance Substitutable Env where
applySubst s (Env env) = Env (M.map (applySubst s) env)
-- #############################################################################
-- ** Substitutions
-- #############################################################################
-- | A substitution is a mapping from type variables to 'MType's. Applying a
-- substitution means applying those replacements. For example, the substitution
-- @a -> Int@ applied to @a -> a@ yields the result @Int -> Int@.
--
-- A key concept behind Hindley-Milner is that once we dive deeper into an
-- expression, we learn more about our type variables. We might learn that @a@
-- has to be specialized to @b -> b@, and then later on that @b@ is actually
-- @Int@. Substitutions are an organized way of carrying this information along.
newtype Subst = Subst (Map Name MType)
-- | We're going to apply substitutions to a variety of other values that
-- somehow contain type variables, so we overload this application operation in
-- a class here.
--
-- Laws:
--
-- @
-- 'applySubst' 'mempty' ≡ 'id'
-- 'applySubst' (s1 '<>' s2) ≡ 'applySubst' s1 . 'applySubst' s2
-- @
class Substitutable a where
applySubst :: Subst -> a -> a
instance (Substitutable a, Substitutable b) => Substitutable (a,b) where
applySubst s (x,y) = (applySubst s x, applySubst s y)
-- | @'applySubst' s1 s2@ applies one substitution to another, replacing all the
-- bindings in the second argument @s2@ with their values mentioned in the first
-- one (@s1@).
instance Substitutable Subst where
applySubst s (Subst target) = Subst (fmap (applySubst s) target)
-- | >>> :{
-- putPprLn (Subst
-- [ ("a", TFun "b" "b")
-- , ("b", TEither "c" "d") ])
-- :}
-- { a > b → b
-- , b > Either c d }
instance Pretty Subst where
ppr (Subst s) = "{ " <> T.intercalate "\n, " [ ppr k <> " > " <> ppr v | (k,v) <- M.toList s ] <> " }"
-- | Combine two substitutions by applying all substitutions mentioned in the
-- first argument to the type variables contained in the second.
instance Monoid Subst where
-- Considering that all we can really do with a substitution is apply it, we
-- can use the one of 'Substitutable's laws to show that substitutions
-- combine associatively,
--
-- @
-- applySubst (compose s1 (compose s2 s3))
-- = applySubst s1 . applySubst (compose s2 s3)
-- = applySubst s1 . applySubst s2 . applySubst s3
-- = applySubst (compose s1 s2) . applySubst s3
-- = applySubst (compose (compose s1 s2) s3)
-- @
mappend subst1 subst2 = Subst (s1 `M.union` s2)
where
Subst s1 = subst1
Subst s2 = applySubst subst1 subst2
mempty = Subst M.empty
-- #############################################################################
-- #############################################################################
-- * Typechecking
-- #############################################################################
-- #############################################################################
-- $ Typechecking does two things:
--
-- 1. If two types are not immediately identical, attempt to 'unify' them
-- to get a type compatible with both of them
-- 2. 'infer' the most general type of a value by comparing the values in its
-- definition with the 'Env'ironment
-- #############################################################################
-- ** Inference context
-- #############################################################################
-- | The inference type holds a supply of unique names, and can fail with a
-- descriptive error if something goes wrong.
--
-- /Invariant:/ the supply must be infinite, or we might run out of names to
-- give to things.
newtype Infer a = Infer (ExceptT InferError (State [Name]) a)
deriving (Functor, Applicative, Monad)
-- | Errors that can happen during the type inference process.
data InferError =
-- | Two types that don't match were attempted to be unified.
--
-- For example, @a -> a@ and @Int@ do not unify.
--
-- >>> putPprLn (CannotUnify (TFun "a" "a") (TConst "Int"))
-- Cannot unify a → a with Int
CannotUnify MType MType
-- | A 'TVar' is bound to an 'MType' that already contains it.
--
-- The canonical example of this is @λx. x x@, where the first @x@
-- in the body has to have type @a -> b@, and the second one @a@. Since
-- they're both the same @x@, this requires unification of @a@ with
-- @a -> b@, which only works if @a = a -> b = (a -> b) -> b = …@, yielding
-- an infinite type.
--
-- >>> putPprLn (OccursCheckFailed "a" (TFun "a" "a"))
-- Occurs check failed: a already appears in a → a
| OccursCheckFailed Name MType
-- | The value of an unknown identifier was read.
--
-- >>> putPprLn (UnknownIdentifier "a")
-- Unknown identifier: a
| UnknownIdentifier Name
deriving Show
-- | >>> putPprLn (CannotUnify (TEither "a" "b") (TTuple "a" "b"))
-- Cannot unify Either a b with (a, b)
instance Pretty InferError where
ppr = \case
CannotUnify t1 t2 ->
"Cannot unify " <> ppr t1 <> " with " <> ppr t2
OccursCheckFailed name ty ->
"Occurs check failed: " <> ppr name <> " already appears in " <> ppr ty
UnknownIdentifier name ->
"Unknown identifier: " <> ppr name
-- | Evaluate a value in an 'Infer'ence context.
--
-- >>> let expr = EAbs "f" (EAbs "g" (EAbs "x" (EApp (EApp "f" "x") (EApp "g" "x"))))
-- >>> putPprLn expr
-- λf g x. f x (g x)
-- >>> let inferred = runInfer (infer (Env []) expr)
-- >>> let demonstrate = \case Right (_, ty) -> T.putStrLn (":: " <> ppr ty)
-- >>> demonstrate inferred
-- :: (c → e → f) → (c → e) → c → f
runInfer :: Infer a -- ^ Inference data
-> Either InferError a
runInfer (Infer inf) =
evalState (runExceptT inf) (map Name (infiniteSupply alphabet))
where
alphabet = map T.singleton ['a'..'z']
-- [a, b, c] ==> [a,b,c, a1,b1,c1, a2,b2,c2, …]
infiniteSupply supply = supply <> addSuffixes supply (1 :: Integer)
where
addSuffixes xs n = map (\x -> addSuffix x n) xs <> addSuffixes xs (n+1)
addSuffix x n = x <> T.pack (show n)
-- | Throw an 'InferError' in an 'Infer'ence context.
--
-- >>> case runInfer (throw (UnknownIdentifier "var")) of Left err -> putPprLn err
-- Unknown identifier: var
throw :: InferError -> Infer a
throw = Infer . throwE
-- #############################################################################
-- ** Unification
-- #############################################################################
-- $ Unification describes the process of making two different types compatible
-- by specializing them where needed. A desirable property to have here is being
-- able to find the most general unifier. Luckily, we'll be able to do that in
-- our type system.
-- | The unification of two 'MType's is the most general substituion that can be
-- applied to both of them in order to yield the same result.
--
-- >>> let m1 = TFun "a" "b"
-- >>> putPprLn m1
-- a → b
-- >>> let m2 = TFun "c" (TEither "d" "e")
-- >>> putPprLn m2
-- c → Either d e
-- >>> let inferSubst = unify (m1, m2)
-- >>> case runInfer inferSubst of Right subst -> putPprLn subst
-- { a > c
-- , b > Either d e }
unify :: (MType, MType) -> Infer Subst
unify = \case
(TFun a b, TFun x y) -> unifyBinary (a,b) (x,y)
(TVar v, x) -> v `bindVariableTo` x
(x, TVar v) -> v `bindVariableTo` x
(TConst a, TConst b) | a == b -> pure mempty
(TList a, TList b) -> unify (a,b)
(TEither a b, TEither x y) -> unifyBinary (a,b) (x,y)
(TTuple a b, TTuple x y) -> unifyBinary (a,b) (x,y)
(a, b) -> throw (CannotUnify a b)
where
-- Unification of binary type constructors, such as functions and Either.
-- Unification is first done for the first operand, and assuming the
-- required substitution, for the second one.
unifyBinary :: (MType, MType) -> (MType, MType) -> Infer Subst
unifyBinary (a,b) (x,y) = do
s1 <- unify (a, x)
s2 <- unify (applySubst s1 (b, y))
pure (s1 <> s2)
-- | Build a 'Subst'itution that binds a 'Name' of a 'TVar' to an 'MType'. The
-- resulting substitution should be idempotent, i.e. applying it more than once
-- to something should not be any different from applying it only once.
--
-- - In the simplest case, this just means building a substitution that just
-- does that.
-- - Substituting a 'Name' with a 'TVar' with the same name unifies a type
-- variable with itself, and the resulting substitution does nothing new.
-- - If the 'Name' we're trying to bind to an 'MType' already occurs in that
-- 'MType', the resulting substitution would not be idempotent: the 'MType'
-- would be replaced again, yielding a different result. This is known as the
-- Occurs Check.
bindVariableTo :: Name -> MType -> Infer Subst
bindVariableTo name (TVar v) | boundToSelf = pure mempty
where
boundToSelf = name == v
bindVariableTo name mType | name `occursIn` mType = throw (OccursCheckFailed name mType)
where
n `occursIn` ty = n `S.member` freeMType ty
bindVariableTo name mType = pure (Subst (M.singleton name mType))
-- #############################################################################
-- ** Type inference
-- #############################################################################
-- $ Type inference is the act of finding out a value's type by looking at the
-- environment it is in, in order to make it compatible with it.
--
-- In literature, the Hindley-Damas-Milner inference algorithm ("Algorithm W")
-- is often presented in the style of logical formulas, and below you'll find
-- that version along with code that actually does what they say.
--
-- These formulas look a bit like fractions, where the "numerator" is a
-- collection of premises, and the denominator is the consequence if all of them
-- hold.
--
-- __Example:__
--
-- @
-- Γ ⊢ even : Int → Bool Γ ⊢ 1 : Int
--
-- Γ ⊢ even 1 : Bool
-- @
--
-- means that if we have a value of type @Int -> Bool@ called "even" and a value
-- of type @Int@ called @1@, then we also have a value of type @Bool@ via
-- @even 1@ available to us.
--
-- The actual inference rules are polymorphic versions of this example, and
-- the code comments will explain each step in detail.
-- -----------------------------------------------------------------------------
-- *** The language: typed lambda calculus
-- -----------------------------------------------------------------------------
-- | The syntax tree of the language we'd like to typecheck. You can view it as
-- a close relative to simply typed lambda calculus, having only the most
-- necessary syntax elements.
--
-- Since 'ELet' is non-recursive, the usual fixed-point function
-- @fix : (a → a) → a@ can be introduced to allow recursive definitions.
data Exp = ELit Lit -- ^ True, 1
| EVar Name -- ^ @x@
| EApp Exp Exp -- ^ @f x@
| EAbs Name Exp -- ^ @λx. e@
| ELet Name Exp Exp -- ^ @let x = e in e'@ (non-recursive)
deriving Show
-- | Literals we'd like to support. Since we can't define new data types in our
-- simple type system, we'll have to hard-code the possible ones here.
data Lit = LBool Bool
| LInteger Integer
deriving Show
-- | >>> putPprLn (EAbs "f" (EAbs "g" (EAbs "x" (EApp (EApp "f" "x") (EApp "g" "x")))))
-- λf g x. f x (g x)
instance Pretty Exp where
ppr (ELit lit) = ppr lit
ppr (EVar name) = ppr name
ppr (EApp f x) = pprApp1 f <> " " <> pprApp2 x
where
pprApp1 = \case
eLet@ELet{} -> "(" <> ppr eLet <> ")"
eLet@EAbs{} -> "(" <> ppr eLet <> ")"
e -> ppr e
pprApp2 = \case
eApp@EApp{} -> "(" <> ppr eApp <> ")"
e -> pprApp1 e
ppr x@EAbs{} = pprAbs True x
where
pprAbs True (EAbs name expr) = "λ" <> ppr name <> pprAbs False expr
pprAbs False (EAbs name expr) = " " <> ppr name <> pprAbs False expr
pprAbs _ expr = ". " <> ppr expr
ppr (ELet name value body) =
"let " <> ppr name <> " = " <> ppr value <> " in " <> ppr body
-- | >>> putPprLn (LBool True)
-- True
--
-- >>> putPprLn (LInteger 127)
-- 127
instance Pretty Lit where
ppr = \case
LBool b -> showT b
LInteger i -> showT i
where
showT :: Show a => a -> Text
showT = T.pack . show
-- | >>> "var" :: Exp
-- EVar (Name "var")
instance IsString Exp where
fromString = EVar . fromString
-- -----------------------------------------------------------------------------
-- *** Some useful definitions
-- -----------------------------------------------------------------------------
-- | Generate a fresh 'Name' in a type 'Infer'ence context. An example use case
-- of this is η expansion, which transforms @f@ into @λx. f x@, where "x" is a
-- new name, i.e. unbound in the current context.
fresh :: Infer MType
fresh = drawFromSupply >>= \case
Right name -> pure (TVar name)
Left err -> throw err
where
drawFromSupply :: Infer (Either InferError Name)
drawFromSupply = Infer (do
s:upply <- lift get
lift (put upply)
pure (Right s) )
-- | Add a new binding to the environment.
--
-- The Haskell equivalent would be defining a new value, for example in module
-- scope or in a @let@ block. This corresponds to the "comma" operation used in
-- formal notation,
--
-- @
-- Γ, x:σ ≡ extendEnv Γ (x,σ)
-- @
extendEnv :: Env -> (Name, PType) -> Env
extendEnv (Env env) (name, pType) = Env (M.insert name pType env)
-- -----------------------------------------------------------------------------
-- *** Inferring the types of all language constructs
-- -----------------------------------------------------------------------------
-- | Infer the type of an 'Exp'ression in an 'Env'ironment, resulting in the
-- 'Exp's 'MType' along with a substitution that has to be done in order to reach
-- this goal.
--
-- This is widely known as /Algorithm W/.
infer :: Env -> Exp -> Infer (Subst, MType)
infer env = \case
ELit lit -> inferLit lit
EVar name -> inferVar env name
EApp f x -> inferApp env f x
EAbs x e -> inferAbs env x e
ELet x e e' -> inferLet env x e e'
-- | Literals such as 'True' and '1' have their types hard-coded.
inferLit :: Lit -> Infer (Subst, MType)
inferLit lit = pure (mempty, TConst litTy)
where
litTy = case lit of
LBool {} -> "Bool"
LInteger {} -> "Integer"
-- | Inferring the type of a variable is done via
--
-- @
-- x:σ ∈ Γ τ = instantiate(σ)
-- [Var]
-- Γ ⊢ x:τ
-- @
--
-- This means that if @Γ@ /literally contains/ (@∈@) a value, then it also
-- /entails it/ (@⊢@) in all its instantiations.
inferVar :: Env -> Name -> Infer (Subst, MType)
inferVar env name = do
sigma <- lookupEnv env name -- x:σ ∈ Γ
tau <- instantiate sigma -- τ = instantiate(σ)
-- ------------------
pure (mempty, tau) -- Γ ⊢ x:τ
-- | Look up the 'PType' of a 'Name' in the 'Env'ironment.
--
-- This checks whether @x:σ@ is /literally contained/ in @Γ@. For more details
-- about this, see the documentation of 'Env'.
--
-- To give a Haskell analogon, looking up @id@ when @Prelude@ is loaded, the
-- resulting 'PType' would be @id@'s type, namely @forall a. a -> a@.
lookupEnv :: Env -> Name -> Infer PType
lookupEnv (Env env) name = case M.lookup name env of
Just x -> pure x
Nothing -> throw (UnknownIdentifier name)
-- | Bind all quantified variables of a 'PType' to 'fresh' type variables.
--
-- __Example:__ instantiating @forall a. a -> b -> a@ results in the 'MType'
-- @c -> b -> c@, where @c@ is a fresh name (to avoid shadowing issues).
--
-- You can picture the 'PType' to be the prototype converted to an instantiated
-- 'MType', which can now be used in the unification process.
--
-- Another way of looking at it is by simply forgetting which variables were
-- quantified, carefully avoiding name clashes when doing so.
--
-- 'instantiate' can also be seen as the opposite of 'generalize', which we'll
-- need later to convert an 'MType' to a 'PType'.
instantiate :: PType -> Infer MType
instantiate (Forall qs t) = do
subst <- substituteAllWithFresh qs
pure (applySubst subst t)
where
-- For each given name, add a substitution from that name to a fresh type
-- variable to the result.
substituteAllWithFresh :: Set Name -> Infer Subst
substituteAllWithFresh xs = do
let freshSubstActions = M.fromSet (const fresh) xs
freshSubsts <- sequenceA freshSubstActions
pure (Subst freshSubsts)
-- | Function application captures the fact that if we have a function and an
-- argument we can give to that function, we also have the result value of the
-- result type available to us.
--
-- @
-- Γ ⊢ f : fτ Γ ⊢ x : xτ fxτ = fresh unify(fτ, xτ → fxτ)
-- [App]
-- Γ ⊢ f x : fxτ
-- @
--
-- This rule says that given a function and a value with a type, the function
-- type has to unify with a function type that allows the value type to be its
-- argument.
inferApp
:: Env
-> Exp -- ^ __f__ x
-> Exp -- ^ f __x__
-> Infer (Subst, MType)
inferApp env f x = do
(s1, fTau) <- infer env f -- f : fτ
(s2, xTau) <- infer (applySubst s1 env) x -- x : xτ
fxTau <- fresh -- fxτ = fresh
s3 <- unify (applySubst s2 fTau, TFun xTau fxTau) -- unify (fτ, xτ → fxτ)
let s = s3 <> s2 <> s1 -- --------------------
pure (s, applySubst s3 fxTau) -- f x : fxτ
-- | Lambda abstraction is based on the fact that when we introduce a new
-- variable, the resulting lambda maps from that variable's type to the type of
-- the body.
--
-- @
-- τ = fresh σ = ∀∅. τ Γ, x:σ ⊢ e:τ'
-- [Abs]
-- Γ ⊢ λx.e : τ→τ'
-- @
--
-- Here, @Γ, x:τ@ is @Γ@ extended by one additional mapping, namely @x:τ@.
--
-- Abstraction is typed by extending the environment by a new 'MType', and if
-- under this assumption we can construct a function mapping to a value of that
-- type, we can say that the lambda takes a value and maps to it.
inferAbs
:: Env
-> Name -- ^ λ__x__. e
-> Exp -- ^ λx. __e__
-> Infer (Subst, MType)
inferAbs env x e = do
tau <- fresh -- τ = fresh
let sigma = Forall [] tau -- σ = ∀∅. τ
env' = extendEnv env (x, sigma) -- Γ, x:σ
(s, tau') <- infer env' e -- … ⊢ e:τ'
-- ---------------
pure (s, TFun (applySubst s tau) tau') -- λx.e : τ→τ'
-- | A let binding allows extending the environment with new bindings in a
-- principled manner. To do this, we first have to typecheck the expression to
-- be introduced. The result of this is then generalized to a 'PType', since let
-- bindings introduce new polymorphic values, which are then added to the
-- environment. Now we can finally typecheck the body of the "in" part of the
-- let binding.
--
-- Note that in our simple language, let is non-recursive, but recursion can be
-- introduced as usual by adding a primitive @fix : (a → a) → a@ if desired.
--
-- @
-- Γ ⊢ e:τ σ = gen(Γ,τ) Γ, x:σ ⊢ e':τ'
-- [Let]
-- Γ ⊢ let x = e in e' : τ'
-- @
inferLet
:: Env
-> Name -- ^ let __x__ = e in e'
-> Exp -- ^ let x = __e__ in e'
-> Exp -- ^ let x = e in __e'__
-> Infer (Subst, MType)
inferLet env x e e' = do
(s1, tau) <- infer env e -- Γ ⊢ e:τ
let env' = applySubst s1 env
let sigma = generalize env' tau -- σ = gen(Γ,τ)
let env'' = extendEnv env' (x, sigma) -- Γ, x:σ
(s2, tau') <- infer env'' e' -- Γ ⊢ …
-- --------------------------
pure (s2 <> s1, tau') -- … let x = e in e' : τ'
-- | Generalize an 'MType' to a 'PType' by universally quantifying over all the
-- type variables contained in it, except those already free in the environment.
--
-- >>> let tau = TFun "a" (TFun "b" "a")
-- >>> putPprLn tau
-- a → b → a
-- >>> putPprLn (generalize (Env [("x", Forall [] "b")]) tau)
-- ∀a. a → b → a
--
-- In more formal notation,
--
-- @
-- gen(Γ,τ) = ∀{α}. τ
-- where {α} = free(τ) free(Γ)
-- @
--
-- 'generalize' can also be seen as the opposite of 'instantiate', which
-- converts a 'PType' to an 'MType'.
generalize :: Env -> MType -> PType
generalize env mType = Forall qs mType
where
qs = freeMType mType `S.difference` freeEnv env

185
Main.hs Normal file
View File

@@ -0,0 +1,185 @@
{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE OverloadedStrings #-}
module Main where
import qualified Data.Map as M
import Data.Monoid
import Data.Text (Text)
import qualified Data.Text.IO as T
import HindleyMilner
-- #############################################################################
-- #############################################################################
-- * Testing
-- #############################################################################
-- #############################################################################
-- #############################################################################
-- ** A small custom Prelude
-- #############################################################################
prelude :: Env
prelude = Env (M.fromList
[ ("(*)", Forall [] (tInteger ~> tInteger ~> tInteger))
, ("(+)", Forall [] (tInteger ~> tInteger ~> tInteger))
, ("(,)", Forall ["a","b"] ("a" ~> "b" ~> TTuple "a" "b"))
, ("(-)", Forall [] (tInteger ~> tInteger ~> tInteger))
, ("(.)", Forall ["a", "b", "c"] (("b" ~> "c") ~> ("a" ~> "b") ~> "a" ~> "c"))
, ("(<)", Forall [] (tInteger ~> tInteger ~> tBool))
, ("(<=)", Forall [] (tInteger ~> tInteger ~> tBool))
, ("(>)", Forall [] (tInteger ~> tInteger ~> tBool))
, ("(>=)", Forall [] (tInteger ~> tInteger ~> tBool))
, ("const", Forall ["a","b"] ("a" ~> "b" ~> "a"))
, ("Cont/>>=", Forall ["a"] ((("a" ~> "r") ~> "r") ~> ("a" ~> (("b" ~> "r") ~> "r")) ~> (("b" ~> "r") ~> "r")))
, ("find", Forall ["a","b"] (("a" ~> tBool) ~> TList "a" ~> tMaybe "a"))
, ("fix", Forall ["a"] (("a" ~> "a") ~> "a"))
, ("foldr", Forall ["a","b"] (("a" ~> "b" ~> "b") ~> "b" ~> TList "a" ~> "b"))
, ("id", Forall ["a"] ("a" ~> "a"))
, ("ifThenElse", Forall ["a"] (tBool ~> "a" ~> "a" ~> "a"))
, ("Left", Forall ["a","b"] ("a" ~> TEither "a" "b"))
, ("length", Forall ["a"] (TList "a" ~> tInteger))
, ("map", Forall ["a","b"] (("a" ~> "b") ~> TList "a" ~> TList "b"))
, ("reverse", Forall ["a"] (TList "a" ~> TList "a"))
, ("Right", Forall ["a","b"] ("b" ~> TEither "a" "b"))
, ("[]", Forall ["a"] (TList "a"))
, ("(:)", Forall ["a"] ("a" ~> TList "a" ~> TList "a"))
])
where
tBool = TConst "Bool"
tInteger = TConst "Integer"
tMaybe = TEither (TConst "()")
-- | Synonym for 'TFun' to make writing type signatures easier.
--
-- Instead of
--
-- @
-- Forall ["a","b"] (TFun "a" (TFun "b" "a"))
-- @
--
-- we can write
--
-- @
-- Forall ["a","b"] ("a" ~> "b" ~> "a")
-- @
(~>) :: MType -> MType -> MType
(~>) = TFun
infixr 9 ~>
-- #############################################################################
-- ** Run it!
-- #############################################################################
-- | Run type inference on a cuple of values
main :: IO ()
main = do
let inferAndPrint = T.putStrLn . (" " <>) . showType prelude
T.putStrLn "Well-typed:"
do
inferAndPrint (lambda ["x"] "x")
inferAndPrint (lambda ["f","g","x"] (apply "f" ["x", apply "g" ["x"]]))
inferAndPrint (lambda ["f","g","x"] (apply "f" [apply "g" ["x"]]))
inferAndPrint (lambda ["m", "k", "c"] (apply "m" [lambda ["x"] (apply "k" ["x", "c"])])) -- >>= for Cont
inferAndPrint (lambda ["f"] (apply "(.)" ["reverse", apply "map" ["f"]]))
inferAndPrint (apply "find" [lambda ["x"] (apply "(>)" ["x", int 0])])
inferAndPrint (apply "map" [apply "map" ["map"]])
inferAndPrint (apply "(*)" [int 1, int 2])
inferAndPrint (apply "foldr" ["(+)", int 0])
inferAndPrint (apply "map" ["length"])
inferAndPrint (apply "map" ["map"])
inferAndPrint (lambda ["x"] (apply "ifThenElse" [apply "(<)" ["x", int 0], int 0, "x"]))
inferAndPrint (lambda ["x"] (apply "fix" [lambda ["xs"] (apply "(:)" ["x", "xs"])]))
T.putStrLn "Ill-typed:"
do
inferAndPrint (apply "(*)" [int 1, bool True])
inferAndPrint (apply "foldr" [int 1])
inferAndPrint (lambda ["x"] (apply "x" ["x"]))
inferAndPrint (lambda ["x"] (ELet "xs" (apply "(:)" ["x", "xs"]) "xs"))
-- | Build multiple lambda bindings.
--
-- Instead of
--
-- @
-- EAbs "f" (EAbs "x" (EApp "f" "x"))
-- @
--
-- we can write
--
-- @
-- lambda ["f", "x"] (EApp "f" "x")
-- @
--
-- for
--
-- @
-- λf x. f x
-- @
lambda :: [Name] -> Exp -> Exp
lambda names expr = foldr EAbs expr names
-- | Apply a function to multiple arguments.
--
-- Instead of
--
-- @
-- EApp (EApp (EApp "f" "x") "y") "z")
-- @
--
-- we can write
--
-- @
-- apply "f" ["x", "y", "z"]
-- @
--
-- for
--
-- @
-- f x y z
-- @
apply :: Exp -> [Exp] -> Exp
apply = foldl EApp
-- | Construct an integer literal.
int :: Integer -> Exp
int = ELit . LInteger
-- | Construct a boolean literal.
bool :: Bool -> Exp
bool = ELit . LBool
-- | Convenience function to run type inference algorithm
showType :: Env -- ^ Starting environment, e.g. 'prelude'.
-> Exp -- ^ Expression to typecheck
-> Text -- ^ Text representation of the result. Contains an error
-- message on failure.
showType env expr =
case (runInfer . fmap (generalize (Env mempty) . uncurry applySubst) . infer env) expr of
Left err -> "Error inferring type of " <> ppr expr <>": " <> ppr err
Right ty -> ppr expr <> " :: " <> ppr ty

View File

@@ -1,21 +1,21 @@
# Schala - a programming language meta-interpreter
Schala is a Rust framework written to make it easy to
create and experiment with toy programming languages. It provides
a common REPL, and a trait `ProgrammingLanguage` with provisions
for tokenizing text, parsing tokens, evaluating an abstract syntax tree,
and other tasks that are common to all programming languages.
Schala is a Rust framework written to make it easy to create and experiment
with toy programming languages. It provides a cross-language REPL and
provisions for tokenizing text, parsing tokens, evaluating an abstract syntax
tree, and other tasks that are common to all programming languages.
Schala is implemented as a Rust library `schala_lib`, which provides a
`schala_main` function. This function serves as the main loop of the REPL, if run
interactively, or otherwise reads and interprets programming language source
files. It expects as input a vector of `PLIGenerator`, which is a type representing
a closure that returns a boxed trait object that implements the `ProgrammingLanguage` trait,
and stores any persistent state relevant to that programming language. The ability
to share state between different programming languages is in the works.
Schala is implemented as a Rust library `schala-repl`, which provides a
function `repl_main` meant to be used as the equivalent of main() for library
users. This function parses command-line arguments and either runs an interactive
REPL or interprets a program non-interactively.
## About
Individual programming language implementations are Rust types that implement
the `ProgrammingLanguageInterface` trait and store whatever persistent state is
relevant to that language. The ability to share state between different
programming languages is in the works.
## History
Schala started out life as an experiment in writing a Javascript-like
programming language that would never encounter any kind of runtime value
@@ -58,6 +58,9 @@ of learning how to write a programming language.
### Type-checking
https://skillsmatter.com/skillscasts/10868-inside-the-rust-compiler
https://www.youtube.com/watch?v=il3gD7XMdmA
http://dev.stephendiehl.com/fun/006_hindley_milner.html
https://rust-lang-nursery.github.io/rustc-guide/type-inference.html
### Evaluation
*Understanding Computation*, Tom Stuart, O'Reilly 2013
@@ -66,6 +69,7 @@ https://skillsmatter.com/skillscasts/10868-inside-the-rust-compiler
### Parsing
http://journal.stuffwithstuff.com/2011/03/19/pratt-parsers-expression-parsing-made-easy/
https://soc.github.io/languages/unified-condition-syntax
[Crafting Interpreters](http://www.craftinginterpreters.com/)
@@ -74,4 +78,5 @@ http://blog.ulysse.io/2016/07/03/llvm-getting-started.html
###Rust resources
https://thefullsnack.com/en/rust-for-the-web.html
https://rocket.rs/guide/getting-started/

99
TODO.md
View File

@@ -1,6 +1,102 @@
#Typechecking Notes
(cf. cardelli paper)
Given a length function def:
````
fn length(x) {
if x.is_null {
0
} else {
succ(length(x.tail))
}
}
````
Constraints:
.null: List a -> bool
.tail: List a -> List a
0: Nat
succ: Nat -> Nat
# TODO Items
-make the REPL more advanced!
-Plan of attack:
-write a visitor pattern for AST
-convert AST type to including SourceMap'd wrappers (w/ .into())
-at the same time, amke sure the visitor pattern "skips over" the SourceMap'd stuff
so it can just care about AST structure
- AST : maybe replace the Expression type with "Ascription(TypeName, Box<Expression>) nodes??
- parser: add a "debug" field to the Parser struct for all debug-related things
-scala-style html"dfasfsadf${}" string interpolations!
-fuzz test schala
-look into Inkwell for LLVM
*A neat idea for pattern matching optimization would be if you could match on one of several things in a list
ex:
if x {
is (comp, LHSPat, RHSPat) if comp in ["==, "<"] -> ...
}
- https://nshipster.com/never/
-https://cranelift.readthedocs.io/en/latest/?badge=latest<Paste>
-consult http://gluon-lang.org/book/embedding-api.html
- if/match playground
simple if
`if x == 1.0 { "a" } else { "b" }`
one comparison multiple targets:
`if x == { 1.0 -> "a", 2.0 -> "b", else -> "c" }`
different comparison operators/ method calls:
`if x { == 1.0 -> "a", eq NaN -> "n", .hella() -> "h", else -> "z" }`
pattern matching/introducing bindings:
`if alice { .age < 18 -> "18", is Person("Alice", age) -> "${age}", else -> "none" }`
pattern matching w/ if-let:
`if person is Person("Alice", age) { "${age}" } else { "nope" }`
-https://soc.github.io/languages/unified-condition-syntax syntax:
`if <cond-expr>" then <then-expr> else <else-expr>`
`if <half-expr> \n <rest-expr1> then <result1-expr> \n <rest-expr2> then <result-expr2> else <result3-expr>`
-and rest-exprs (or "targets") can have 'is' for pattern-matching, actually so can a full cond-expr
UNIFIED IF EXPRESSIONS FINAL WORK:
basic syntax:
`if_expr := if discriminator '{' (guard_expr)* '}'`
`guard_expr := pattern 'then' block_or_expr'`
`pattern := rhs | is_pattern`
`is_pattern := 'is' ???`
`rhs := expression | ???`
if the only two guard patterns are true and false, then the abbreviated syntax:
`'if' discriminator 'then' block_or_expr 'else' block_or_expr`
can replace `'if' discriminator '{' 'true' 'then' block_or_expr; 'false' 'then' block_or_expr '}'`
- Next priorities: - get ADTs working, get matches working
- inclusive/exclusive range syntax like .. vs ..=
- sketch of an idea for the REPL:
-each compiler pass should be a (procedural?) macro like
@@ -44,10 +140,7 @@ type enum {
- AST : maybe replace the Expression type with "Ascription(TypeName, Box<Expression>) nodes??
- parser: add a "debug" field to the Parser struct for all debug-related things
-scala-style html"dfasfsadf${}" string interpolations!
*Compiler passes architecture

View File

@@ -1,279 +0,0 @@
extern crate llvm_sys;
use std::collections::HashMap;
use self::llvm_sys::prelude::*;
use self::llvm_sys::{LLVMIntPredicate};
use parser::{AST, Statement, Function, Prototype, Expression, BinOp};
use schala_repl::LLVMCodeString;
use schala_repl::llvm_wrap as LLVMWrap;
type VariableMap = HashMap<String, LLVMValueRef>;
struct CompilationData {
context: LLVMContextRef,
module: LLVMModuleRef,
builder: LLVMBuilderRef,
variables: VariableMap,
main_function: LLVMValueRef,
current_function: Option<LLVMValueRef>,
}
pub fn compile_ast(ast: AST) -> LLVMCodeString {
println!("Compiling!");
let names: VariableMap = HashMap::new();
let context = LLVMWrap::create_context();
let module = LLVMWrap::module_create_with_name("example module");
let builder = LLVMWrap::CreateBuilderInContext(context);
let program_return_type = LLVMWrap::Int64TypeInContext(context);
let main_function_type = LLVMWrap::FunctionType(program_return_type, Vec::new(), false);
let main_function: LLVMValueRef = LLVMWrap::AddFunction(module, "main", main_function_type);
let mut data = CompilationData {
context: context,
builder: builder,
module: module,
variables: names,
main_function: main_function,
current_function: None,
};
let bb = LLVMWrap::AppendBasicBlockInContext(data.context, data.main_function, "entry");
LLVMWrap::PositionBuilderAtEnd(builder, bb);
let value = ast.codegen(&mut data);
LLVMWrap::BuildRet(builder, value);
let ret = LLVMWrap::PrintModuleToString(module);
// Clean up. Values created in the context mostly get cleaned up there.
LLVMWrap::DisposeBuilder(builder);
LLVMWrap::DisposeModule(module);
LLVMWrap::ContextDispose(context);
LLVMCodeString(ret)
}
trait CodeGen {
fn codegen(&self, &mut CompilationData) -> LLVMValueRef;
}
impl CodeGen for AST {
fn codegen(&self, data: &mut CompilationData) -> LLVMValueRef {
let int_type = LLVMWrap::Int64TypeInContext(data.context);
let mut ret = LLVMWrap::ConstInt(int_type, 0, false);
for statement in self {
ret = statement.codegen(data);
}
ret
}
}
impl CodeGen for Statement {
fn codegen(&self, data: &mut CompilationData) -> LLVMValueRef {
use self::Statement::*;
match self {
&ExprNode(ref expr) => expr.codegen(data),
&FuncDefNode(ref func) => func.codegen(data),
}
}
}
impl CodeGen for Function {
fn codegen(&self, data: &mut CompilationData) -> LLVMValueRef {
/* should have a check here for function already being defined */
let function = self.prototype.codegen(data);
let ref body = self.body;
data.current_function = Some(function);
let return_type = LLVMWrap::Int64TypeInContext(data.context);
let mut ret = LLVMWrap::ConstInt(return_type, 0, false);
let block = LLVMWrap::AppendBasicBlockInContext(data.context, function, "entry");
LLVMWrap::PositionBuilderAtEnd(data.builder, block);
//insert function params into variables
for value in LLVMWrap::GetParams(function) {
let name = LLVMWrap::GetValueName(value);
data.variables.insert(name, value);
}
for expr in body {
ret = expr.codegen(data);
}
LLVMWrap::BuildRet(data.builder, ret);
// get basic block of main
let main_bb = LLVMWrap::GetBasicBlocks(data.main_function).get(0).expect("Couldn't get first block of main").clone();
LLVMWrap::PositionBuilderAtEnd(data.builder, main_bb);
data.current_function = None;
ret
}
}
impl CodeGen for Prototype {
fn codegen(&self, data: &mut CompilationData) -> LLVMValueRef {
let num_args = self.parameters.len();
let return_type = LLVMWrap::Int64TypeInContext(data.context);
let mut arguments: Vec<LLVMTypeRef> = vec![];
for _ in 0..num_args {
arguments.push(LLVMWrap::Int64TypeInContext(data.context));
}
let function_type =
LLVMWrap::FunctionType(return_type,
arguments,
false);
let function = LLVMWrap::AddFunction(data.module,
&*self.name,
function_type);
let function_params = LLVMWrap::GetParams(function);
for (index, param) in function_params.iter().enumerate() {
let name = self.parameters.get(index).expect(&format!("Failed this check at index {}", index));
let new = *param;
LLVMWrap::SetValueName(new, name);
}
function
}
}
impl CodeGen for Expression {
fn codegen(&self, data: &mut CompilationData) -> LLVMValueRef {
use self::BinOp::*;
use self::Expression::*;
let int_type = LLVMWrap::Int64TypeInContext(data.context);
let zero = LLVMWrap::ConstInt(int_type, 0, false);
match *self {
Variable(ref name) => *data.variables.get(&**name).expect(&format!("Can't find variable {}", name)),
BinExp(Assign, ref left, ref right) => {
if let Variable(ref name) = **left {
let new_value = right.codegen(data);
data.variables.insert((**name).clone(), new_value);
new_value
} else {
panic!("Bad variable assignment")
}
}
BinExp(ref op, ref left, ref right) => {
let lhs = left.codegen(data);
let rhs = right.codegen(data);
op.codegen_with_ops(data, lhs, rhs)
}
Number(ref n) => {
let native_val = *n as u64;
let int_value: LLVMValueRef = LLVMWrap::ConstInt(int_type, native_val, false);
int_value
}
Conditional(ref test, ref then_expr, ref else_expr) => {
let condition_value = test.codegen(data);
let is_nonzero =
LLVMWrap::BuildICmp(data.builder,
LLVMIntPredicate::LLVMIntNE,
condition_value,
zero,
"ifcond");
let func = LLVMWrap::GetBasicBlockParent(LLVMWrap::GetInsertBlock(data.builder));
let mut then_block =
LLVMWrap::AppendBasicBlockInContext(data.context, func, "then_block");
let mut else_block =
LLVMWrap::AppendBasicBlockInContext(data.context, func, "else_block");
let merge_block =
LLVMWrap::AppendBasicBlockInContext(data.context, func, "ifcont");
// add conditional branch to ifcond block
LLVMWrap::BuildCondBr(data.builder, is_nonzero, then_block, else_block);
// start inserting into then block
LLVMWrap::PositionBuilderAtEnd(data.builder, then_block);
// then-block codegen
let then_return = then_expr.codegen(data);
LLVMWrap::BuildBr(data.builder, merge_block);
// update then block b/c recursive codegen() call may have changed the notion of
// the current block
then_block = LLVMWrap::GetInsertBlock(data.builder);
// then do the same stuff again for the else branch
//
LLVMWrap::PositionBuilderAtEnd(data.builder, else_block);
let else_return = match *else_expr {
Some(ref e) => e.codegen(data),
None => zero,
};
LLVMWrap::BuildBr(data.builder, merge_block);
else_block = LLVMWrap::GetInsertBlock(data.builder);
LLVMWrap::PositionBuilderAtEnd(data.builder, merge_block);
let phi = LLVMWrap::BuildPhi(data.builder, int_type, "phinode");
let values = vec![then_return, else_return];
let blocks = vec![then_block, else_block];
LLVMWrap::AddIncoming(phi, values, blocks);
phi
}
Block(ref exprs) => {
let mut ret = zero;
for e in exprs.iter() {
ret = e.codegen(data);
}
ret
}
ref e => {
println!("Unimplemented {:?}", e);
unimplemented!()
}
}
}
}
impl BinOp {
fn codegen_with_ops(&self, data: &CompilationData, lhs: LLVMValueRef, rhs: LLVMValueRef) -> LLVMValueRef {
use self::BinOp::*;
macro_rules! simple_binop {
($fnname: expr, $name: expr) => {
$fnname(data.builder, lhs, rhs, $name)
}
}
let int_type = LLVMWrap::Int64TypeInContext(data.context);
match *self {
Add => simple_binop!(LLVMWrap::BuildAdd, "addtemp"),
Sub => simple_binop!(LLVMWrap::BuildSub, "subtemp"),
Mul => simple_binop!(LLVMWrap::BuildMul, "multemp"),
Div => simple_binop!(LLVMWrap::BuildUDiv, "divtemp"),
Mod => simple_binop!(LLVMWrap::BuildSRem, "remtemp"),
Less => {
let pred: LLVMValueRef =
LLVMWrap::BuildICmp(data.builder, LLVMIntPredicate::LLVMIntULT, lhs, rhs, "tmp");
LLVMWrap::BuildZExt(data.builder, pred, int_type, "temp")
}
Greater => {
let pred: LLVMValueRef =
LLVMWrap::BuildICmp(data.builder, LLVMIntPredicate::LLVMIntUGT, lhs, rhs, "tmp");
LLVMWrap::BuildZExt(data.builder, pred, int_type, "temp")
}
ref unknown => panic!("Bad operator {:?}", unknown),
}
}
}

View File

@@ -5,9 +5,8 @@ extern crate schala_repl;
mod tokenizer;
mod parser;
mod eval;
mod compilation;
use schala_repl::{ProgrammingLanguageInterface, EvalOptions, LanguageOutput, TraceArtifact};
use schala_repl::{ProgrammingLanguageInterface, EvalOptions, UnfinishedComputation, FinishedComputation, TraceArtifact};
#[derive(Debug)]
pub struct TokenError {
@@ -42,65 +41,36 @@ impl<'a> ProgrammingLanguageInterface for Maaru<'a> {
format!("maaru")
}
fn evaluate_in_repl(&mut self, input: &str, options: &EvalOptions) -> LanguageOutput {
let mut output = LanguageOutput::default();
fn execute_pipeline(&mut self, input: &str, options: &EvalOptions) -> FinishedComputation {
let mut output = UnfinishedComputation::default();
let tokens = match tokenizer::tokenize(input) {
Ok(tokens) => {
if options.debug.tokens {
if let Some(_) = options.debug_passes.get("tokens") {
output.add_artifact(TraceArtifact::new("tokens", format!("{:?}", tokens)));
}
tokens
},
Err(err) => {
output.add_output(format!("Tokenization error: {:?}\n", err.msg));
return output;
return output.finish(Err(format!("Tokenization error: {:?}\n", err.msg)))
}
};
let ast = match parser::parse(&tokens, &[]) {
Ok(ast) => {
if options.debug.ast {
if let Some(_) = options.debug_passes.get("ast") {
output.add_artifact(TraceArtifact::new("ast", format!("{:?}", ast)));
}
ast
},
Err(err) => {
output.add_output(format!("Parse error: {:?}\n", err.msg));
return output;
return output.finish(Err(format!("Parse error: {:?}\n", err.msg)))
}
};
let mut evaluation_output = String::new();
for s in self.evaluator.run(ast).iter() {
evaluation_output.push_str(s);
}
output.add_output(evaluation_output);
return output;
output.finish(Ok(evaluation_output))
}
/* TODO make this work with new framework */
/*
fn can_compile(&self) -> bool {
true
}
fn compile(&mut self, input: &str) -> LLVMCodeString {
let tokens = match tokenizer::tokenize(input) {
Ok(tokens) => tokens,
Err(err) => {
let msg = format!("Tokenization error: {:?}\n", err.msg);
panic!("{}", msg);
}
};
let ast = match parser::parse(&tokens, &[]) {
Ok(ast) => ast,
Err(err) => {
let msg = format!("Parse error: {:?}\n", err.msg);
panic!("{}", msg);
}
};
compilation::compile_ast(ast)
}
*/
}

View File

@@ -4,7 +4,7 @@ extern crate itertools;
extern crate schala_repl;
use itertools::Itertools;
use schala_repl::{ProgrammingLanguageInterface, EvalOptions, LanguageOutput};
use schala_repl::{ProgrammingLanguageInterface, EvalOptions, FinishedComputation, UnfinishedComputation};
pub struct Robo {
}
@@ -155,18 +155,16 @@ impl ProgrammingLanguageInterface for Robo {
format!("robo")
}
fn evaluate_in_repl(&mut self, input: &str, _eval_options: &EvalOptions) -> LanguageOutput {
let mut output = LanguageOutput::default();
fn execute_pipeline(&mut self, input: &str, _eval_options: &EvalOptions) -> FinishedComputation {
let output = UnfinishedComputation::default();
let tokens = match tokenize(input) {
Ok(tokens) => tokens,
Err(e) => {
output.add_output(format!("Tokenize error: {:?}", e));
return output;
return output.finish(Err(format!("Tokenize error: {:?}", e)));
}
};
output.add_output(format!("{:?}", tokens));
output
output.finish(Ok(format!("{:?}", tokens)))
}
}

View File

@@ -4,7 +4,7 @@ extern crate itertools;
extern crate schala_repl;
use itertools::Itertools;
use schala_repl::{ProgrammingLanguageInterface, EvalOptions, LanguageOutput};
use schala_repl::{ProgrammingLanguageInterface, EvalOptions, UnfinishedComputation, FinishedComputation};
use std::iter::Peekable;
use std::vec::IntoIter;
use std::str::Chars;
@@ -73,12 +73,11 @@ impl ProgrammingLanguageInterface for Rukka {
format!("rukka")
}
fn evaluate_in_repl(&mut self, input: &str, _eval_options: &EvalOptions) -> LanguageOutput {
let mut output = LanguageOutput::default();
fn execute_pipeline(&mut self, input: &str, _eval_options: &EvalOptions) -> FinishedComputation {
let output = UnfinishedComputation::default();
let sexps = match read(input) {
Err(err) => {
output.add_output(format!("Error: {}", err));
return output;
return output.finish(Err(format!("Error: {}", err)));
},
Ok(sexps) => sexps
};
@@ -89,8 +88,7 @@ impl ProgrammingLanguageInterface for Rukka {
Err(err) => format!("{} Error: {}", i, err),
}
}).intersperse(format!("\n")).collect();
output.add_output(output_str);
output
output.finish(Ok(output_str))
}
}

View File

@@ -1,12 +0,0 @@
[package]
name = "schala-codegen"
version = "0.1.0"
authors = ["greg <greg.shuflin@protonmail.com>"]
[dependencies]
quote = "0.5.2"
syn = { version = "0.13.1", features = ["full", "extra-traits"] }
[lib]
proc-macro = true

View File

@@ -1,95 +0,0 @@
#![feature(proc_macro)]
extern crate proc_macro;
#[macro_use]
extern crate syn;
#[macro_use]
extern crate quote;
use proc_macro::TokenStream;
use syn::{Expr, Lit, ExprLit};
use syn::punctuated::Punctuated;
use syn::synom::Synom;
fn get_string_args(input: Expr) -> Vec<String> {
let mut contained_strings = Vec::new();
match input {
Expr::Array(array) => {
for item in array.elems {
if let Expr::Lit(ExprLit { lit: Lit::Str(s), ..}) = item {
contained_strings.push(s.value());
} else {
panic!("Non-string-literal input to compiler_pass_sequence");
}
}
},
_ => panic!("Non-array input to compiler_pass_sequence"),
}
contained_strings
}
#[proc_macro]
pub fn compiler_pass_sequence(input: TokenStream) -> TokenStream {
/*
for token_tree in input {
//println!("ITEM: {:?}", token_tree.kind);
match token_tree.kind {
TokenNode::Literal(l) => println!("{:?}", l),
_ => ()
}
}
*/
let input: Expr = syn::parse(input).unwrap();
let stages = get_string_args(input);
let from_macro = format!("{:?}", stages);
let output = quote! {
fn new_execute(&mut self, input: &str, _options: &EvalOptions) -> FinishedComputation {
let evaluation = UnfinishedComputation::default();
evaluation.output(Err(#from_macro.to_string()))
}
};
output.into()
}
/* #[compiler_pass(<name of pass>*/
#[proc_macro_attribute]
pub fn compiler_pass(metadata: TokenStream, function: TokenStream) -> TokenStream {
//println!("FROM MACRO: {}", function);
println!("Compiler pass metadata: {}", metadata);
function
}
#[cfg(test)]
mod tests {
#[test]
fn it_works() {
assert_eq!(2 + 2, 4);
}
}
/* in Rocket
*
#[get("/")]
fn hi() -> &'static str {
"hello"
}
GETS MAPPED TO:
static hi_info = RouteInfo {
name: "hi",
method: Method::Get,
path: "/",
handler: hi_route,
}
fn hi_route(req: &Request) -> Outcome {
let responder = hi();
Outcome::from(req, responder);
}
*/

View File

@@ -0,0 +1,12 @@
[package]
name = "schala-lang-codegen"
version = "0.1.0"
authors = ["greg <greg.shuflin@protonmail.com>"]
edition = "2018"
[lib]
proc-macro = true
[dependencies]
syn = { version = "0.15.12", features = ["full", "extra-traits", "fold"] }
quote = "0.6.8"

View File

@@ -0,0 +1,50 @@
#![feature(box_patterns)]
#![recursion_limit="128"]
extern crate proc_macro;
#[macro_use]
extern crate quote;
#[macro_use]
extern crate syn;
use self::proc_macro::TokenStream;
use self::syn::fold::Fold;
struct RecursiveDescentFn {
}
impl Fold for RecursiveDescentFn {
fn fold_item_fn(&mut self, mut i: syn::ItemFn) -> syn::ItemFn {
let box block = i.block;
let ref ident = i.ident;
let new_block: syn::Block = parse_quote! {
{
let next_token_before_parse = self.token_handler.peek();
let record = ParseRecord {
production_name: stringify!(#ident).to_string(),
next_token: format!("{}", next_token_before_parse.to_string_with_metadata()),
level: self.parse_level,
};
self.parse_level += 1;
self.parse_record.push(record);
let result = { #block };
if self.parse_level != 0 {
self.parse_level -= 1;
}
result
}
};
i.block = Box::new(new_block);
i
}
}
#[proc_macro_attribute]
pub fn recursive_descent_method(_attr: TokenStream, item: TokenStream) -> TokenStream {
let input: syn::ItemFn = parse_macro_input!(item as syn::ItemFn);
let mut folder = RecursiveDescentFn {};
let output = folder.fold_item_fn(input);
TokenStream::from(quote!(#output))
}

View File

@@ -2,12 +2,16 @@
name = "schala-lang"
version = "0.1.0"
authors = ["greg <greg.shuflin@protonmail.com>"]
edition = "2018"
[dependencies]
itertools = "0.5.8"
take_mut = "0.1.3"
maplit = "*"
lazy_static = "0.2.8"
failure = "0.1.2"
schala-repl = { path = "../schala-repl" }
schala-codegen = { path = "../schala-codegen" }
schala-lang-codegen = { path = "../codegen" }
schala-repl = { path = "../../schala-repl" }
schala-repl-codegen = { path = "../../schala-repl-codegen" }

View File

@@ -0,0 +1,212 @@
use std::rc::Rc;
use std::convert::From;
use crate::builtin::{BinOp, PrefixOp};
#[derive(Clone, Debug, PartialEq)]
pub struct Node<T> {
n: T,
source_map: SourceMap
}
impl<T> Node<T> {
pub fn new(n: T) -> Node<T> {
Node { n, source_map: SourceMap::default() }
}
pub fn node(&self) -> &T {
&self.n
}
}
//TODO this PartialEq is here to make tests work - find a way to make it not necessary
#[derive(Clone, Debug, Default, PartialEq)]
struct SourceMap {
}
impl From<Expression> for Node<Expression> {
fn from(expr: Expression) -> Node<Expression> {
Node { n: expr, source_map: SourceMap::default() }
}
}
#[derive(Debug, PartialEq)]
pub struct AST(pub Vec<Node<Statement>>);
#[derive(Debug, PartialEq, Clone)]
pub enum Statement {
ExpressionStatement(Node<Expression>),
Declaration(Declaration),
}
pub type Block = Vec<Node<Statement>>;
pub type ParamName = Rc<String>;
pub type FormalParam = (ParamName, Option<TypeIdentifier>);
#[derive(Debug, PartialEq, Clone)]
pub enum Declaration {
FuncSig(Signature),
FuncDecl(Signature, Block),
TypeDecl {
name: TypeSingletonName,
body: TypeBody,
mutable: bool
},
TypeAlias(Rc<String>, Rc<String>), //should have TypeSingletonName in it, or maybe just String, not sure
Binding {
name: Rc<String>,
constant: bool,
expr: Expression,
},
Impl {
type_name: TypeIdentifier,
interface_name: Option<TypeSingletonName>,
block: Vec<Declaration>,
},
Interface {
name: Rc<String>,
signatures: Vec<Signature>
}
}
#[derive(Debug, PartialEq, Clone)]
pub struct Signature {
pub name: Rc<String>,
pub operator: bool,
pub params: Vec<FormalParam>,
pub type_anno: Option<TypeIdentifier>,
}
#[derive(Debug, PartialEq, Clone)]
pub struct TypeBody(pub Vec<Variant>);
#[derive(Debug, PartialEq, Clone)]
pub enum Variant {
UnitStruct(Rc<String>),
TupleStruct(Rc<String>, Vec<TypeIdentifier>),
Record {
name: Rc<String>,
members: Vec<(Rc<String>, TypeIdentifier)>,
}
}
#[derive(Debug, PartialEq, Clone)]
pub struct Expression(pub ExpressionType, pub Option<TypeIdentifier>);
#[derive(Debug, PartialEq, Clone)]
pub enum TypeIdentifier {
Tuple(Vec<TypeIdentifier>),
Singleton(TypeSingletonName)
}
#[derive(Debug, PartialEq, Clone)]
pub struct TypeSingletonName {
pub name: Rc<String>,
pub params: Vec<TypeIdentifier>,
}
#[derive(Debug, PartialEq, Clone)]
pub enum ExpressionType {
NatLiteral(u64),
FloatLiteral(f64),
StringLiteral(Rc<String>),
BoolLiteral(bool),
BinExp(BinOp, Box<Node<Expression>>, Box<Node<Expression>>),
PrefixExp(PrefixOp, Box<Node<Expression>>),
TupleLiteral(Vec<Node<Expression>>),
Value(Rc<String>),
NamedStruct {
name: Rc<String>,
fields: Vec<(Rc<String>, Expression)>,
},
Call {
f: Box<Expression>,
arguments: Vec<Node<Expression>>,
},
Index {
indexee: Box<Expression>,
indexers: Vec<Expression>,
},
IfExpression {
discriminator: Box<Discriminator>,
body: Box<IfExpressionBody>,
},
WhileExpression {
condition: Option<Box<Expression>>,
body: Block,
},
ForExpression {
enumerators: Vec<Enumerator>,
body: Box<ForBody>,
},
Lambda {
params: Vec<FormalParam>,
type_anno: Option<TypeIdentifier>,
body: Block,
},
ListLiteral(Vec<Expression>),
}
#[derive(Debug, PartialEq, Clone)]
pub enum Discriminator {
Simple(Expression),
BinOp(Expression, BinOp)
}
#[derive(Debug, PartialEq, Clone)]
pub enum IfExpressionBody {
SimpleConditional(Block, Option<Block>),
SimplePatternMatch(Pattern, Block, Option<Block>),
GuardList(Vec<GuardArm>)
}
#[derive(Debug, PartialEq, Clone)]
pub struct GuardArm {
pub guard: Guard,
pub body: Block,
}
#[derive(Debug, PartialEq, Clone)]
pub enum Guard {
Pat(Pattern),
HalfExpr(HalfExpr)
}
#[derive(Debug, PartialEq, Clone)]
pub struct HalfExpr {
pub op: Option<BinOp>,
pub expr: ExpressionType,
}
#[derive(Debug, PartialEq, Clone)]
pub enum Pattern {
Ignored,
TuplePattern(Vec<Pattern>),
Literal(PatternLiteral),
TupleStruct(Rc<String>, Vec<Pattern>),
Record(Rc<String>, Vec<(Rc<String>, Pattern)>),
}
#[derive(Debug, PartialEq, Clone)]
pub enum PatternLiteral {
NumPattern {
neg: bool,
num: ExpressionType,
},
StringPattern(Rc<String>),
BoolPattern(bool),
VarPattern(Rc<String>)
}
#[derive(Debug, PartialEq, Clone)]
pub struct Enumerator {
pub id: Rc<String>,
pub generator: Expression,
}
#[derive(Debug, PartialEq, Clone)]
pub enum ForBody {
MonadicReturn(Expression),
StatementBlock(Block),
}

View File

@@ -0,0 +1,145 @@
use std::rc::Rc;
use std::collections::HashMap;
use std::fmt;
use crate::tokenizing::TokenKind;
use self::BuiltinTypeSpecifier::*;
use self::BuiltinTConst::*;
#[derive(Debug, PartialEq, Clone)]
pub enum BuiltinTypeSpecifier {
Const(BuiltinTConst),
Func(Box<BuiltinTypeSpecifier>, Box<BuiltinTypeSpecifier>),
}
#[derive(Debug, PartialEq, Clone)]
pub enum BuiltinTConst {
Nat,
Int,
Float,
StringT,
Bool,
}
impl fmt::Display for BuiltinTypeSpecifier {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", self)
}
}
#[derive(Debug, PartialEq, Clone)]
pub struct BinOp {
sigil: Rc<String>
}
impl BinOp {
pub fn from_sigil(sigil: &str) -> BinOp {
BinOp { sigil: Rc::new(sigil.to_string()) }
}
pub fn sigil(&self) -> &Rc<String> {
&self.sigil
}
pub fn from_sigil_token(tok: &TokenKind) -> Option<BinOp> {
use self::TokenKind::*;
let s = match tok {
Operator(op) => op,
Period => ".",
Pipe => "|",
Slash => "/",
LAngleBracket => "<",
RAngleBracket => ">",
_ => return None
};
Some(BinOp::from_sigil(s))
}
/*
pub fn get_type(&self) -> Result<Type, String> {
let s = self.sigil.as_str();
BINOPS.get(s).map(|x| x.0.clone()).ok_or(format!("Binop {} not found", s))
}
*/
pub fn min_precedence() -> i32 {
i32::min_value()
}
pub fn get_precedence_from_token(op: &TokenKind) -> Option<i32> {
use self::TokenKind::*;
let s = match op {
Operator(op) => op,
Period => ".",
Pipe => "|",
Slash => "/",
LAngleBracket => "<",
RAngleBracket => ">",
_ => return None
};
let default = 10_000_000;
Some(BINOPS.get(s).map(|x| x.2.clone()).unwrap_or_else(|| {
default
}))
}
pub fn get_precedence(&self) -> i32 {
let s: &str = &self.sigil;
let default = 10_000_000;
BINOPS.get(s).map(|x| x.2.clone()).unwrap_or_else(|| {
default
})
}
}
#[derive(Debug, PartialEq, Clone)]
pub struct PrefixOp {
sigil: Rc<String>
}
impl PrefixOp {
pub fn from_sigil(sigil: &str) -> PrefixOp {
PrefixOp { sigil: Rc::new(sigil.to_string()) }
}
pub fn sigil(&self) -> &Rc<String> {
&self.sigil
}
pub fn is_prefix(op: &str) -> bool {
PREFIX_OPS.get(op).is_some()
}
/*
pub fn get_type(&self) -> Result<Type, String> {
let s = self.sigil.as_str();
PREFIX_OPS.get(s).map(|x| x.0.clone()).ok_or(format!("Prefix op {} not found", s))
}
*/
}
lazy_static! {
static ref PREFIX_OPS: HashMap<&'static str, (BuiltinTypeSpecifier, ())> =
hashmap! {
"+" => (Func(bx!(Const(Int)), bx!(Const(Int))), ()),
"-" => (Func(bx!(Const(Int)), bx!(Const(Int))), ()),
"!" => (Func(bx!(Const(Bool)), bx!(Const(Bool))), ()),
};
}
/* the second tuple member is a placeholder for when I want to make evaluation rules tied to the
* binop definition */
lazy_static! {
static ref BINOPS: HashMap<&'static str, (BuiltinTypeSpecifier, (), i32)> =
hashmap! {
"+" => (Func(bx!(Const(Nat)), bx!(Func(bx!(Const(Nat)), bx!(Const(Nat))))), (), 10),
"-" => (Func(bx!(Const(Nat)), bx!(Func(bx!(Const(Nat)), bx!(Const(Nat))))), (), 10),
"*" => (Func(bx!(Const(Nat)), bx!(Func(bx!(Const(Nat)), bx!(Const(Nat))))), (), 20),
"/" => (Func(bx!(Const(Nat)), bx!(Func(bx!(Const(Nat)), bx!(Const(Float))))), (), 20),
"quot" => (Func(bx!(Const(Nat)), bx!(Func(bx!(Const(Nat)), bx!(Const(Nat))))), (), 20),
"%" => (Func(bx!(Const(Nat)), bx!(Func(bx!(Const(Nat)), bx!(Const(Nat))))), (), 20),
"++" => (Func(bx!(Const(StringT)), bx!(Func(bx!(Const(StringT)), bx!(Const(StringT))))), (), 30),
"^" => (Func(bx!(Const(Nat)), bx!(Func(bx!(Const(Nat)), bx!(Const(Nat))))), (), 20),
"&" => (Func(bx!(Const(Nat)), bx!(Func(bx!(Const(Nat)), bx!(Const(Nat))))), (), 20),
"|" => (Func(bx!(Const(Nat)), bx!(Func(bx!(Const(Nat)), bx!(Const(Nat))))), (), 20),
">" => (Func(bx!(Const(Nat)), bx!(Func(bx!(Const(Nat)), bx!(Const(Nat))))), (), 20),
">=" => (Func(bx!(Const(Nat)), bx!(Func(bx!(Const(Nat)), bx!(Const(Nat))))), (), 20),
"<" => (Func(bx!(Const(Nat)), bx!(Func(bx!(Const(Nat)), bx!(Const(Nat))))), (), 20),
"<=" => (Func(bx!(Const(Nat)), bx!(Func(bx!(Const(Nat)), bx!(Const(Nat))))), (), 20),
"==" => (Func(bx!(Const(Nat)), bx!(Func(bx!(Const(Nat)), bx!(Const(Nat))))), (), 20),
"=" => (Func(bx!(Const(Nat)), bx!(Func(bx!(Const(Nat)), bx!(Const(Nat))))), (), 20),
"<=>" => (Func(bx!(Const(Nat)), bx!(Func(bx!(Const(Nat)), bx!(Const(Nat))))), (), 20),
};
}

View File

@@ -0,0 +1,748 @@
use std::cell::RefCell;
use std::rc::Rc;
use std::fmt::Write;
use std::io;
use itertools::Itertools;
use crate::util::ScopeStack;
use crate::reduced_ast::{BoundVars, ReducedAST, Stmt, Expr, Lit, Func, Alternative, Subpattern};
use crate::symbol_table::{SymbolSpec, Symbol, SymbolTable};
pub struct State<'a> {
values: ScopeStack<'a, Rc<String>, ValueEntry>,
symbol_table_handle: Rc<RefCell<SymbolTable>>,
}
macro_rules! builtin_binding {
($name:expr, $values:expr) => {
$values.insert(Rc::new(format!($name)), ValueEntry::Binding { constant: true, val: Node::Expr(Expr::Func(Func::BuiltIn(Rc::new(format!($name))))) });
}
}
impl<'a> State<'a> {
pub fn new(symbol_table_handle: Rc<RefCell<SymbolTable>>) -> State<'a> {
let mut values = ScopeStack::new(Some(format!("global")));
builtin_binding!("print", values);
builtin_binding!("println", values);
builtin_binding!("getline", values);
State { values, symbol_table_handle }
}
pub fn debug_print(&self) -> String {
format!("Values: {:?}", self.values)
}
fn new_frame(&'a self, items: &'a Vec<Node>, bound_vars: &BoundVars) -> State<'a> {
let mut inner_state = State {
values: self.values.new_scope(None),
symbol_table_handle: self.symbol_table_handle.clone(),
};
for (bound_var, val) in bound_vars.iter().zip(items.iter()) {
if let Some(bv) = bound_var.as_ref() {
inner_state.values.insert(bv.clone(), ValueEntry::Binding { constant: true, val: val.clone() });
}
}
inner_state
}
}
#[derive(Debug, Clone)]
enum Node {
Expr(Expr),
PrimObject {
name: Rc<String>,
tag: usize,
items: Vec<Node>,
},
PrimTuple {
items: Vec<Node>
}
}
fn paren_wrapped_vec(terms: impl Iterator<Item=String>) -> String {
let mut buf = String::new();
write!(buf, "(").unwrap();
for term in terms.map(|e| Some(e)).intersperse(None) {
match term {
Some(e) => write!(buf, "{}", e).unwrap(),
None => write!(buf, ", ").unwrap(),
};
}
write!(buf, ")").unwrap();
buf
}
impl Node {
fn to_repl(&self) -> String {
match self {
Node::Expr(e) => e.to_repl(),
Node::PrimObject { name, items, .. } if items.len() == 0 => format!("{}", name),
Node::PrimObject { name, items, .. } => format!("{}{}", name, paren_wrapped_vec(items.iter().map(|x| x.to_repl()))),
Node::PrimTuple { items } => format!("{}", paren_wrapped_vec(items.iter().map(|x| x.to_repl()))),
}
}
fn is_true(&self) -> bool {
match self {
Node::Expr(Expr::Lit(crate::reduced_ast::Lit::Bool(true))) => true,
_ => false,
}
}
}
#[derive(Debug)]
enum ValueEntry {
Binding {
constant: bool,
val: /*FullyEvaluatedExpr*/ Node, //TODO make this use a subtype to represent fully evaluatedness
}
}
type EvalResult<T> = Result<T, String>;
impl Expr {
fn to_node(self) -> Node {
Node::Expr(self)
}
fn to_repl(&self) -> String {
use self::Lit::*;
use self::Func::*;
match self {
Expr::Lit(ref l) => match l {
Nat(n) => format!("{}", n),
Int(i) => format!("{}", i),
Float(f) => format!("{}", f),
Bool(b) => format!("{}", b),
StringLit(s) => format!("\"{}\"", s),
},
Expr::Func(f) => match f {
BuiltIn(name) => format!("<built-in function '{}'>", name),
UserDefined { name: None, .. } => format!("<function>"),
UserDefined { name: Some(name), .. } => format!("<function '{}'>", name),
},
Expr::Constructor {
type_name: _, name, arity, ..
} => if *arity == 0 {
format!("{}", name)
} else {
format!("<data constructor '{}'>", name)
},
Expr::Tuple(exprs) => paren_wrapped_vec(exprs.iter().map(|x| x.to_repl())),
_ => format!("{:?}", self),
}
}
fn replace_conditional_target_sigil(self, replacement: &Expr) -> Expr {
use self::Expr::*;
match self {
ConditionalTargetSigilValue => replacement.clone(),
Unit | Lit(_) | Func(_) | Val(_) | Constructor { .. } |
CaseMatch { .. } | UnimplementedSigilValue => self,
Tuple(exprs) => Tuple(exprs.into_iter().map(|e| e.replace_conditional_target_sigil(replacement)).collect()),
Call { f, args } => {
let new_args = args.into_iter().map(|e| e.replace_conditional_target_sigil(replacement)).collect();
Call { f, args: new_args }
},
Conditional { .. } => panic!("Dunno if I need this, but if so implement"),
Assign { .. } => panic!("I'm pretty sure I don't need this"),
}
}
}
impl<'a> State<'a> {
pub fn evaluate(&mut self, ast: ReducedAST, repl: bool) -> Vec<Result<String, String>> {
let mut acc = vec![];
// handle prebindings
for statement in ast.0.iter() {
self.prebinding(statement);
}
for statement in ast.0 {
match self.statement(statement) {
Ok(Some(ref output)) if repl => acc.push(Ok(output.to_repl())),
Ok(_) => (),
Err(error) => {
acc.push(Err(format!("Runtime error: {}", error)));
return acc;
},
}
}
acc
}
fn prebinding(&mut self, stmt: &Stmt) {
match stmt {
Stmt::PreBinding { name, func } => {
let v_entry = ValueEntry::Binding { constant: true, val: Node::Expr(Expr::Func(func.clone())) };
self.values.insert(name.clone(), v_entry);
},
Stmt::Expr(_expr) => {
//TODO have this support things like nested function defs
},
_ => ()
}
}
fn statement(&mut self, stmt: Stmt) -> EvalResult<Option<Node>> {
match stmt {
Stmt::Binding { name, constant, expr } => {
let val = self.expression(Node::Expr(expr))?;
self.values.insert(name.clone(), ValueEntry::Binding { constant, val });
Ok(None)
},
Stmt::Expr(expr) => Ok(Some(self.expression(expr.to_node())?)),
Stmt::PreBinding {..} | Stmt::Noop => Ok(None),
}
}
fn block(&mut self, stmts: Vec<Stmt>) -> EvalResult<Node> {
let mut ret = None;
for stmt in stmts {
ret = self.statement(stmt)?;
}
Ok(ret.unwrap_or(Node::Expr(Expr::Unit)))
}
fn expression(&mut self, node: Node) -> EvalResult<Node> {
use self::Expr::*;
match node {
t @ Node::PrimTuple { .. } => Ok(t),
obj @ Node::PrimObject { .. } => Ok(obj),
Node::Expr(expr) => match expr {
literal @ Lit(_) => Ok(Node::Expr(literal)),
Call { box f, args } => self.call_expression(f, args),
Val(v) => self.value(v),
Constructor { arity, ref name, tag, .. } if arity == 0 => Ok(Node::PrimObject { name: name.clone(), tag, items: vec![] }),
constructor @ Constructor { .. } => Ok(Node::Expr(constructor)),
func @ Func(_) => Ok(Node::Expr(func)),
Tuple(exprs) => {
let nodes = exprs.into_iter().map(|expr| self.expression(Node::Expr(expr))).collect::<Result<Vec<Node>,_>>()?;
Ok(Node::PrimTuple { items: nodes })
},
Conditional { box cond, then_clause, else_clause } => self.conditional(cond, then_clause, else_clause),
Assign { box val, box expr } => self.assign_expression(val, expr),
Unit => Ok(Node::Expr(Unit)),
CaseMatch { box cond, alternatives } => self.case_match_expression(cond, alternatives),
ConditionalTargetSigilValue => Ok(Node::Expr(ConditionalTargetSigilValue)),
UnimplementedSigilValue => Err(format!("Sigil value eval not implemented")),
}
}
}
fn call_expression(&mut self, f: Expr, args: Vec<Expr>) -> EvalResult<Node> {
use self::Expr::*;
match self.expression(Node::Expr(f))? {
Node::Expr(Constructor { type_name, name, tag, arity }) => self.apply_data_constructor(type_name, name, tag, arity, args),
Node::Expr(Func(f)) => self.apply_function(f, args),
other => return Err(format!("Tried to call {:?} which is not a function or data constructor", other)),
}
}
fn apply_data_constructor(&mut self, _type_name: Rc<String>, name: Rc<String>, tag: usize, arity: usize, args: Vec<Expr>) -> EvalResult<Node> {
if arity != args.len() {
return Err(format!("Data constructor {} requires {} args", name, arity));
}
let evaled_args = args.into_iter().map(|expr| self.expression(Node::Expr(expr))).collect::<Result<Vec<Node>,_>>()?;
//let evaled_args = vec![];
Ok(Node::PrimObject {
name: name.clone(),
items: evaled_args,
tag
})
}
fn apply_function(&mut self, f: Func, args: Vec<Expr>) -> EvalResult<Node> {
match f {
Func::BuiltIn(sigil) => Ok(Node::Expr(self.apply_builtin(sigil, args)?)),
Func::UserDefined { params, body, name } => {
if params.len() != args.len() {
return Err(format!("calling a {}-argument function with {} args", params.len(), args.len()))
}
let mut func_state = State {
values: self.values.new_scope(name.map(|n| format!("{}", n))),
symbol_table_handle: self.symbol_table_handle.clone(),
};
for (param, val) in params.into_iter().zip(args.into_iter()) {
let val = func_state.expression(Node::Expr(val))?;
func_state.values.insert(param, ValueEntry::Binding { constant: true, val });
}
// TODO figure out function return semantics
func_state.block(body)
}
}
}
fn apply_builtin(&mut self, name: Rc<String>, args: Vec<Expr>) -> EvalResult<Expr> {
use self::Expr::*;
use self::Lit::*;
let evaled_args: Result<Vec<Expr>, String> = args.into_iter().map(|arg| {
match self.expression(Node::Expr(arg)) {
Ok(Node::Expr(e)) => Ok(e),
Ok(Node::PrimTuple { .. }) => Err(format!("Trying to apply a builtin to a tuple")),
Ok(Node::PrimObject { .. }) => Err(format!("Trying to apply a builtin to a primitive object")),
Err(e) => Err(e)
}
}).collect();
let evaled_args = evaled_args?;
Ok(match (name.as_str(), evaled_args.as_slice()) {
/* binops */
("+", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Nat(l + r)),
("++", &[Lit(StringLit(ref s1)), Lit(StringLit(ref s2))]) => Lit(StringLit(Rc::new(format!("{}{}", s1, s2)))),
("-", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Nat(l - r)),
("*", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Nat(l * r)),
("/", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Float((l as f64)/ (r as f64))),
("quot", &[Lit(Nat(l)), Lit(Nat(r))]) => if r == 0 {
return Err(format!("divide by zero"));
} else {
Lit(Nat(l / r))
},
("%", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Nat(l % r)),
("^", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Nat(l ^ r)),
("&", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Nat(l & r)),
("|", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Nat(l | r)),
/* comparisons */
("==", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Bool(l == r)),
("==", &[Lit(Int(l)), Lit(Int(r))]) => Lit(Bool(l == r)),
("==", &[Lit(Float(l)), Lit(Float(r))]) => Lit(Bool(l == r)),
("==", &[Lit(Bool(l)), Lit(Bool(r))]) => Lit(Bool(l == r)),
("==", &[Lit(StringLit(ref l)), Lit(StringLit(ref r))]) => Lit(Bool(l == r)),
("<", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Bool(l < r)),
("<", &[Lit(Int(l)), Lit(Int(r))]) => Lit(Bool(l < r)),
("<", &[Lit(Float(l)), Lit(Float(r))]) => Lit(Bool(l < r)),
("<=", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Bool(l <= r)),
("<=", &[Lit(Int(l)), Lit(Int(r))]) => Lit(Bool(l <= r)),
("<=", &[Lit(Float(l)), Lit(Float(r))]) => Lit(Bool(l <= r)),
(">", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Bool(l > r)),
(">", &[Lit(Int(l)), Lit(Int(r))]) => Lit(Bool(l > r)),
(">", &[Lit(Float(l)), Lit(Float(r))]) => Lit(Bool(l > r)),
(">=", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Bool(l >= r)),
(">=", &[Lit(Int(l)), Lit(Int(r))]) => Lit(Bool(l >= r)),
(">=", &[Lit(Float(l)), Lit(Float(r))]) => Lit(Bool(l >= r)),
/* prefix ops */
("!", &[Lit(Bool(true))]) => Lit(Bool(false)),
("!", &[Lit(Bool(false))]) => Lit(Bool(true)),
("-", &[Lit(Nat(n))]) => Lit(Int(-1*(n as i64))),
("-", &[Lit(Int(n))]) => Lit(Int(-1*(n as i64))),
("+", &[Lit(Int(n))]) => Lit(Int(n)),
("+", &[Lit(Nat(n))]) => Lit(Nat(n)),
/* builtin functions */
("print", &[ref anything]) => {
print!("{}", anything.to_repl());
Expr::Unit
},
("println", &[ref anything]) => {
println!("{}", anything.to_repl());
Expr::Unit
},
("getline", &[]) => {
let mut buf = String::new();
io::stdin().read_line(&mut buf).expect("Error readling line in 'getline'");
Lit(StringLit(Rc::new(buf.trim().to_string())))
},
(x, args) => return Err(format!("bad or unimplemented builtin {:?} | {:?}", x, args)),
})
}
fn conditional(&mut self, cond: Expr, then_clause: Vec<Stmt>, else_clause: Vec<Stmt>) -> EvalResult<Node> {
let cond = self.expression(Node::Expr(cond))?;
Ok(match cond {
Node::Expr(Expr::Lit(Lit::Bool(true))) => self.block(then_clause)?,
Node::Expr(Expr::Lit(Lit::Bool(false))) => self.block(else_clause)?,
_ => return Err(format!("Conditional with non-boolean condition"))
})
}
fn assign_expression(&mut self, val: Expr, expr: Expr) -> EvalResult<Node> {
let name = match val {
Expr::Val(name) => name,
_ => return Err(format!("Trying to assign to a non-value")),
};
let constant = match self.values.lookup(&name) {
None => return Err(format!("Constant {} is undefined", name)),
Some(ValueEntry::Binding { constant, .. }) => constant.clone(),
};
if constant {
return Err(format!("trying to update {}, a non-mutable binding", name));
}
let val = self.expression(Node::Expr(expr))?;
self.values.insert(name.clone(), ValueEntry::Binding { constant: false, val });
Ok(Node::Expr(Expr::Unit))
}
fn guard_passes(&mut self, guard: &Option<Expr>, cond: &Node) -> EvalResult<bool> {
if let Some(ref guard_expr) = guard {
let guard_expr = match cond {
Node::Expr(ref e) => guard_expr.clone().replace_conditional_target_sigil(e),
_ => guard_expr.clone()
};
Ok(self.expression(guard_expr.to_node())?.is_true())
} else {
Ok(true)
}
}
fn case_match_expression(&mut self, cond: Expr, alternatives: Vec<Alternative>) -> EvalResult<Node> {
//TODO need to handle recursive subpatterns
let all_subpatterns_pass = |state: &mut State, subpatterns: &Vec<Option<Subpattern>>, items: &Vec<Node>| -> EvalResult<bool> {
if subpatterns.len() == 0 {
return Ok(true)
}
if items.len() != subpatterns.len() {
return Err(format!("Subpattern length isn't correct items {} subpatterns {}", items.len(), subpatterns.len()));
}
for (maybe_subp, cond) in subpatterns.iter().zip(items.iter()) {
if let Some(subp) = maybe_subp {
if !state.guard_passes(&subp.guard, &cond)? {
return Ok(false)
}
}
}
Ok(true)
};
let cond = self.expression(Node::Expr(cond))?;
for alt in alternatives {
// no matter what type of condition we have, ignore alternative if the guard evaluates false
if !self.guard_passes(&alt.guard, &cond)? {
continue;
}
match cond {
Node::PrimObject { ref tag, ref items, .. } => {
if alt.tag.map(|t| t == *tag).unwrap_or(true) {
let mut inner_state = self.new_frame(items, &alt.bound_vars);
if all_subpatterns_pass(&mut inner_state, &alt.subpatterns, items)? {
return inner_state.block(alt.item);
} else {
continue;
}
}
},
Node::PrimTuple { ref items } => {
let mut inner_state = self.new_frame(items, &alt.bound_vars);
if all_subpatterns_pass(&mut inner_state, &alt.subpatterns, items)? {
return inner_state.block(alt.item);
} else {
continue;
}
},
Node::Expr(ref _e) => {
if let None = alt.tag {
return self.block(alt.item)
}
}
}
}
Err(format!("{:?} failed pattern match", cond))
}
fn value(&mut self, name: Rc<String>) -> EvalResult<Node> {
use self::ValueEntry::*;
use self::Func::*;
//TODO add a layer of indirection here to talk to the symbol table first, and only then look up
//in the values table
let symbol_table = self.symbol_table_handle.borrow();
let value = symbol_table.lookup_by_name(&name);
Ok(match value {
Some(Symbol { name, spec }) => match spec {
//TODO I'll need this type_name later to do a table lookup
SymbolSpec::DataConstructor { type_name: _type_name, type_args, .. } => {
if type_args.len() == 0 {
Node::PrimObject { name: name.clone(), tag: 0, items: vec![] }
} else {
return Err(format!("This data constructor thing not done"))
}
},
SymbolSpec::Func(_) => match self.values.lookup(&name) {
Some(Binding { val: Node::Expr(Expr::Func(UserDefined { name, params, body })), .. }) => {
Node::Expr(Expr::Func(UserDefined { name: name.clone(), params: params.clone(), body: body.clone() }))
},
_ => unreachable!(),
},
SymbolSpec::RecordConstructor { .. } => return Err(format!("This shouldn't be a record!")),
},
/* see if it's an ordinary variable TODO make variables go in symbol table */
None => match self.values.lookup(&name) {
Some(Binding { val, .. }) => val.clone(),
None => return Err(format!("Couldn't find value {}", name)),
}
})
}
}
#[cfg(test)]
mod eval_tests {
use std::cell::RefCell;
use std::rc::Rc;
use crate::tokenizing::{Token, tokenize};
use crate::parsing::ParseResult;
use crate::ast::AST;
use crate::symbol_table::SymbolTable;
use crate::eval::State;
fn parse(tokens: Vec<Token>) -> ParseResult<AST> {
let mut parser = crate::parsing::Parser::new(tokens);
parser.parse()
}
fn evaluate_all_outputs(input: &str) -> Vec<Result<String, String>> {
let symbol_table = Rc::new(RefCell::new(SymbolTable::new()));
let mut state = State::new(symbol_table);
let ast = parse(tokenize(input)).unwrap();
state.symbol_table_handle.borrow_mut().add_top_level_symbols(&ast).unwrap();
let reduced = ast.reduce(&state.symbol_table_handle.borrow());
let all_output = state.evaluate(reduced, true);
all_output
}
macro_rules! test_in_fresh_env {
($string:expr, $correct:expr) => {
{
let all_output = evaluate_all_outputs($string);
let ref output = all_output.last().unwrap();
assert_eq!(**output, Ok($correct.to_string()));
}
}
}
#[test]
fn test_basic_eval() {
test_in_fresh_env!("1 + 2", "3");
test_in_fresh_env!("let mut a = 1; a = 2", "Unit");
test_in_fresh_env!("let mut a = 1; a = 2; a", "2");
test_in_fresh_env!(r#"("a", 1 + 2)"#, r#"("a", 3)"#);
}
#[test]
fn function_eval() {
test_in_fresh_env!("fn oi(x) { x + 1 }; oi(4)", "5");
test_in_fresh_env!("fn oi(x) { x + 1 }; oi(1+2)", "4");
}
#[test]
fn scopes() {
let scope_ok = r#"
let a = 20
fn haha() {
let a = 10
a
}
haha()
"#;
test_in_fresh_env!(scope_ok, "10");
let scope_ok = r#"
let a = 20
fn haha() {
let a = 10
a
}
a
"#;
test_in_fresh_env!(scope_ok, "20");
}
#[test]
fn if_is_patterns() {
let source = r#"
type Option<T> = Some(T) | None
let x = Some(9); if x is Some(q) then { q } else { 0 }"#;
test_in_fresh_env!(source, "9");
let source = r#"
type Option<T> = Some(T) | None
let x = None; if x is Some(q) then { q } else { 0 }"#;
test_in_fresh_env!(source, "0");
}
#[test]
fn full_if_matching() {
let source = r#"
type Option<T> = Some(T) | None
let a = None
if a { is None -> 4, is Some(x) -> x }
"#;
test_in_fresh_env!(source, "4");
let source = r#"
type Option<T> = Some(T) | None
let a = Some(99)
if a { is None -> 4, is Some(x) -> x }
"#;
test_in_fresh_env!(source, "99");
let source = r#"
let a = 10
if a { is 10 -> "x", is 4 -> "y" }
"#;
test_in_fresh_env!(source, "\"x\"");
let source = r#"
let a = 10
if a { is 15 -> "x", is 10 -> "y" }
"#;
test_in_fresh_env!(source, "\"y\"");
}
#[test]
fn string_pattern() {
let source = r#"
let a = "foo"
if a { is "foo" -> "x", is _ -> "y" }
"#;
test_in_fresh_env!(source, "\"x\"");
}
#[test]
fn boolean_pattern() {
let source = r#"
let a = true
if a {
is true -> "x",
is false -> "y"
}
"#;
test_in_fresh_env!(source, "\"x\"");
}
#[test]
fn boolean_pattern_2() {
let source = r#"
let a = false
if a { is true -> "x", is false -> "y" }
"#;
test_in_fresh_env!(source, "\"y\"");
}
#[test]
fn ignore_pattern() {
let source = r#"
type Option<T> = Some(T) | None
if Some(10) {
is _ -> "hella"
}
"#;
test_in_fresh_env!(source, "\"hella\"");
}
#[test]
fn tuple_pattern() {
let source = r#"
if (1, 2) {
is (1, x) -> x,
is _ -> 99
}
"#;
test_in_fresh_env!(source, 2);
}
#[test]
fn tuple_pattern_2() {
let source = r#"
if (1, 2) {
is (10, x) -> x,
is (y, x) -> x + y
}
"#;
test_in_fresh_env!(source, 3);
}
#[test]
fn tuple_pattern_3() {
let source = r#"
if (1, 5) {
is (10, x) -> x,
is (1, x) -> x
}
"#;
test_in_fresh_env!(source, 5);
}
#[test]
fn tuple_pattern_4() {
let source = r#"
if (1, 5) {
is (10, x) -> x,
is (1, x) -> x,
}
"#;
test_in_fresh_env!(source, 5);
}
#[test]
fn prim_obj_pattern() {
let source = r#"
type Stuff = Mulch(Nat) | Jugs(Nat, String) | Mardok
let a = Mulch(20)
let b = Jugs(1, "haha")
let c = Mardok
let x = if a {
is Mulch(20) -> "x",
is _ -> "ERR"
}
let y = if b {
is Mulch(n) -> "ERR",
is Jugs(2, _) -> "ERR",
is Jugs(1, s) -> s,
is _ -> "ERR",
}
let z = if c {
is Jugs(_, _) -> "ERR",
is Mardok -> "NIGH",
is _ -> "ERR",
}
(x, y, z)
"#;
test_in_fresh_env!(source, r#"("x", "haha", "NIGH")"#);
}
#[test]
fn basic_lambda_syntax() {
let source = r#"
let q = \(x, y) { x * y }
let x = q(5,2)
let y = \(m, n, o) { m + n + o }(1,2,3)
(x, y)
"#;
test_in_fresh_env!(source, r"(10, 6)");
}
#[test]
fn lambda_syntax_2() {
let source = r#"
fn milta() {
\(x) { x + 33 }
}
milta()(10)
"#;
test_in_fresh_env!(source, "43");
}
}

View File

@@ -0,0 +1,213 @@
#![feature(trace_macros)]
#![feature(custom_attribute)]
#![feature(unrestricted_attribute_tokens)]
#![feature(slice_patterns, box_patterns, box_syntax)]
//! `schala-lang` is where the Schala programming language is actually implemented.
//! It defines the `Schala` type, which contains the state for a Schala REPL, and implements
//! `ProgrammingLanguageInterface` and the chain of compiler passes for it.
extern crate itertools;
#[macro_use]
extern crate lazy_static;
#[macro_use]
extern crate maplit;
extern crate schala_repl;
#[macro_use]
extern crate schala_repl_codegen;
#[macro_use]
extern crate schala_lang_codegen;
use std::cell::RefCell;
use std::rc::Rc;
use itertools::Itertools;
use schala_repl::{ProgrammingLanguageInterface, EvalOptions, TraceArtifact, UnfinishedComputation, FinishedComputation};
macro_rules! bx {
($e:expr) => { Box::new($e) }
}
mod util;
mod builtin;
mod tokenizing;
mod ast;
mod parsing;
mod symbol_table;
mod typechecking;
mod reduced_ast;
mod eval;
//trace_macros!(true);
#[derive(ProgrammingLanguageInterface)]
#[LanguageName = "Schala"]
#[SourceFileExtension = "schala"]
#[PipelineSteps(load_source, tokenizing, parsing(compact,expanded,trace), symbol_table, typechecking, ast_reducing, eval)]
#[DocMethod = get_doc]
#[HandleCustomInterpreterDirectives = handle_custom_interpreter_directives]
/// All bits of state necessary to parse and execute a Schala program are stored in this struct.
/// `state` represents the execution state for the AST-walking interpreter, the other fields
/// should be self-explanatory.
pub struct Schala {
source_reference: SourceReference,
state: eval::State<'static>,
symbol_table: Rc<RefCell<symbol_table::SymbolTable>>,
type_context: typechecking::TypeContext<'static>,
active_parser: Option<parsing::Parser>,
}
impl Schala {
fn get_doc(&self, commands: &Vec<&str>) -> Option<String> {
Some(format!("Documentation on commands: {:?}", commands))
}
fn handle_custom_interpreter_directives(&mut self, commands: &Vec<&str>) -> Option<String> {
Some(format!("Schala-lang command: {:?} not supported", commands.get(0)))
}
}
impl Schala {
/// Creates a new Schala environment *without* any prelude.
fn new_blank_env() -> Schala {
let symbols = Rc::new(RefCell::new(symbol_table::SymbolTable::new()));
Schala {
source_reference: SourceReference::new(),
symbol_table: symbols.clone(),
state: eval::State::new(symbols),
type_context: typechecking::TypeContext::new(),
active_parser: None,
}
}
/// Creates a new Schala environment with the standard prelude, which is defined as ordinary
/// Schala code in the file `prelude.schala`
pub fn new() -> Schala {
let prelude = include_str!("prelude.schala");
let mut s = Schala::new_blank_env();
s.execute_pipeline(prelude, &EvalOptions::default());
s
}
}
fn load_source<'a>(input: &'a str, handle: &mut Schala, _comp: Option<&mut UnfinishedComputation>) -> Result<&'a str, String> {
handle.source_reference.load_new_source(input);
Ok(input)
}
fn tokenizing(input: &str, _handle: &mut Schala, comp: Option<&mut UnfinishedComputation>) -> Result<Vec<tokenizing::Token>, String> {
let tokens = tokenizing::tokenize(input);
comp.map(|comp| {
let token_string = tokens.iter().map(|t| t.to_string_with_metadata()).join(", ");
comp.add_artifact(TraceArtifact::new("tokens", token_string));
});
let errors: Vec<String> = tokens.iter().filter_map(|t| t.get_error()).collect();
if errors.len() == 0 {
Ok(tokens)
} else {
Err(format!("{:?}", errors))
}
}
fn parsing(input: Vec<tokenizing::Token>, handle: &mut Schala, comp: Option<&mut UnfinishedComputation>) -> Result<ast::AST, String> {
use crate::parsing::Parser;
let mut parser = match handle.active_parser.take() {
None => Parser::new(input),
Some(parser) => parser
};
let ast = parser.parse();
let trace = parser.format_parse_trace();
comp.map(|comp| {
//TODO need to control which of these debug stages get added
let opt = comp.cur_debug_options.get(0).map(|s| s.clone());
match opt {
None => comp.add_artifact(TraceArtifact::new("ast", format!("{:?}", ast))),
Some(ref s) if s == "compact" => comp.add_artifact(TraceArtifact::new("ast", format!("{:?}", ast))),
Some(ref s) if s == "expanded" => comp.add_artifact(TraceArtifact::new("ast", format!("{:#?}", ast))),
Some(ref s) if s == "trace" => comp.add_artifact(TraceArtifact::new_parse_trace(trace)),
Some(ref x) => println!("Bad parsing debug option: {}", x),
};
});
ast.map_err(|err| format_parse_error(err, handle))
}
fn format_parse_error(error: parsing::ParseError, handle: &mut Schala) -> String {
let line_num = error.token.line_num;
let ch = error.token.char_num;
let line_from_program = handle.source_reference.get_line(line_num);
let location_pointer = format!("{}^", " ".repeat(ch));
let line_num_digits = format!("{}", line_num).chars().count();
let space_padding = " ".repeat(line_num_digits);
format!(r#"
{error_msg}
{space_padding} |
{line_num} | {}
{space_padding} | {}
"#, line_from_program, location_pointer, error_msg=error.msg, space_padding=space_padding, line_num=line_num)
}
fn symbol_table(input: ast::AST, handle: &mut Schala, comp: Option<&mut UnfinishedComputation>) -> Result<ast::AST, String> {
let add = handle.symbol_table.borrow_mut().add_top_level_symbols(&input);
match add {
Ok(()) => {
let artifact = TraceArtifact::new("symbol_table", handle.symbol_table.borrow().debug_symbol_table());
comp.map(|comp| comp.add_artifact(artifact));
Ok(input)
},
Err(msg) => Err(msg)
}
}
fn typechecking(input: ast::AST, handle: &mut Schala, comp: Option<&mut UnfinishedComputation>) -> Result<ast::AST, String> {
let result = handle.type_context.typecheck(&input);
comp.map(|comp| {
let artifact = TraceArtifact::new("type", format!("{:?}", result));
comp.add_artifact(artifact);
});
Ok(input)
}
fn ast_reducing(input: ast::AST, handle: &mut Schala, comp: Option<&mut UnfinishedComputation>) -> Result<reduced_ast::ReducedAST, String> {
let ref symbol_table = handle.symbol_table.borrow();
let output = input.reduce(symbol_table);
comp.map(|comp| comp.add_artifact(TraceArtifact::new("ast_reducing", format!("{:?}", output))));
Ok(output)
}
fn eval(input: reduced_ast::ReducedAST, handle: &mut Schala, comp: Option<&mut UnfinishedComputation>) -> Result<String, String> {
comp.map(|comp| comp.add_artifact(TraceArtifact::new("value_state", handle.state.debug_print())));
let evaluation_outputs = handle.state.evaluate(input, true);
let text_output: Result<Vec<String>, String> = evaluation_outputs
.into_iter()
.collect();
let eval_output: Result<String, String> = text_output
.map(|v| { v.into_iter().intersperse(format!("\n")).collect() });
eval_output
}
/// Represents lines of source code
struct SourceReference {
lines: Option<Vec<String>>
}
impl SourceReference {
fn new() -> SourceReference {
SourceReference { lines: None }
}
fn load_new_source(&mut self, source: &str) {
//TODO this is a lot of heap allocations - maybe there's a way to make it more efficient?
self.lines = Some(source.lines().map(|s| s.to_string()).collect()); }
fn get_line(&self, line: usize) -> String {
self.lines.as_ref().and_then(|x| x.get(line).map(|s| s.to_string())).unwrap_or(format!("NO LINE FOUND"))
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,13 @@
type Option<T> = Some(T) | None
type Color = Red | Green | Blue
type Ord = LT | EQ | GT
fn map(input: Option<T>, func: Func): Option<T> {
if input {
is Some(x) -> Some(func(x)),
is None -> None,
}
}

View File

@@ -0,0 +1,398 @@
use std::rc::Rc;
use crate::ast::*;
use crate::symbol_table::{Symbol, SymbolSpec, SymbolTable};
use crate::builtin::{BinOp, PrefixOp};
#[derive(Debug)]
pub struct ReducedAST(pub Vec<Stmt>);
#[derive(Debug, Clone)]
pub enum Stmt {
PreBinding {
name: Rc<String>,
func: Func,
},
Binding {
name: Rc<String>,
constant: bool,
expr: Expr,
},
Expr(Expr),
Noop,
}
#[derive(Debug, Clone)]
pub enum Expr {
Unit,
Lit(Lit),
Tuple(Vec<Expr>),
Func(Func),
Val(Rc<String>),
Constructor {
type_name: Rc<String>,
name: Rc<String>,
tag: usize,
arity: usize,
},
Call {
f: Box<Expr>,
args: Vec<Expr>,
},
Assign {
val: Box<Expr>,
expr: Box<Expr>,
},
Conditional {
cond: Box<Expr>,
then_clause: Vec<Stmt>,
else_clause: Vec<Stmt>,
},
ConditionalTargetSigilValue,
CaseMatch {
cond: Box<Expr>,
alternatives: Vec<Alternative>
},
UnimplementedSigilValue
}
pub type BoundVars = Vec<Option<Rc<String>>>; //remember that order matters here
#[derive(Debug, Clone)]
pub struct Alternative {
pub tag: Option<usize>,
pub subpatterns: Vec<Option<Subpattern>>,
pub guard: Option<Expr>,
pub bound_vars: BoundVars,
pub item: Vec<Stmt>,
}
#[derive(Debug, Clone)]
pub struct Subpattern {
pub tag: Option<usize>,
pub subpatterns: Vec<Option<Subpattern>>,
pub bound_vars: BoundVars,
pub guard: Option<Expr>,
}
#[derive(Debug, Clone)]
pub enum Lit {
Nat(u64),
Int(i64),
Float(f64),
Bool(bool),
StringLit(Rc<String>),
}
#[derive(Debug, Clone)]
pub enum Func {
BuiltIn(Rc<String>),
UserDefined {
name: Option<Rc<String>>,
params: Vec<Rc<String>>,
body: Vec<Stmt>,
}
}
impl AST {
pub fn reduce(&self, symbol_table: &SymbolTable) -> ReducedAST {
let mut output = vec![];
for statement in self.0.iter() {
output.push(statement.node().reduce(symbol_table));
}
ReducedAST(output)
}
}
impl Statement {
fn reduce(&self, symbol_table: &SymbolTable) -> Stmt {
use crate::ast::Statement::*;
match self {
ExpressionStatement(expr) => Stmt::Expr(expr.node().reduce(symbol_table)),
Declaration(decl) => decl.reduce(symbol_table),
}
}
}
fn reduce_block(block: &Block, symbol_table: &SymbolTable) -> Vec<Stmt> {
block.iter().map(|stmt| stmt.node().reduce(symbol_table)).collect()
}
impl Expression {
fn reduce(&self, symbol_table: &SymbolTable) -> Expr {
use crate::ast::ExpressionType::*;
let ref input = self.0;
match input {
NatLiteral(n) => Expr::Lit(Lit::Nat(*n)),
FloatLiteral(f) => Expr::Lit(Lit::Float(*f)),
StringLiteral(s) => Expr::Lit(Lit::StringLit(s.clone())),
BoolLiteral(b) => Expr::Lit(Lit::Bool(*b)),
BinExp(binop, lhs, rhs) => binop.reduce(symbol_table, lhs, rhs),
PrefixExp(op, arg) => op.reduce(symbol_table, arg),
Value(name) => match symbol_table.lookup_by_name(name) {
Some(Symbol { spec: SymbolSpec::DataConstructor { index, type_args, type_name}, .. }) => Expr::Constructor {
type_name: type_name.clone(),
name: name.clone(),
tag: index.clone(),
arity: type_args.len(),
},
_ => Expr::Val(name.clone()),
},
Call { f, arguments } => Expr::Call {
f: Box::new(f.reduce(symbol_table)),
args: arguments.iter().map(|arg| arg.node().reduce(symbol_table)).collect(),
},
TupleLiteral(exprs) => Expr::Tuple(exprs.iter().map(|e| e.node().reduce(symbol_table)).collect()),
IfExpression { discriminator, body } => reduce_if_expression(discriminator, body, symbol_table),
Lambda { params, body, .. } => reduce_lambda(params, body, symbol_table),
NamedStruct { .. } => Expr::UnimplementedSigilValue,
Index { .. } => Expr::UnimplementedSigilValue,
WhileExpression { .. } => Expr::UnimplementedSigilValue,
ForExpression { .. } => Expr::UnimplementedSigilValue,
ListLiteral { .. } => Expr::UnimplementedSigilValue,
}
}
}
fn reduce_lambda(params: &Vec<FormalParam>, body: &Block, symbol_table: &SymbolTable) -> Expr {
Expr::Func(Func::UserDefined {
name: None,
params: params.iter().map(|param| param.0.clone()).collect(),
body: reduce_block(body, symbol_table),
})
}
fn reduce_if_expression(discriminator: &Discriminator, body: &IfExpressionBody, symbol_table: &SymbolTable) -> Expr {
let cond = Box::new(match *discriminator {
Discriminator::Simple(ref expr) => expr.reduce(symbol_table),
Discriminator::BinOp(ref _expr, ref _binop) => panic!("Can't yet handle binop discriminators")
});
match *body {
IfExpressionBody::SimpleConditional(ref then_clause, ref else_clause) => {
let then_clause = reduce_block(then_clause, symbol_table);
let else_clause = match else_clause {
None => vec![],
Some(stmts) => reduce_block(stmts, symbol_table),
};
Expr::Conditional { cond, then_clause, else_clause }
},
IfExpressionBody::SimplePatternMatch(ref pat, ref then_clause, ref else_clause) => {
let then_clause = reduce_block(then_clause, symbol_table);
let else_clause = match else_clause {
None => vec![],
Some(stmts) => reduce_block(stmts, symbol_table),
};
let alternatives = vec![
pat.to_alternative(then_clause, symbol_table),
Alternative {
tag: None,
subpatterns: vec![],
bound_vars: vec![],
guard: None,
item: else_clause
},
];
Expr::CaseMatch {
cond,
alternatives,
}
},
IfExpressionBody::GuardList(ref guard_arms) => {
let mut alternatives = vec![];
for arm in guard_arms {
match arm.guard {
Guard::Pat(ref p) => {
let item = reduce_block(&arm.body, symbol_table);
let alt = p.to_alternative(item, symbol_table);
alternatives.push(alt);
},
Guard::HalfExpr(HalfExpr { op: _, expr: _ }) => {
return Expr::UnimplementedSigilValue
}
}
}
Expr::CaseMatch { cond, alternatives }
}
}
}
/* ig var pat
* x is SomeBigOldEnum(_, x, Some(t))
*/
fn handle_symbol(symbol: Option<&Symbol>, inner_patterns: &Vec<Pattern>, symbol_table: &SymbolTable) -> Subpattern {
use self::Pattern::*;
let tag = symbol.map(|symbol| match symbol.spec {
SymbolSpec::DataConstructor { index, .. } => index.clone(),
_ => panic!("Symbol is not a data constructor - this should've been caught in type-checking"),
});
let bound_vars = inner_patterns.iter().map(|p| match p {
Literal(PatternLiteral::VarPattern(var)) => Some(var.clone()),
_ => None,
}).collect();
let subpatterns = inner_patterns.iter().map(|p| match p {
Ignored => None,
Literal(PatternLiteral::VarPattern(_)) => None,
Literal(other) => Some(other.to_subpattern(symbol_table)),
tp @ TuplePattern(_) => Some(tp.to_subpattern(symbol_table)),
ts @ TupleStruct(_, _) => Some(ts.to_subpattern(symbol_table)),
Record(..) => unimplemented!(),
}).collect();
let guard = None;
/*
let guard_equality_exprs: Vec<Expr> = subpatterns.iter().map(|p| match p {
Literal(lit) => match lit {
_ => unimplemented!()
},
_ => unimplemented!()
}).collect();
*/
Subpattern {
tag,
subpatterns,
guard,
bound_vars,
}
}
impl Pattern {
fn to_alternative(&self, item: Vec<Stmt>, symbol_table: &SymbolTable) -> Alternative {
let s = self.to_subpattern(symbol_table);
Alternative {
tag: s.tag,
subpatterns: s.subpatterns,
bound_vars: s.bound_vars,
guard: s.guard,
item
}
}
fn to_subpattern(&self, symbol_table: &SymbolTable) -> Subpattern {
use self::Pattern::*;
match self {
TupleStruct(name, inner_patterns) => {
let symbol = symbol_table.lookup_by_name(name).expect(&format!("Symbol {} not found", name));
handle_symbol(Some(symbol), inner_patterns, symbol_table)
},
TuplePattern(inner_patterns) => handle_symbol(None, inner_patterns, symbol_table),
Record(_name, _pairs) => {
unimplemented!()
},
Ignored => Subpattern { tag: None, subpatterns: vec![], guard: None, bound_vars: vec![] },
Literal(lit) => lit.to_subpattern(symbol_table),
}
}
}
impl PatternLiteral {
fn to_subpattern(&self, symbol_table: &SymbolTable) -> Subpattern {
use self::PatternLiteral::*;
match self {
NumPattern { neg, num } => {
let comparison = Expr::Lit(match (neg, num) {
(false, ExpressionType::NatLiteral(n)) => Lit::Nat(*n),
(false, ExpressionType::FloatLiteral(f)) => Lit::Float(*f),
(true, ExpressionType::NatLiteral(n)) => Lit::Int(-1*(*n as i64)),
(true, ExpressionType::FloatLiteral(f)) => Lit::Float(-1.0*f),
_ => panic!("This should never happen")
});
let guard = Some(Expr::Call {
f: Box::new(Expr::Func(Func::BuiltIn(Rc::new("==".to_string())))),
args: vec![comparison, Expr::ConditionalTargetSigilValue],
});
Subpattern {
tag: None,
subpatterns: vec![],
guard,
bound_vars: vec![],
}
},
StringPattern(s) => {
let guard = Some(Expr::Call {
f: Box::new(Expr::Func(Func::BuiltIn(Rc::new("==".to_string())))),
args: vec![Expr::Lit(Lit::StringLit(s.clone())), Expr::ConditionalTargetSigilValue]
});
Subpattern {
tag: None,
subpatterns: vec![],
guard,
bound_vars: vec![],
}
},
BoolPattern(b) => {
let guard = Some(if *b {
Expr::ConditionalTargetSigilValue
} else {
Expr::Call {
f: Box::new(Expr::Func(Func::BuiltIn(Rc::new("!".to_string())))),
args: vec![Expr::ConditionalTargetSigilValue]
}
});
Subpattern {
tag: None,
subpatterns: vec![],
guard,
bound_vars: vec![],
}
},
VarPattern(var) => match symbol_table.lookup_by_name(var) {
Some(symbol) => handle_symbol(Some(symbol), &vec![], symbol_table),
None => Subpattern {
tag: None,
subpatterns: vec![],
guard: None,
bound_vars: vec![Some(var.clone())],
}
}
}
}
}
impl Declaration {
fn reduce(&self, symbol_table: &SymbolTable) -> Stmt {
use self::Declaration::*;
use crate::ast::Signature;
match self {
Binding {name, constant, expr } => Stmt::Binding { name: name.clone(), constant: *constant, expr: expr.reduce(symbol_table) },
FuncDecl(Signature { name, params, .. }, statements) => Stmt::PreBinding {
name: name.clone(),
func: Func::UserDefined {
name: Some(name.clone()),
params: params.iter().map(|param| param.0.clone()).collect(),
body: reduce_block(&statements, symbol_table),
}
},
TypeDecl { .. } => Stmt::Noop,
TypeAlias(_, _) => Stmt::Noop,
Interface { .. } => Stmt::Noop,
Impl { .. } => Stmt::Expr(Expr::UnimplementedSigilValue),
_ => Stmt::Expr(Expr::UnimplementedSigilValue)
}
}
}
impl BinOp {
fn reduce(&self, symbol_table: &SymbolTable, lhs: &Box<Node<Expression>>, rhs: &Box<Node<Expression>>) -> Expr {
if **self.sigil() == "=" {
Expr::Assign {
val: Box::new(lhs.node().reduce(symbol_table)),
expr: Box::new(rhs.node().reduce(symbol_table)),
}
} else {
let f = Box::new(Expr::Func(Func::BuiltIn(self.sigil().clone())));
Expr::Call { f, args: vec![lhs.node().reduce(symbol_table), rhs.node().reduce(symbol_table)]}
}
}
}
impl PrefixOp {
fn reduce(&self, symbol_table: &SymbolTable, arg: &Box<Node<Expression>>) -> Expr {
let f = Box::new(Expr::Func(Func::BuiltIn(self.sigil().clone())));
Expr::Call { f, args: vec![arg.node().reduce(symbol_table)]}
}
}

View File

@@ -0,0 +1,158 @@
use std::collections::HashMap;
use std::rc::Rc;
use std::fmt;
use std::fmt::Write;
use crate::ast;
use crate::ast::{TypeBody, TypeSingletonName, Signature};
use crate::typechecking::TypeName;
//cf. p. 150 or so of Language Implementation Patterns
pub struct SymbolTable {
pub values: HashMap<Rc<String>, Symbol> //TODO this will eventually have real type information
}
//TODO add various types of lookups here, maybe multiple hash tables internally? also make values
//non-public
impl SymbolTable {
pub fn new() -> SymbolTable {
SymbolTable { values: HashMap::new() }
}
pub fn lookup_by_name(&self, name: &Rc<String>) -> Option<&Symbol> {
self.values.get(name)
}
}
#[derive(Debug)]
pub struct Symbol {
pub name: Rc<String>,
pub spec: SymbolSpec,
}
impl fmt::Display for Symbol {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "<Name: {}, Spec: {}>", self.name, self.spec)
}
}
#[derive(Debug)]
pub enum SymbolSpec {
Func(Vec<TypeName>),
DataConstructor {
index: usize,
type_name: Rc<String>,
type_args: Vec<Rc<String>>,
},
RecordConstructor {
fields: HashMap<Rc<String>, Rc<String>>
}
}
impl fmt::Display for SymbolSpec {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use self::SymbolSpec::*;
match self {
Func(type_names) => write!(f, "Func({:?})", type_names),
DataConstructor { index, type_name, type_args } => write!(f, "DataConstructor(idx: {})({:?} -> {})", index, type_args, type_name),
RecordConstructor { fields } => write!(f, "RecordConstructor( <fields> )"),
}
}
}
impl SymbolTable {
/* note: this adds names for *forward reference* but doesn't actually create any types. solve that problem
* later */
pub fn add_top_level_symbols(&mut self, ast: &ast::AST) -> Result<(), String> {
use self::ast::Statement;
use self::ast::Declaration::*;
for statement in ast.0.iter() {
let statement = statement.node();
if let Statement::Declaration(decl) = statement {
match decl {
FuncSig(signature) | FuncDecl(signature, _) => self.add_function_signature(signature)?,
TypeDecl { name, body, mutable } => self.add_type_decl(name, body, mutable)?,
_ => ()
}
}
}
Ok(())
}
pub fn debug_symbol_table(&self) -> String {
let mut output = format!("Symbol table\n");
for (name, sym) in &self.values {
write!(output, "{} -> {}\n", name, sym).unwrap();
}
output
}
fn add_function_signature(&mut self, signature: &Signature) -> Result<(), String> {
let mut local_type_context = LocalTypeContext::new();
let types = signature.params.iter().map(|param| match param {
(_, Some(type_identifier)) => Rc::new(format!("{:?}", type_identifier)),
(_, None) => local_type_context.new_universal_type()
}).collect();
let spec = SymbolSpec::Func(types);
self.values.insert(
signature.name.clone(),
Symbol { name: signature.name.clone(), spec }
);
Ok(())
}
fn add_type_decl(&mut self, type_name: &TypeSingletonName, body: &TypeBody, _mutable: &bool) -> Result<(), String> {
use crate::ast::{TypeIdentifier, Variant};
let TypeBody(variants) = body;
let TypeSingletonName { name, .. } = type_name;
//TODO figure out why _params isn't being used here
for (index, var) in variants.iter().enumerate() {
match var {
Variant::UnitStruct(variant_name) => {
let spec = SymbolSpec::DataConstructor {
index,
type_name: name.clone(),
type_args: vec![],
};
self.values.insert(variant_name.clone(), Symbol { name: variant_name.clone(), spec });
},
Variant::TupleStruct(variant_name, tuple_members) => {
let type_args = tuple_members.iter().map(|type_name| match type_name {
TypeIdentifier::Singleton(TypeSingletonName { name, ..}) => name.clone(),
TypeIdentifier::Tuple(_) => unimplemented!(),
}).collect();
let spec = SymbolSpec::DataConstructor {
index,
type_name: name.clone(),
type_args
};
let symbol = Symbol { name: variant_name.clone(), spec };
self.values.insert(variant_name.clone(), symbol);
},
//TODO if there is only one variant, and it is a record, it doesn't need to have an
//explicit name
Variant::Record { name, members } => {
let fields = HashMap::new();
let spec = SymbolSpec::RecordConstructor { fields };
let symbol = Symbol { name: name.clone(), spec };
self.values.insert(name.clone(), symbol);
},
}
}
Ok(())
}
}
struct LocalTypeContext {
state: u8
}
impl LocalTypeContext {
fn new() -> LocalTypeContext {
LocalTypeContext { state: 0 }
}
fn new_universal_type(&mut self) -> TypeName {
let n = self.state;
self.state += 1;
Rc::new(format!("{}", (('a' as u8) + n) as char))
}
}

View File

@@ -3,17 +3,16 @@ use std::collections::HashMap;
use std::rc::Rc;
use std::iter::{Iterator, Peekable};
use std::fmt;
use ::schala_codegen;
#[derive(Debug, PartialEq, Clone)]
pub enum TokenType {
pub enum TokenKind {
Newline, Semicolon,
LParen, RParen,
LSquareBracket, RSquareBracket,
LAngleBracket, RAngleBracket,
LCurlyBrace, RCurlyBrace,
Pipe,
Pipe, Backslash,
Comma, Period, Colon, Underscore,
Slash,
@@ -28,9 +27,9 @@ pub enum TokenType {
Error(String),
}
use self::TokenType::*;
use self::TokenKind::*;
impl fmt::Display for TokenType {
impl fmt::Display for TokenKind {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
&Operator(ref s) => write!(f, "Operator({})", **s),
@@ -46,11 +45,12 @@ impl fmt::Display for TokenType {
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum Kw {
If, Else,
If, Then, Else,
Is,
Func,
For,
Match,
Var, Const, Let, In,
For, While,
Const, Let, In,
Mut,
Return,
Alias, Type, SelfType, SelfIdent,
Interface, Impl,
@@ -62,14 +62,16 @@ lazy_static! {
static ref KEYWORDS: HashMap<&'static str, Kw> =
hashmap! {
"if" => Kw::If,
"then" => Kw::Then,
"else" => Kw::Else,
"is" => Kw::Is,
"fn" => Kw::Func,
"for" => Kw::For,
"match" => Kw::Match,
"var" => Kw::Var,
"while" => Kw::While,
"const" => Kw::Const,
"let" => Kw::Let,
"in" => Kw::In,
"mut" => Kw::Mut,
"return" => Kw::Return,
"alias" => Kw::Alias,
"type" => Kw::Type,
@@ -85,19 +87,24 @@ lazy_static! {
#[derive(Debug, Clone)]
pub struct Token {
pub token_type: TokenType,
pub offset: (usize, usize),
pub kind: TokenKind,
pub line_num: usize,
pub char_num: usize
}
impl Token {
pub fn get_error(&self) -> Option<&String> {
match self.token_type {
TokenType::Error(ref s) => Some(s),
pub fn get_error(&self) -> Option<String> {
match self.kind {
TokenKind::Error(ref s) => Some(s.clone()),
_ => None,
}
}
pub fn to_string_with_metadata(&self) -> String {
format!("{}(L:{},c:{})", self.token_type, self.offset.0, self.offset.1)
format!("{}(L:{},c:{})", self.kind, self.line_num, self.char_num)
}
pub fn get_kind(&self) -> TokenKind {
self.kind.clone()
}
}
@@ -106,9 +113,8 @@ fn is_operator(c: &char) -> bool {
OPERATOR_CHARS.iter().any(|x| x == c)
}
type CharIter<I: Iterator<Item=(usize,usize,char)>> = Peekable<I>;
type CharData = (usize, usize, char);
#[schala_codegen::compiler_pass = "tokenization"]
pub fn tokenize(input: &str) -> Vec<Token> {
let mut tokens: Vec<Token> = Vec::new();
@@ -119,8 +125,8 @@ pub fn tokenize(input: &str) -> Vec<Token> {
})
.peekable();
while let Some((line_idx, ch_idx, c)) = input.next() {
let cur_tok_type = match c {
while let Some((line_num, char_num, c)) = input.next() {
let cur_tok_kind = match c {
'/' => match input.peek().map(|t| t.2) {
Some('/') => {
while let Some((_, _, c)) = input.next() {
@@ -156,17 +162,18 @@ pub fn tokenize(input: &str) -> Vec<Token> {
'{' => LCurlyBrace, '}' => RCurlyBrace,
'[' => LSquareBracket, ']' => RSquareBracket,
'"' => handle_quote(&mut input),
'\\' => Backslash,
c if c.is_digit(10) => handle_digit(c, &mut input),
c if c.is_alphabetic() || c == '_' => handle_alphabetic(c, &mut input), //TODO I'll probably have to rewrite this if I care about types being uppercase, also type parameterization
c if c.is_alphabetic() || c == '_' => handle_alphabetic(c, &mut input),
c if is_operator(&c) => handle_operator(c, &mut input),
unknown => Error(format!("Unexpected character: {}", unknown)),
};
tokens.push(Token { token_type: cur_tok_type, offset: (line_idx, ch_idx) });
tokens.push(Token { kind: cur_tok_kind, line_num, char_num });
}
tokens
}
fn handle_digit<I: Iterator<Item=(usize,usize,char)>>(c: char, input: &mut CharIter<I>) -> TokenType {
fn handle_digit(c: char, input: &mut Peekable<impl Iterator<Item=CharData>>) -> TokenKind {
if c == '0' && input.peek().map_or(false, |&(_, _, c)| { c == 'x' }) {
input.next();
let rest: String = input.peeking_take_while(|&(_, _, ref c)| c.is_digit(16) || *c == '_').map(|(_, _, c)| { c }).collect();
@@ -181,7 +188,7 @@ fn handle_digit<I: Iterator<Item=(usize,usize,char)>>(c: char, input: &mut CharI
}
}
fn handle_quote<I: Iterator<Item=(usize,usize,char)>>(input: &mut CharIter<I>) -> TokenType {
fn handle_quote(input: &mut Peekable<impl Iterator<Item=CharData>>) -> TokenKind {
let mut buf = String::new();
loop {
match input.next().map(|(_, _, c)| { c }) {
@@ -200,22 +207,22 @@ fn handle_quote<I: Iterator<Item=(usize,usize,char)>>(input: &mut CharIter<I>) -
}
},
Some(c) => buf.push(c),
None => return TokenType::Error(format!("Unclosed string")),
None => return TokenKind::Error(format!("Unclosed string")),
}
}
TokenType::StrLiteral(Rc::new(buf))
TokenKind::StrLiteral(Rc::new(buf))
}
fn handle_alphabetic<I: Iterator<Item=(usize,usize,char)>>(c: char, input: &mut CharIter<I>) -> TokenType {
fn handle_alphabetic(c: char, input: &mut Peekable<impl Iterator<Item=CharData>>) -> TokenKind {
let mut buf = String::new();
buf.push(c);
if c == '_' && input.peek().map(|&(_, _, c)| { !c.is_alphabetic() }).unwrap_or(true) {
return TokenType::Underscore
return TokenKind::Underscore
}
loop {
match input.peek().map(|&(_, _, c)| { c }) {
Some(c) if c.is_alphanumeric() => {
Some(c) if c.is_alphanumeric() || c == '_' => {
input.next();
buf.push(c);
},
@@ -224,12 +231,12 @@ fn handle_alphabetic<I: Iterator<Item=(usize,usize,char)>>(c: char, input: &mut
}
match KEYWORDS.get(buf.as_str()) {
Some(kw) => TokenType::Keyword(*kw),
None => TokenType::Identifier(Rc::new(buf)),
Some(kw) => TokenKind::Keyword(*kw),
None => TokenKind::Identifier(Rc::new(buf)),
}
}
fn handle_operator<I: Iterator<Item=(usize,usize,char)>>(c: char, input: &mut CharIter<I>) -> TokenType {
fn handle_operator(c: char, input: &mut Peekable<impl Iterator<Item=CharData>>) -> TokenKind {
match c {
'<' | '>' | '|' | '.' => {
let ref next = input.peek().map(|&(_, _, c)| { c });
@@ -274,7 +281,7 @@ fn handle_operator<I: Iterator<Item=(usize,usize,char)>>(c: char, input: &mut Ch
}
}
}
TokenType::Operator(Rc::new(buf))
TokenKind::Operator(Rc::new(buf))
}
#[cfg(test)]
@@ -289,26 +296,29 @@ mod schala_tokenizer_tests {
#[test]
fn tokens() {
let a = tokenize("let a: A<B> = c ++ d");
let token_types: Vec<TokenType> = a.into_iter().map(move |t| t.token_type).collect();
assert_eq!(token_types, vec![Keyword(Let), ident!("a"), Colon, ident!("A"),
let token_kinds: Vec<TokenKind> = a.into_iter().map(move |t| t.kind).collect();
assert_eq!(token_kinds, vec![Keyword(Let), ident!("a"), Colon, ident!("A"),
LAngleBracket, ident!("B"), RAngleBracket, op!("="), ident!("c"), op!("++"), ident!("d")]);
}
#[test]
fn underscores() {
let token_types: Vec<TokenType> = tokenize("4_8").into_iter().map(move |t| t.token_type).collect();
assert_eq!(token_types, vec![digit!("4"), Underscore, digit!("8")]);
let token_kinds: Vec<TokenKind> = tokenize("4_8").into_iter().map(move |t| t.kind).collect();
assert_eq!(token_kinds, vec![digit!("4"), Underscore, digit!("8")]);
let token_kinds2: Vec<TokenKind> = tokenize("aba_yo").into_iter().map(move |t| t.kind).collect();
assert_eq!(token_kinds2, vec![ident!("aba_yo")]);
}
#[test]
fn comments() {
let token_types: Vec<TokenType> = tokenize("1 + /* hella /* bro */ */ 2").into_iter().map(move |t| t.token_type).collect();
assert_eq!(token_types, vec![digit!("1"), op!("+"), digit!("2")]);
let token_kinds: Vec<TokenKind> = tokenize("1 + /* hella /* bro */ */ 2").into_iter().map(move |t| t.kind).collect();
assert_eq!(token_kinds, vec![digit!("1"), op!("+"), digit!("2")]);
}
#[test]
fn backtick_operators() {
let token_types: Vec<TokenType> = tokenize("1 `plus` 2").into_iter().map(move |t| t.token_type).collect();
assert_eq!(token_types, vec![digit!("1"), op!("plus"), digit!("2")]);
let token_kinds: Vec<TokenKind> = tokenize("1 `plus` 2").into_iter().map(move |t| t.kind).collect();
assert_eq!(token_kinds, vec![digit!("1"), op!("plus"), digit!("2")]);
}
}

View File

@@ -0,0 +1,254 @@
use std::rc::Rc;
use crate::ast::*;
use crate::util::ScopeStack;
pub type TypeName = Rc<String>;
pub struct TypeContext<'a> {
variable_map: ScopeStack<'a, Rc<String>, Type<TVar>>,
evar_count: u32
}
/// `InferResult` is the monad in which type inference takes place.
type InferResult<T> = Result<T, TypeError>;
#[derive(Debug, Clone)]
struct TypeError { msg: String }
impl TypeError {
fn new<A>(msg: &str) -> InferResult<A> {
Err(TypeError { msg: msg.to_string() })
}
}
/// `Type` is parameterized by whether the type variables can be just universal, or universal or
/// existential.
#[derive(Debug, Clone)]
enum Type<A> {
Var(A),
Const(TConst),
Arrow(Box<Type<A>>, Box<Type<A>>),
}
#[derive(Debug, Clone)]
enum TVar {
Univ(UVar),
Exist(ExistentialVar)
}
#[derive(Debug, Clone)]
struct UVar(Rc<String>);
#[derive(Debug, Clone)]
struct ExistentialVar(u32);
impl Type<UVar> {
fn to_tvar(&self) -> Type<TVar> {
match self {
Type::Var(UVar(name)) => Type::Var(TVar::Univ(UVar(name.clone()))),
Type::Const(ref c) => Type::Const(c.clone()),
Type::Arrow(a, b) => Type::Arrow(
Box::new(a.to_tvar()),
Box::new(b.to_tvar())
)
}
}
}
impl Type<TVar> {
fn skolemize(&self) -> Type<UVar> {
match self {
Type::Var(TVar::Univ(uvar)) => Type::Var(uvar.clone()),
Type::Var(TVar::Exist(_)) => Type::Var(UVar(Rc::new(format!("sk")))),
Type::Const(ref c) => Type::Const(c.clone()),
Type::Arrow(a, b) => Type::Arrow(
Box::new(a.skolemize()),
Box::new(b.skolemize())
)
}
}
}
impl TypeIdentifier {
fn to_monotype(&self) -> Type<UVar> {
match self {
TypeIdentifier::Tuple(_) => Type::Const(TConst::Nat),
TypeIdentifier::Singleton(TypeSingletonName { name, .. }) => {
match &name[..] {
"Nat" => Type::Const(TConst::Nat),
"Int" => Type::Const(TConst::Int),
"Float" => Type::Const(TConst::Float),
"Bool" => Type::Const(TConst::Bool),
"String" => Type::Const(TConst::StringT),
_ => Type::Const(TConst::Nat),
}
}
}
}
}
#[derive(Debug, Clone)]
enum TConst {
User(Rc<String>),
Unit,
Nat,
Int,
Float,
StringT,
Bool,
}
impl TConst {
fn user(name: &str) -> TConst {
TConst::User(Rc::new(name.to_string()))
}
}
impl<'a> TypeContext<'a> {
pub fn new() -> TypeContext<'a> {
TypeContext {
variable_map: ScopeStack::new(None),
evar_count: 0
}
}
pub fn typecheck(&mut self, ast: &AST) -> Result<String, String> {
match self.infer_ast(ast) {
Ok(t) => Ok(format!("{:?}", t)),
Err(err) => Err(format!("Type error: {:?}", err))
}
}
}
impl<'a> TypeContext<'a> {
fn infer_ast(&mut self, ast: &AST) -> InferResult<Type<UVar>> {
self.infer_block(&ast.0)
}
fn infer_statement(&mut self, stmt: &Statement) -> InferResult<Type<UVar>> {
match stmt {
Statement::ExpressionStatement(ref expr) => self.infer_expr(expr.node()),
Statement::Declaration(ref decl) => self.infer_decl(decl),
}
}
fn infer_expr(&mut self, expr: &Expression) -> InferResult<Type<UVar>> {
match expr {
Expression(expr_type, Some(type_anno)) => {
let tx = self.infer_expr_type(expr_type)?;
let ty = type_anno.to_monotype();
self.unify(&ty.to_tvar(), &tx.to_tvar()).map(|x| x.skolemize())
},
Expression(expr_type, None) => self.infer_expr_type(expr_type)
}
}
fn infer_decl(&mut self, _decl: &Declaration) -> InferResult<Type<UVar>> {
Ok(Type::Const(TConst::user("unimplemented")))
}
fn infer_expr_type(&mut self, expr_type: &ExpressionType) -> InferResult<Type<UVar>> {
use self::ExpressionType::*;
Ok(match expr_type {
NatLiteral(_) => Type::Const(TConst::Nat),
FloatLiteral(_) => Type::Const(TConst::Float),
StringLiteral(_) => Type::Const(TConst::StringT),
BoolLiteral(_) => Type::Const(TConst::Bool),
Value(name) => {
//TODO handle the distinction between 0-arg constructors and variables at some point
// need symbol table for that
match self.variable_map.lookup(name) {
Some(ty) => ty.clone().skolemize(),
None => return TypeError::new(&format!("Variable {} not found", name))
}
},
IfExpression { discriminator, body } => self.infer_if_expr(discriminator, body)?,
Call { f, arguments } => {
let tf = self.infer_expr(f)?; //has to be an Arrow Type
let targ = self.infer_expr(&arguments[0].node())?; // TODO make this work with functions with more than one arg
match tf {
Type::Arrow(t1, t2) => {
self.unify(&t1.to_tvar(), &targ.to_tvar())?;
*t2.clone()
},
_ => return TypeError::new("not a function")
}
},
Lambda { params, .. } => {
let _arg_type = match &params[0] {
(_, Some(type_anno)) => type_anno.to_monotype().to_tvar(),
(_, None) => self.allocate_existential(),
};
//let _result_type = unimplemented!();
return TypeError::new("Unimplemented");
//Type::Arrow(Box::new(arg_type), Box::new(result_type))
}
_ => Type::Const(TConst::user("unimplemented"))
})
}
fn infer_if_expr(&mut self, discriminator: &Discriminator, body: &IfExpressionBody) -> InferResult<Type<UVar>> {
let _test = match discriminator {
Discriminator::Simple(expr) => expr,
_ => return TypeError::new("Dame desu")
};
let (_then_clause, _maybe_else_clause) = match body {
IfExpressionBody::SimpleConditional(a, b) => (a, b),
_ => return TypeError::new("Dont work")
};
TypeError::new("Not implemented")
}
fn infer_block(&mut self, block: &Block) -> InferResult<Type<UVar>> {
let mut output = Type::Const(TConst::Unit);
for statement in block.iter() {
output = self.infer_statement(statement.node())?;
}
Ok(output)
}
fn unify(&mut self, _t1: &Type<TVar>, _t2: &Type<TVar>) -> InferResult<Type<TVar>> {
TypeError::new("not implemented")
}
fn allocate_existential(&mut self) -> Type<TVar> {
let n = self.evar_count;
self.evar_count += 1;
Type::Var(TVar::Exist(ExistentialVar(n)))
}
}
#[cfg(test)]
mod tests {
use super::*;
fn parse(input: &str) -> AST {
let tokens: Vec<crate::tokenizing::Token> = crate::tokenizing::tokenize(input);
let mut parser = crate::parsing::Parser::new(tokens);
parser.parse().unwrap()
}
macro_rules! type_test {
($input:expr, $correct:expr) => {
{
let mut tc = TypeContext::new();
let ast = parse($input);
tc.add_symbols(&ast);
assert_eq!($correct, tc.type_check(&ast).unwrap())
}
}
}
#[test]
fn basic_inference() {
}
}

View File

@@ -0,0 +1,43 @@
use std::collections::HashMap;
use std::hash::Hash;
use std::cmp::Eq;
#[derive(Default, Debug)]
pub struct ScopeStack<'a, T: 'a, V: 'a> where T: Hash + Eq {
parent: Option<&'a ScopeStack<'a, T, V>>,
values: HashMap<T, V>,
scope_name: Option<String>
}
impl<'a, T, V> ScopeStack<'a, T, V> where T: Hash + Eq {
pub fn new(name: Option<String>) -> ScopeStack<'a, T, V> where T: Hash + Eq {
ScopeStack {
parent: None,
values: HashMap::new(),
scope_name: name
}
}
pub fn insert(&mut self, key: T, value: V) where T: Hash + Eq {
self.values.insert(key, value);
}
pub fn lookup(&self, key: &T) -> Option<&V> where T: Hash + Eq {
match (self.values.get(key), self.parent) {
(None, None) => None,
(None, Some(parent)) => parent.lookup(key),
(Some(value), _) => Some(value),
}
}
pub fn new_scope(&'a self, name: Option<String>) -> ScopeStack<'a, T, V> where T: Hash + Eq {
ScopeStack {
parent: Some(self),
values: HashMap::default(),
scope_name: name,
}
}
#[allow(dead_code)]
pub fn get_name(&self) -> Option<&String> {
self.scope_name.as_ref()
}
}

View File

@@ -1,77 +0,0 @@
use std::rc::Rc;
use std::collections::HashMap;
use typechecking::{Type, TypeResult, TConst};
use self::Type::*; use self::TConst::*;
#[derive(Debug, PartialEq, Clone)]
pub struct BinOp {
sigil: Rc<String>
}
impl BinOp {
pub fn from_sigil(sigil: &str) -> BinOp {
BinOp { sigil: Rc::new(sigil.to_string()) }
}
pub fn sigil(&self) -> &Rc<String> {
&self.sigil
}
pub fn get_type(&self) -> TypeResult<Type> {
let s = self.sigil.as_str();
BINOPS.get(s).map(|x| x.0.clone()).ok_or(format!("Binop {} not found", s))
}
pub fn min_precedence() -> i32 {
i32::min_value()
}
pub fn get_precedence(op: &str) -> i32 {
let default = 10_000_000;
BINOPS.get(op).map(|x| x.2.clone()).unwrap_or(default)
}
}
#[derive(Debug, PartialEq, Clone)]
pub struct PrefixOp {
sigil: Rc<String>
}
impl PrefixOp {
pub fn from_sigil(sigil: &str) -> PrefixOp {
PrefixOp { sigil: Rc::new(sigil.to_string()) }
}
pub fn sigil(&self) -> &Rc<String> {
&self.sigil
}
pub fn is_prefix(op: &str) -> bool {
PREFIX_OPS.get(op).is_some()
}
pub fn get_type(&self) -> TypeResult<Type> {
let s = self.sigil.as_str();
PREFIX_OPS.get(s).map(|x| x.0.clone()).ok_or(format!("Prefix op {} not found", s))
}
}
lazy_static! {
static ref PREFIX_OPS: HashMap<&'static str, (Type, ())> =
hashmap! {
"+" => (Func(bx!(Const(Int)), bx!(Const(Int))), ()),
"-" => (Func(bx!(Const(Int)), bx!(Const(Int))), ()),
"!" => (Func(bx!(Const(Bool)), bx!(Const(Bool))), ()),
};
}
/* the second tuple member is a placeholder for when I want to make evaluation rules tied to the
* binop definition */
lazy_static! {
static ref BINOPS: HashMap<&'static str, (Type, (), i32)> =
hashmap! {
"+" => (Func(bx!(Const(Int)), bx!(Func(bx!(Const(Int)), bx!(Const(Int))))), (), 10),
"-" => (Func(bx!(Const(Int)), bx!(Func(bx!(Const(Int)), bx!(Const(Int))))), (), 10),
"*" => (Func(bx!(Const(Int)), bx!(Func(bx!(Const(Int)), bx!(Const(Int))))), (), 20),
"/" => (Func(bx!(Const(Int)), bx!(Func(bx!(Const(Int)), bx!(Const(Float))))), (), 20),
"//" => (Func(bx!(Const(Int)), bx!(Func(bx!(Const(Int)), bx!(Const(Int))))), (), 20), //TODO change this to `quot`
"%" => (Func(bx!(Const(Int)), bx!(Func(bx!(Const(Int)), bx!(Const(Int))))), (), 20),
"++" => (Func(bx!(Const(StringT)), bx!(Func(bx!(Const(StringT)), bx!(Const(StringT))))), (), 30),
"^" => (Func(bx!(Const(Int)), bx!(Func(bx!(Const(Int)), bx!(Const(Int))))), (), 20),
"&" => (Func(bx!(Const(Int)), bx!(Func(bx!(Const(Int)), bx!(Const(Int))))), (), 20),
"|" => (Func(bx!(Const(Int)), bx!(Func(bx!(Const(Int)), bx!(Const(Int))))), (), 20),
};
}

View File

@@ -1,317 +0,0 @@
use std::collections::HashMap;
use std::rc::Rc;
use std::fmt::Write;
use itertools::Itertools;
use parsing::{AST, Statement, Declaration, Expression, Variant, ExpressionType};
use builtin::{BinOp, PrefixOp};
pub struct State<'a> {
parent_frame: Option<&'a State<'a>>,
values: HashMap<Rc<String>, ValueEntry>,
}
impl<'a> State<'a> {
fn insert(&mut self, name: Rc<String>, value: ValueEntry) {
self.values.insert(name, value);
}
fn lookup(&self, name: &Rc<String>) -> Option<&ValueEntry> {
match (self.values.get(name), self.parent_frame) {
(None, None) => None,
(None, Some(parent)) => parent.lookup(name),
(Some(value), _) => Some(value),
}
}
}
#[derive(Debug)]
enum ValueEntry {
Binding {
val: FullyEvaluatedExpr,
},
Function {
param_names: Vec<Rc<String>>,
body: Vec<Statement>,
}
}
type EvalResult<T> = Result<T, String>;
#[derive(Debug, PartialEq, Clone)]
enum FullyEvaluatedExpr {
UnsignedInt(u64),
SignedInt(i64),
Float(f64),
Str(String),
Bool(bool),
FuncLit(Rc<String>),
Custom {
string_rep: Rc<String>,
},
Tuple(Vec<FullyEvaluatedExpr>),
List(Vec<FullyEvaluatedExpr>)
}
impl FullyEvaluatedExpr {
fn to_string(&self) -> String {
use self::FullyEvaluatedExpr::*;
match self {
&UnsignedInt(ref n) => format!("{}", n),
&SignedInt(ref n) => format!("{}", n),
&Float(ref f) => format!("{}", f),
&Str(ref s) => format!("\"{}\"", s),
&Bool(ref b) => format!("{}", b),
&Custom { ref string_rep } => format!("{}", string_rep),
&Tuple(ref items) => {
let mut buf = String::new();
write!(buf, "(").unwrap();
for term in items.iter().map(|e| Some(e)).intersperse(None) {
match term {
Some(e) => write!(buf, "{}", e.to_string()).unwrap(),
None => write!(buf, ", ").unwrap(),
};
}
write!(buf, ")").unwrap();
buf
},
&FuncLit(ref name) => format!("<function {}>", name),
&List(ref items) => {
let mut buf = String::new();
write!(buf, "[").unwrap();
for term in items.iter().map(|e| Some(e)).intersperse(None) {
match term {
Some(e) => write!(buf, "{}", e.to_string()).unwrap(),
None => write!(buf, ", ").unwrap()
}
}
write!(buf, "]").unwrap();
buf
}
}
}
}
impl<'a> State<'a> {
pub fn new() -> State<'a> {
State { parent_frame: None, values: HashMap::new() }
}
pub fn new_with_parent(parent: &'a State<'a>) -> State<'a> {
State { parent_frame: Some(parent), values: HashMap::new() }
}
pub fn evaluate(&mut self, ast: AST) -> Vec<Result<String, String>> {
let mut acc = vec![];
for statement in ast.0 {
match self.eval_statement(statement) {
Ok(output) => {
if let Some(fully_evaluated) = output {
acc.push(Ok(fully_evaluated.to_string()));
}
},
Err(error) => {
acc.push(Err(format!("Eval error: {}", error)));
return acc;
},
}
}
acc
}
}
impl<'a> State<'a> {
fn eval_statement(&mut self, statement: Statement) -> EvalResult<Option<FullyEvaluatedExpr>> {
Ok(match statement {
Statement::ExpressionStatement(expr) => Some(self.eval_expr(expr)?),
Statement::Declaration(decl) => { self.eval_decl(decl)?; None }
})
}
fn eval_decl(&mut self, decl: Declaration) -> EvalResult<()> {
use self::Declaration::*;
use self::Variant::*;
match decl {
FuncDecl(signature, statements) => {
let name = signature.name;
let param_names: Vec<Rc<String>> = signature.params.iter().map(|fp| fp.0.clone()).collect();
self.insert(name, ValueEntry::Function { body: statements.clone(), param_names });
},
TypeDecl(_name, body) => {
for variant in body.0.iter() {
match variant {
&UnitStruct(ref name) => self.insert(name.clone(),
ValueEntry::Binding { val: FullyEvaluatedExpr::Custom { string_rep: name.clone() } }),
&TupleStruct(ref _name, ref _args) => unimplemented!(),
&Record(ref _name, ref _fields) => unimplemented!(),
};
}
},
Binding { name, expr, ..} => {
let val = self.eval_expr(expr)?;
self.insert(name.clone(), ValueEntry::Binding { val });
},
_ => return Err(format!("Declaration evaluation not yet implemented"))
}
Ok(())
}
fn eval_expr(&mut self, expr: Expression) -> EvalResult<FullyEvaluatedExpr> {
use self::ExpressionType::*;
use self::FullyEvaluatedExpr::*;
let expr_type = expr.0;
match expr_type {
IntLiteral(n) => Ok(UnsignedInt(n)),
FloatLiteral(f) => Ok(Float(f)),
StringLiteral(s) => Ok(Str(s.to_string())),
BoolLiteral(b) => Ok(Bool(b)),
PrefixExp(op, expr) => self.eval_prefix_exp(op, expr),
BinExp(op, lhs, rhs) => self.eval_binexp(op, lhs, rhs),
Value(name) => self.eval_value(name),
TupleLiteral(expressions) => {
let mut evals = Vec::new();
for expr in expressions {
match self.eval_expr(expr) {
Ok(fully_evaluated) => evals.push(fully_evaluated),
error => return error,
}
}
Ok(Tuple(evals))
}
Call { f, arguments } => {
let mut evaled_arguments = Vec::new();
for arg in arguments.into_iter() {
evaled_arguments.push(self.eval_expr(arg)?);
}
self.eval_application(*f, evaled_arguments)
},
Index { box indexee, indexers } => {
let evaled = self.eval_expr(indexee)?;
match evaled {
Tuple(mut exprs) => {
let len = indexers.len();
if len == 1 {
let idx = indexers.into_iter().nth(0).unwrap();
match self.eval_expr(idx)? {
UnsignedInt(n) if (n as usize) < exprs.len() => Ok(exprs.drain(n as usize..).next().unwrap()),
UnsignedInt(n) => Err(format!("Index {} out of range", n)),
other => Err(format!("{:?} is not an unsigned integer", other)),
}
} else {
Err(format!("Tuple index must be one integer"))
}
},
_ => Err(format!("Bad index expression"))
}
},
ListLiteral(items) => Ok(List(items.into_iter().map(|item| self.eval_expr(item)).collect::<Result<Vec<_>,_>>()?)),
x => Err(format!("Unimplemented thing {:?}", x)),
}
}
fn eval_application(&mut self, f: Expression, arguments: Vec<FullyEvaluatedExpr>) -> EvalResult<FullyEvaluatedExpr> {
use self::ExpressionType::*;
match f {
Expression(Value(ref identifier), _) if self.is_builtin(identifier) => self.eval_builtin(identifier, arguments),
Expression(Value(identifier), _) => {
match self.lookup(&identifier) {
Some(&ValueEntry::Function { ref body, ref param_names }) => {
if arguments.len() != param_names.len() {
return Err(format!("Wrong number of arguments for the function"));
}
let mut new_state = State::new_with_parent(self);
let sub_ast = body.clone();
for (param, val) in param_names.iter().zip(arguments.into_iter()) {
new_state.insert(param.clone(), ValueEntry::Binding { val });
}
let mut ret: Option<FullyEvaluatedExpr> = None;
for statement in sub_ast.into_iter() {
ret = new_state.eval_statement(statement)?;
}
Ok(ret.unwrap_or(FullyEvaluatedExpr::Custom { string_rep: Rc::new("()".to_string()) }))
},
_ => Err(format!("Function {} not found", identifier)),
}
},
x => Err(format!("Trying to apply {:?} which is not a function", x)),
}
}
fn is_builtin(&self, name: &Rc<String>) -> bool {
match &name.as_ref()[..] {
"print" | "println" => true,
_ => false
}
}
fn eval_builtin(&mut self, name: &Rc<String>, args: Vec<FullyEvaluatedExpr>) -> EvalResult<FullyEvaluatedExpr> {
use self::FullyEvaluatedExpr::*;
match &name.as_ref()[..] {
"print" => {
for arg in args {
print!("{}", arg.to_string());
}
Ok(Tuple(vec![]))
},
"println" => {
for arg in args {
println!("{}", arg.to_string());
}
Ok(Tuple(vec![]))
},
_ => unreachable!()
}
}
fn eval_value(&mut self, name: Rc<String>) -> EvalResult<FullyEvaluatedExpr> {
use self::ValueEntry::*;
match self.lookup(&name) {
None => return Err(format!("Value {} not found", *name)),
Some(lookup) => match lookup {
&Binding { ref val } => Ok(val.clone()),
&Function { .. } => Ok(FullyEvaluatedExpr::FuncLit(name.clone()))
}
}
}
fn eval_binexp(&mut self, op: BinOp, lhs: Box<Expression>, rhs: Box<Expression>) -> EvalResult<FullyEvaluatedExpr> {
use self::FullyEvaluatedExpr::*;
let evaled_lhs = self.eval_expr(*lhs)?;
let evaled_rhs = self.eval_expr(*rhs)?;
let sigil = op.sigil();
//let sigil: &str = op.sigil().as_ref().as_str();
Ok(match (sigil.as_str(), evaled_lhs, evaled_rhs) {
("+", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l + r),
("++", Str(s1), Str(s2)) => Str(format!("{}{}", s1, s2)),
("-", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l - r),
("*", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l * r),
("/", UnsignedInt(l), UnsignedInt(r)) => Float((l as f64)/ (r as f64)),
("//", UnsignedInt(l), UnsignedInt(r)) => if r == 0 {
return Err(format!("Runtime error: divide by zero"));
} else {
UnsignedInt(l / r)
},
("%", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l % r),
("^", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l ^ r),
("&", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l & r),
("|", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l | r),
_ => return Err(format!("Runtime error: not yet implemented")),
})
}
fn eval_prefix_exp(&mut self, op: PrefixOp, expr: Box<Expression>) -> EvalResult<FullyEvaluatedExpr> {
use self::FullyEvaluatedExpr::*;
let evaled_expr = self.eval_expr(*expr)?;
let sigil = op.sigil();
Ok(match (sigil.as_str(), evaled_expr) {
("!", Bool(true)) => Bool(false),
("!", Bool(false)) => Bool(true),
("-", UnsignedInt(n)) => SignedInt(-1*(n as i64)),
("-", SignedInt(n)) => SignedInt(-1*(n as i64)),
("+", SignedInt(n)) => SignedInt(n),
("+", UnsignedInt(n)) => UnsignedInt(n),
_ => return Err(format!("Runtime error: not yet implemented")),
})
}
}

View File

@@ -1,127 +0,0 @@
#![feature(slice_patterns, box_patterns, box_syntax)]
#![feature(proc_macro)]
extern crate itertools;
#[macro_use]
extern crate lazy_static;
#[macro_use]
extern crate maplit;
extern crate schala_repl;
extern crate schala_codegen;
use std::collections::HashMap;
use itertools::Itertools;
use schala_repl::{ProgrammingLanguageInterface, EvalOptions, TraceArtifact, UnfinishedComputation, FinishedComputation};
macro_rules! bx {
($e:expr) => { Box::new($e) }
}
mod builtin;
mod tokenizing;
mod parsing;
mod typechecking;
mod eval;
use self::typechecking::{TypeContext};
/* TODO eventually custom-derive ProgrammingLanguageInterface with compiler passes as options */
pub struct Schala {
state: eval::State<'static>,
type_context: TypeContext
}
impl Schala {
pub fn new() -> Schala {
Schala {
state: eval::State::new(),
type_context: TypeContext::new(),
}
}
}
impl ProgrammingLanguageInterface for Schala {
schala_codegen::compiler_pass_sequence!(["tokenize", "parse", "yolo"]);
fn get_language_name(&self) -> String {
"Schala".to_string()
}
fn get_source_file_suffix(&self) -> String {
format!("schala")
}
fn execute(&mut self, input: &str, options: &EvalOptions) -> FinishedComputation {
let mut evaluation = UnfinishedComputation::default();
//tokenzing
let tokens = tokenizing::tokenize(input);
if options.debug.tokens {
let token_string = tokens.iter().map(|t| format!("{:?}<L:{},C:{}>", t.token_type, t.offset.0, t.offset.1)).join(", ");
evaluation.add_artifact(TraceArtifact::new("tokens", token_string));
}
{
let token_errors: Vec<&String> = tokens.iter().filter_map(|t| t.get_error()).collect();
if token_errors.len() != 0 {
return evaluation.output(Err(format!("Tokenization error: {:?}\n", token_errors)));
}
}
// parsing
let ast = match parsing::parse(tokens) {
(Ok(ast), trace) => {
if options.debug.parse_tree {
evaluation.add_artifact(TraceArtifact::new_parse_trace(trace));
}
if options.debug.ast {
evaluation.add_artifact(TraceArtifact::new("ast", format!("{:#?}", ast)));
}
ast
},
(Err(err), trace) => {
if options.debug.parse_tree {
evaluation.add_artifact(TraceArtifact::new_parse_trace(trace));
}
return evaluation.output(Err(format!("Parse error: {:?}\n", err.msg)));
}
};
//symbol table
match self.type_context.add_top_level_types(&ast) {
Ok(()) => (),
Err(msg) => {
if options.debug.type_checking {
evaluation.add_artifact(TraceArtifact::new("type_check", msg));
}
}
};
//typechecking
match self.type_context.type_check_ast(&ast) {
Ok(ty) => {
if options.debug.type_checking {
evaluation.add_artifact(TraceArtifact::new("type_check", format!("{:?}", ty)));
}
},
Err(msg) => evaluation.add_artifact(TraceArtifact::new("type_check", msg)),
};
let text = self.type_context.debug_symbol_table();
if options.debug.symbol_table {
evaluation.add_artifact(TraceArtifact::new("symbol_table", text));
}
let evaluation_outputs = self.state.evaluate(ast);
let text_output: Result<Vec<String>, String> = evaluation_outputs
.into_iter()
.collect();
let eval_output = text_output
.map(|v| { v.into_iter().intersperse(format!("\n")).collect() });
evaluation.output(eval_output)
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,254 +0,0 @@
use std::rc::Rc;
use std::collections::HashMap;
use std::char;
use std::fmt;
use std::fmt::Write;
use itertools::Itertools;
use parsing;
pub struct TypeContext {
type_var_count: u64,
bindings: HashMap<Rc<String>, Type>,
}
#[derive(Debug, PartialEq, Clone)]
pub enum Type {
Const(TConst),
Sum(Vec<Type>),
Func(Box<Type>, Box<Type>),
UVar(String),
EVar(u64),
Void
}
impl fmt::Display for Type {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use self::Type::*;
match self {
&Const(ref c) => write!(f, "{:?}", c),
&Sum(ref types) => {
write!(f, "(")?;
for item in types.iter().map(|ty| Some(ty)).intersperse(None) {
match item {
Some(ty) => write!(f, "{}", ty)?,
None => write!(f, ",")?,
};
}
write!(f, ")")
},
&Func(ref a, ref b) => write!(f, "{} -> {}", a, b),
&UVar(ref s) => write!(f, "{}_u", s),
&EVar(ref n) => write!(f, "{}_e", n),
&Void => write!(f, "Void")
}
}
}
#[derive(Default)]
struct UVarGenerator {
n: u32,
}
impl UVarGenerator {
fn new() -> UVarGenerator {
UVarGenerator::default()
}
fn next(&mut self) -> Type {
//TODO handle this in the case where someone wants to make a function with more than 26 variables
let s = format!("{}", unsafe { char::from_u32_unchecked(self.n + ('a' as u32)) });
self.n += 1;
Type::UVar(s)
}
}
#[derive(Debug, PartialEq, Clone)]
pub enum TConst {
Unit,
Int,
Float,
StringT,
Bool,
Custom(String),
}
impl parsing::TypeName {
fn to_type(&self) -> TypeResult<Type> {
use self::parsing::TypeSingletonName;
use self::parsing::TypeName::*;
use self::Type::*; use self::TConst::*;
Ok(match self {
&Tuple(_) => return Err(format!("Tuples not yet implemented")),
&Singleton(ref name) => match name {
&TypeSingletonName { ref name, .. } => match &name[..] {
"Int" => Const(Int),
"Float" => Const(Float),
"Bool" => Const(Bool),
"String" => Const(StringT),
n => Const(Custom(n.to_string()))
}
}
})
}
}
pub type TypeResult<T> = Result<T, String>;
impl TypeContext {
pub fn new() -> TypeContext {
TypeContext { bindings: HashMap::new(), type_var_count: 0 }
}
pub fn fresh(&mut self) -> Type {
let ret = self.type_var_count;
self.type_var_count += 1;
Type::EVar(ret)
}
}
impl TypeContext {
pub fn add_top_level_types(&mut self, ast: &parsing::AST) -> TypeResult<()> {
use self::parsing::TypeName;
use self::parsing::Declaration::*;
use self::Type::*;
for statement in ast.0.iter() {
if let &self::parsing::Statement::Declaration(ref decl) = statement {
match decl {
&FuncSig(ref signature) | &FuncDecl(ref signature, _) => {
let mut uvar_gen = UVarGenerator::new();
let mut ty: Type = signature.type_anno.as_ref().map(|name: &TypeName| name.to_type()).unwrap_or_else(|| {Ok(uvar_gen.next())} )?;
for &(_, ref type_name) in signature.params.iter().rev() {
let arg_type = type_name.as_ref().map(|name| name.to_type()).unwrap_or_else(|| {Ok(uvar_gen.next())} )?;
ty = Func(bx!(arg_type), bx!(ty));
}
self.bindings.insert(signature.name.clone(), ty);
},
_ => ()
}
}
}
Ok(())
}
pub fn debug_symbol_table(&self) -> String {
let mut output = format!("Symbols\n");
for (sym, ty) in &self.bindings {
write!(output, "{} : {}\n", sym, ty).unwrap();
}
output
}
}
impl TypeContext {
pub fn type_check_ast(&mut self, ast: &parsing::AST) -> TypeResult<Type> {
use self::Type::*; use self::TConst::*;
let mut ret_type = Const(Unit);
for statement in ast.0.iter() {
ret_type = self.type_check_statement(statement)?;
}
Ok(ret_type)
}
fn type_check_statement(&mut self, statement: &parsing::Statement) -> TypeResult<Type> {
use self::parsing::Statement::*;
match statement {
&ExpressionStatement(ref expr) => self.infer(expr),
&Declaration(ref decl) => self.add_declaration(decl),
}
}
fn add_declaration(&mut self, decl: &parsing::Declaration) -> TypeResult<Type> {
use self::parsing::Declaration::*;
use self::Type::*;
match decl {
&Binding { ref name, ref expr, .. } => {
let ty = self.infer(expr)?;
self.bindings.insert(name.clone(), ty);
},
_ => return Err(format!("other formats not done"))
}
Ok(Void)
}
fn infer(&mut self, expr: &parsing::Expression) -> TypeResult<Type> {
use self::parsing::Expression;
match expr {
&Expression(ref e, Some(ref anno)) => {
let anno_ty = anno.to_type()?;
let ty = self.infer_exprtype(&e)?;
self.unify(ty, anno_ty)
},
&Expression(ref e, None) => self.infer_exprtype(e)
}
}
fn infer_exprtype(&mut self, expr: &parsing::ExpressionType) -> TypeResult<Type> {
use self::parsing::ExpressionType::*;
use self::Type::*; use self::TConst::*;
match expr {
&IntLiteral(_) => Ok(Const(Int)),
&FloatLiteral(_) => Ok(Const(Float)),
&StringLiteral(_) => Ok(Const(StringT)),
&BoolLiteral(_) => Ok(Const(Bool)),
&BinExp(ref op, ref lhs, ref rhs) => { /* remember there are both the haskell convention talk and the write you a haskell ways to do this! */
match op.get_type()? {
Func(box t1, box Func(box t2, box t3)) => {
let lhs_ty = self.infer(lhs)?;
let rhs_ty = self.infer(rhs)?;
self.unify(t1, lhs_ty)?;
self.unify(t2, rhs_ty)?;
Ok(t3)
},
other => Err(format!("{:?} is not a binary function type", other))
}
},
&PrefixExp(ref op, ref expr) => match op.get_type()? {
Func(box t1, box t2) => {
let expr_ty = self.infer(expr)?;
self.unify(t1, expr_ty)?;
Ok(t2)
},
other => Err(format!("{:?} is not a prefix op function type", other))
},
&Value(ref name) => {
match self.bindings.get(name) {
Some(ty) => Ok(ty.clone()),
None => Err(format!("No binding found for variable: {}", name)),
}
},
&Call { ref f, ref arguments } => {
let mut tf = self.infer(f)?;
for arg in arguments.iter() {
match tf {
Func(box t, box rest) => {
let t_arg = self.infer(arg)?;
self.unify(t, t_arg)?;
tf = rest;
},
other => return Err(format!("Function call failed to unify; last type: {:?}", other)),
}
}
Ok(tf)
},
&TupleLiteral(ref expressions) => {
let mut types = vec![];
for expr in expressions {
types.push(self.infer(expr)?);
}
Ok(Sum(types))
},
/*
Index {
indexee: Box<Expression>,
indexers: Vec<Expression>,
},
IfExpression(Box<Expression>, Vec<Statement>, Option<Vec<Statement>>),
MatchExpression(Box<Expression>, Vec<MatchArm>),
ForExpression
*/
_ => Err(format!("Type not yet implemented"))
}
}
fn unify(&mut self, t1: Type, t2: Type) -> TypeResult<Type> {
use self::Type::*;// use self::TConst::*;
match (t1, t2) {
(Const(ref a), Const(ref b)) if a == b => Ok(Const(a.clone())),
(a, b) => Err(format!("Types {:?} and {:?} don't unify", a, b))
}
}
}

View File

@@ -0,0 +1,13 @@
[package]
name = "schala-repl-codegen"
version = "0.1.0"
authors = ["greg <greg.shuflin@protonmail.com>"]
[dependencies]
syn = { version = "0.15.6", features = ["full", "extra-traits"] }
quote = "0.6.8"
proc-macro2 = "0.4.19"
schala-repl = { path = "../schala-repl" }
[lib]
proc-macro = true

View File

@@ -0,0 +1,199 @@
#![feature(trace_macros)]
#![recursion_limit="128"]
extern crate proc_macro;
extern crate proc_macro2;
#[macro_use]
extern crate quote;
extern crate syn;
use proc_macro::TokenStream;
use syn::{Ident, Attribute, DeriveInput};
fn find_attr_by_name<'a>(name: &str, attrs: &'a Vec<Attribute>) -> Option<&'a Attribute> {
attrs.iter().find(|attr| {
let first = attr.path.segments.first();
let seg: Option<&&syn::PathSegment> = first.as_ref().map(|x| x.value());
seg.map(|seg| seg.ident.to_string() == name).unwrap_or(false)
})
}
fn extract_attribute_arg_by_name(name: &str, attrs: &Vec<Attribute>) -> Option<String> {
use syn::{Meta, Lit, MetaNameValue};
find_attr_by_name(name, attrs)
.and_then(|attr| {
match attr.interpret_meta() {
Some(Meta::NameValue(MetaNameValue { lit: Lit::Str(litstr), .. })) => Some(litstr.value()),
_ => None,
}
})
}
fn extract_attribute_list(name: &str, attrs: &Vec<Attribute>) -> Option<Vec<(Ident, Option<Vec<Ident>>)>> {
use syn::{Meta, MetaList, NestedMeta};
find_attr_by_name(name, attrs)
.and_then(|attr| {
match attr.interpret_meta() {
Some(Meta::List(MetaList { nested, .. })) => {
Some(nested.iter().map(|nested_meta| match nested_meta {
&NestedMeta::Meta(Meta::Word(ref ident)) => (ident.clone(), None),
&NestedMeta::Meta(Meta::List(MetaList { ref ident, nested: ref nested2, .. })) => {
let own_args = nested2.iter().map(|nested_meta2| match nested_meta2 {
&NestedMeta::Meta(Meta::Word(ref ident)) => ident.clone(),
_ => panic!("Bad format for doubly-nested attribute list")
}).collect();
(ident.clone(), Some(own_args))
},
_ => panic!("Bad format for nested list")
}).collect())
},
_ => panic!("{} must be a comma-delimited list surrounded by parens", name)
}
})
}
fn get_attribute_identifier(attr_name: &str, attrs: &Vec<Attribute>) -> Option<proc_macro2::Ident> {
find_attr_by_name(attr_name, attrs).and_then(|attr| {
let tts = attr.tts.clone().into_iter().collect::<Vec<_>>();
if tts.len() == 2 {
let ref after_equals: proc_macro2::TokenTree = tts[1];
match after_equals {
proc_macro2::TokenTree::Ident(ident) => Some(ident.clone()),
_ => None
}
} else {
None
}
})
}
/* a pass_chain function signature with input A and output B looks like:
* fn(A, &mut ProgrammingLanguageInterface, Option<&mut DebugHandler>) -> Result<B, String>
*
* TODO use some kind of failure-handling library to make this better
*/
fn generate_pass_chain(idents: Vec<Ident>) -> proc_macro2::TokenStream {
let final_return = quote! {
{
let final_output: FinishedComputation = unfinished_computation.finish(Ok(input_to_next_stage));
final_output
}
};
let nested_passes = idents.iter()
.rev()
.fold(final_return, |later_fragment, pass_name| {
quote! {
{
let pass_name = stringify!(#pass_name);
let (output, duration) = {
let ref debug_map = eval_options.debug_passes;
let debug_handle = match debug_map.get(pass_name) {
Some(PassDebugOptionsDescriptor { opts }) => {
let ptr = &mut unfinished_computation;
ptr.cur_debug_options = opts.clone();
Some(ptr)
}
_ => None
};
let start = time::Instant::now();
let pass_output = #pass_name(input_to_next_stage, self, debug_handle);
let elapsed = start.elapsed();
(pass_output, elapsed)
};
if eval_options.debug_timing {
unfinished_computation.durations.push(duration);
}
match output {
Ok(input_to_next_stage) => #later_fragment,
//TODO this error type needs to be guaranteed to provide a useable string
Err(err) => return unfinished_computation.output(Err(format!("Pass {} failed:\n{}", pass_name, err))),
}
}
}
});
quote! {
{
use std::time;
use schala_repl::PassDebugOptionsDescriptor;
let eval_options = options;
let input_to_next_stage = input;
let mut unfinished_computation = UnfinishedComputation::default();
#nested_passes
}
}
}
#[proc_macro_derive(ProgrammingLanguageInterface,
attributes(LanguageName, SourceFileExtension, PipelineSteps, DocMethod, HandleCustomInterpreterDirectives))]
pub fn derive_programming_language_interface(input: TokenStream) -> TokenStream {
let ast: DeriveInput = syn::parse(input).unwrap();
let name = &ast.ident;
let attrs = &ast.attrs;
let language_name: String = extract_attribute_arg_by_name("LanguageName", attrs).expect("LanguageName is required");
let file_ext = extract_attribute_arg_by_name("SourceFileExtension", attrs).expect("SourceFileExtension is required");
let passes = extract_attribute_list("PipelineSteps", attrs).expect("PipelineSteps are required");
let pass_idents = passes.iter().map(|x| x.0.clone());
let get_doc_impl = match get_attribute_identifier("DocMethod", attrs) {
None => quote! { },
Some(method_name) => quote! {
fn get_doc(&self, commands: &Vec<&str>) -> Option<String> {
self.#method_name(commands)
}
}
};
let handle_custom_interpreter_directives_impl = match get_attribute_identifier("HandleCustomInterpreterDirectives", attrs) {
None => quote! { },
Some(method_name) => quote! {
fn handle_custom_interpreter_directives(&mut self, commands: &Vec<&str>) -> Option<String> {
//println!("If #method_name is &self not &mut self, this runs forever");
self.#method_name(commands)
}
}
};
let pass_descriptors = passes.iter().map(|pass| {
let name = pass.0.to_string();
let opts: Vec<String> = match &pass.1 {
None => vec![],
Some(opts) => opts.iter().map(|o| o.to_string()).collect(),
};
quote! {
PassDescriptor {
name: #name.to_string(),
debug_options: vec![#(format!(#opts)),*]
}
}
});
let pass_chain = generate_pass_chain(pass_idents.collect());
let tokens = quote! {
use schala_repl::PassDescriptor;
impl ProgrammingLanguageInterface for #name {
fn get_language_name(&self) -> String {
#language_name.to_string()
}
fn get_source_file_suffix(&self) -> String {
#file_ext.to_string()
}
fn execute_pipeline(&mut self, input: &str, options: &EvalOptions) -> FinishedComputation {
#pass_chain
}
fn get_passes(&self) -> Vec<PassDescriptor> {
vec![ #(#pass_descriptors),* ]
}
#get_doc_impl
#handle_custom_interpreter_directives_impl
}
};
let output: TokenStream = tokens.into();
output
}

View File

@@ -4,8 +4,8 @@ version = "0.1.0"
authors = ["greg <greg.shuflin@protonmail.com>"]
[dependencies]
llvm-sys = "*"
take_mut = "0.1.3"
llvm-sys = "70.0.2"
take_mut = "0.2.2"
itertools = "0.5.8"
getopts = "*"
lazy_static = "0.2.8"
@@ -14,12 +14,14 @@ colored = "1.5"
serde = "1.0.15"
serde_derive = "1.0.15"
serde_json = "1.0.3"
rocket = "0.3.5"
rocket_codegen = "0.3.5"
rocket_contrib = "0.3.5"
rocket = "0.4.0"
rocket_contrib = "0.4.0"
phf = "0.7.12"
includedir = "0.2.0"
rustyline = "1.0.0"
linefeed = "0.5.0"
regex = "0.2"
cursive = "0.10"
ncurses = "5.98.0"
[build-dependencies]
includedir_codegen = "0.2.0"

View File

@@ -1,14 +1,26 @@
use std::collections::HashMap;
use colored::*;
use std::fmt::Write;
pub struct LLVMCodeString(pub String);
use std::time;
#[derive(Debug, Default, Serialize, Deserialize)]
pub struct EvalOptions {
pub debug: DebugOptions,
pub execution_method: ExecutionMethod
pub execution_method: ExecutionMethod,
pub debug_passes: HashMap<String, PassDebugOptionsDescriptor>,
pub debug_timing: bool,
}
#[derive(Debug, Hash, PartialEq)]
pub struct PassDescriptor {
pub name: String,
pub debug_options: Vec<String>
}
#[derive(Debug, Serialize, Deserialize)]
pub struct PassDebugOptionsDescriptor {
pub opts: Vec<String>,
}
#[derive(Debug, Serialize, Deserialize)]
pub enum ExecutionMethod {
Compile,
@@ -20,87 +32,71 @@ impl Default for ExecutionMethod {
}
}
#[derive(Debug, Default, Serialize, Deserialize)]
pub struct DebugOptions {
pub tokens: bool,
pub parse_tree: bool,
pub ast: bool,
pub type_checking: bool,
pub symbol_table: bool,
pub evaluation: bool,
pub llvm_ir: bool,
}
#[derive(Debug, Default)]
pub struct LanguageOutput {
output: String,
artifacts: Vec<TraceArtifact>,
pub failed: bool,
}
impl LanguageOutput {
pub fn add_artifact(&mut self, artifact: TraceArtifact) {
self.artifacts.push(artifact);
}
pub fn add_output(&mut self, output: String) {
self.output = output;
}
pub fn to_string(&self) -> String {
let mut acc = String::new();
for line in self.artifacts.iter() {
acc.push_str(&line.debug_output.color(line.text_color).to_string());
acc.push_str(&"\n");
}
acc.push_str(&self.output);
acc
}
pub fn print_to_screen(&self) {
for line in self.artifacts.iter() {
let color = line.text_color;
let stage = line.stage_name.color(color).to_string();
let output = line.debug_output.color(color).to_string();
println!("{}: {}", stage, output);
}
println!("{}", self.output);
}
}
#[derive(Debug, Default)]
pub struct UnfinishedComputation {
artifacts: HashMap<String, TraceArtifact>,
artifacts: Vec<(String, TraceArtifact)>,
pub durations: Vec<time::Duration>,
pub cur_debug_options: Vec<String>,
}
#[derive(Debug)]
pub struct FinishedComputation {
artifacts: HashMap<String, TraceArtifact>,
artifacts: Vec<(String, TraceArtifact)>,
durations: Vec<time::Duration>,
text_output: Result<String, String>,
}
impl UnfinishedComputation {
pub fn add_artifact(&mut self, artifact: TraceArtifact) {
self.artifacts.insert(artifact.stage_name.clone(), artifact);
self.artifacts.push((artifact.stage_name.clone(), artifact));
}
pub fn finish(self, text_output: Result<String, String>) -> FinishedComputation {
FinishedComputation {
artifacts: self.artifacts,
text_output,
durations: self.durations,
}
}
pub fn output(self, output: Result<String, String>) -> FinishedComputation {
FinishedComputation {
artifacts: self.artifacts,
text_output: output
text_output: output,
durations: self.durations,
}
}
}
impl FinishedComputation {
fn get_timing(&self) -> Option<String> {
if self.durations.len() != 0 {
let mut buf = String::new();
write!(&mut buf, "Timing: ").unwrap();
for duration in self.durations.iter() {
let timing = (duration.as_secs() as f64) + (duration.subsec_nanos() as f64 * 1e-9);
write!(&mut buf, "{}s, ", timing).unwrap()
}
write!(&mut buf, "\n").unwrap();
Some(buf)
} else {
None
}
}
pub fn to_repl(&self) -> String {
let mut buf = String::new();
for stage in ["tokens", "parse_trace", "ast", "symbol_table", "type_check"].iter() {
if let Some(artifact) = self.artifacts.get(&stage.to_string()) {
let color = artifact.text_color;
let stage = stage.color(color).bold();
let output = artifact.debug_output.color(color);
write!(&mut buf, "{}: {}\n", stage, output).unwrap();
}
for (stage, artifact) in self.artifacts.iter() {
let color = artifact.text_color;
let stage = stage.color(color).bold();
let output = artifact.debug_output.color(color);
write!(&mut buf, "{}: {}\n", stage, output).unwrap();
}
match self.get_timing() {
Some(timing) => write!(&mut buf, "{}", timing).unwrap(),
None => ()
}
match self.text_output {
Ok(ref output) => write!(&mut buf, "{}", output).unwrap(),
Err(ref err) => write!(&mut buf, "{} {}", "Error: ".red().bold(), err).unwrap(),
@@ -111,13 +107,11 @@ impl FinishedComputation {
match self.text_output {
Ok(_) => {
let mut buf = String::new();
for stage in ["tokens", "parse_trace", "ast", "symbol_table", "type_check"].iter() {
if let Some(artifact) = self.artifacts.get(&stage.to_string()) {
let color = artifact.text_color;
let stage = stage.color(color).bold();
let output = artifact.debug_output.color(color);
write!(&mut buf, "{}: {}\n", stage, output).unwrap();
}
for (stage, artifact) in self.artifacts.iter() {
let color = artifact.text_color;
let stage = stage.color(color).bold();
let output = artifact.debug_output.color(color);
write!(&mut buf, "{}: {}\n", stage, output).unwrap();
}
if buf == "" { None } else { Some(buf) }
},
@@ -137,6 +131,7 @@ impl TraceArtifact {
pub fn new(stage: &str, debug: String) -> TraceArtifact {
let color = match stage {
"parse_trace" | "ast" => "red",
"ast_reducing" => "red",
"tokens" => "green",
"type_check" => "magenta",
_ => "blue",
@@ -157,25 +152,22 @@ impl TraceArtifact {
}
pub trait ProgrammingLanguageInterface {
/* old */
fn evaluate_in_repl(&mut self, _: &str, _: &EvalOptions) -> LanguageOutput {
LanguageOutput { output: format!("Defunct"), artifacts: vec![], failed: false }
}
/* old */
fn new_execute(&mut self, input: &str, _options: &EvalOptions) -> FinishedComputation {
FinishedComputation { artifacts: HashMap::new(), text_output: Err(format!("NOT DONE")) }
fn execute_pipeline(&mut self, _input: &str, _eval_options: &EvalOptions) -> FinishedComputation {
FinishedComputation { artifacts: vec![], text_output: Err(format!("Execution pipeline not done")), durations: vec![] }
}
fn execute(&mut self, _input: &str, _eval_options: &EvalOptions) -> FinishedComputation {
FinishedComputation { artifacts: HashMap::new(), text_output: Err(format!("REPL evaluation not implemented")) }
}
fn get_language_name(&self) -> String;
fn get_source_file_suffix(&self) -> String;
fn handle_custom_interpreter_directives(&mut self, commands: &Vec<&str>) -> Option<String> {
fn get_passes(&self) -> Vec<PassDescriptor> {
vec![]
}
fn handle_custom_interpreter_directives(&mut self, _commands: &Vec<&str>) -> Option<String> {
None
}
fn custom_interpreter_directives_help(&self) -> String {
format!(">> No custom interpreter directives specified <<")
}
fn get_doc(&self, _commands: &Vec<&str>) -> Option<String> {
None
}
}

View File

@@ -1,15 +1,17 @@
#![feature(link_args)]
#![feature(slice_patterns, box_patterns, box_syntax)]
#![feature(slice_patterns, box_patterns, box_syntax, proc_macro_hygiene, decl_macro)]
#![feature(plugin)]
#![plugin(rocket_codegen)]
extern crate getopts;
extern crate rustyline;
extern crate linefeed;
extern crate itertools;
extern crate colored;
extern crate ncurses;
extern crate cursive;
#[macro_use]
extern crate serde_derive;
extern crate serde_json;
#[macro_use]
extern crate rocket;
extern crate rocket_contrib;
extern crate includedir;
@@ -17,24 +19,22 @@ extern crate phf;
use std::path::Path;
use std::fs::File;
use std::io::{Read, Write};
use std::io::Read;
use std::process::exit;
use std::default::Default;
use std::fmt::Write as FmtWrite;
use rustyline::error::ReadlineError;
use rustyline::Editor;
use self::colored::*;
mod new_repl;
mod repl;
mod language;
mod webapp;
pub mod llvm_wrap;
const VERSION_STRING: &'static str = "0.1.0";
include!(concat!(env!("OUT_DIR"), "/static.rs"));
pub use language::{LLVMCodeString, ProgrammingLanguageInterface, EvalOptions, ExecutionMethod, TraceArtifact, LanguageOutput, FinishedComputation, UnfinishedComputation};
pub use language::{ProgrammingLanguageInterface, EvalOptions,
ExecutionMethod, TraceArtifact, FinishedComputation, UnfinishedComputation, PassDebugOptionsDescriptor, PassDescriptor};
pub type PLIGenerator = Box<Fn() -> Box<ProgrammingLanguageInterface> + Send + Sync>;
pub fn repl_main(generators: Vec<PLIGenerator>) {
@@ -63,12 +63,12 @@ pub fn repl_main(generators: Vec<PLIGenerator>) {
}
let mut options = EvalOptions::default();
if let Some(ref ltrs) = option_matches.opt_str("debug") {
options.debug.tokens = ltrs.contains("l");
options.debug.ast = ltrs.contains("a");
options.debug.parse_tree = ltrs.contains("r");
options.debug.symbol_table = ltrs.contains("s");
}
let debug_passes = if let Some(opts) = option_matches.opt_str("debug") {
let output: Vec<String> = opts.split_terminator(",").map(|s| s.to_string()).collect();
output
} else {
vec![]
};
let language_names: Vec<String> = languages.iter().map(|lang| {lang.get_language_name()}).collect();
let initial_index: usize =
@@ -83,17 +83,20 @@ pub fn repl_main(generators: Vec<PLIGenerator>) {
match option_matches.free[..] {
[] | [_] => {
let mut repl = Repl::new(languages, initial_index);
/*
let mut repl = repl::Repl::new(languages, initial_index);
repl.run();
*/
new_repl::run();
}
[_, ref filename, _..] => {
run_noninteractive(filename, languages, options);
run_noninteractive(filename, languages, options, debug_passes);
}
};
}
fn run_noninteractive(filename: &str, languages: Vec<Box<ProgrammingLanguageInterface>>, options: EvalOptions) {
fn run_noninteractive(filename: &str, languages: Vec<Box<ProgrammingLanguageInterface>>, mut options: EvalOptions, debug_passes: Vec<String>) {
let path = Path::new(filename);
let ext = path.extension().and_then(|e| e.to_str()).unwrap_or_else(|| {
println!("Source file lacks extension");
@@ -110,6 +113,12 @@ fn run_noninteractive(filename: &str, languages: Vec<Box<ProgrammingLanguageInte
source_file.read_to_string(&mut buffer).unwrap();
for pass in debug_passes.into_iter() {
if let Some(_) = language.get_passes().iter().find(|desc| desc.name == pass) {
options.debug_passes.insert(pass, PassDebugOptionsDescriptor { opts: vec![] });
}
}
match options.execution_method {
ExecutionMethod::Compile => {
/*
@@ -119,250 +128,12 @@ fn run_noninteractive(filename: &str, languages: Vec<Box<ProgrammingLanguageInte
panic!("Not ready to go yet");
},
ExecutionMethod::Interpret => {
let output = language.execute(&buffer, &options);
let output = language.execute_pipeline(&buffer, &options);
output.to_noninteractive().map(|text| println!("{}", text));
}
}
}
struct Repl {
options: EvalOptions,
languages: Vec<Box<ProgrammingLanguageInterface>>,
current_language_index: usize,
interpreter_directive_sigil: char,
console: rustyline::Editor<()>,
}
impl Repl {
fn new(languages: Vec<Box<ProgrammingLanguageInterface>>, initial_index: usize) -> Repl {
let i = if initial_index < languages.len() { initial_index } else { 0 };
let console = Editor::<()>::new();
Repl {
options: Repl::get_options(),
languages: languages,
current_language_index: i,
interpreter_directive_sigil: ':',
console
}
}
fn get_options() -> EvalOptions {
File::open(".schala_repl")
.and_then(|mut file| {
let mut contents = String::new();
file.read_to_string(&mut contents)?;
Ok(contents)
})
.and_then(|contents| {
let options: EvalOptions = serde_json::from_str(&contents)?;
Ok(options)
}).unwrap_or(EvalOptions::default())
}
fn save_options(&self) {
let ref options = self.options;
let read = File::create(".schala_repl")
.and_then(|mut file| {
let buf = serde_json::to_string(options).unwrap();
file.write_all(buf.as_bytes())
});
if let Err(err) = read {
println!("Error saving .schala_repl file {}", err);
}
}
fn run(&mut self) {
println!("Schala MetaInterpreter version {}", VERSION_STRING);
println!("Type {}help for help with the REPL", self.interpreter_directive_sigil);
self.console.get_history().load(".schala_history").unwrap_or(());
loop {
let language_name = self.languages[self.current_language_index].get_language_name();
let prompt_str = format!("{} >> ", language_name);
match self.console.readline(&prompt_str) {
Err(ReadlineError::Eof) | Err(ReadlineError::Interrupted) => break,
Err(e) => {
println!("Terminal read error: {}", e);
},
Ok(ref input) => {
let output = match input.chars().nth(0) {
Some(ch) if ch == self.interpreter_directive_sigil => self.handle_interpreter_directive(input),
_ => {
self.console.get_history().add(input);
Some(self.input_handler(input))
}
};
if let Some(o) = output {
println!("=> {}", o);
}
}
}
}
self.console.get_history().save(".schala_history").unwrap_or(());
self.save_options();
println!("Exiting...");
}
fn input_handler(&mut self, input: &str) -> String {
let ref mut language = self.languages[self.current_language_index];
let interpreter_output = language.new_execute(input, &self.options);
interpreter_output.to_repl()
}
fn handle_interpreter_directive(&mut self, input: &str) -> Option<String> {
let mut iter = input.chars();
iter.next();
let commands: Vec<&str> = iter
.as_str()
.split_whitespace()
.collect();
let cmd: &str = match commands.get(0).clone() {
None => return None,
Some(s) => s
};
match cmd {
"exit" | "quit" => {
self.save_options();
exit(0)
},
"lang" | "language" => match commands.get(1) {
Some(&"show") => {
let mut buf = String::new();
for (i, lang) in self.languages.iter().enumerate() {
write!(buf, "{}{}\n", if i == self.current_language_index { "* "} else { "" }, lang.get_language_name()).unwrap();
}
Some(buf)
},
Some(&"go") => match commands.get(2) {
None => Some(format!("Must specify a language name")),
Some(&desired_name) => {
for (i, _) in self.languages.iter().enumerate() {
let lang_name = self.languages[i].get_language_name();
if lang_name.to_lowercase() == desired_name.to_lowercase() {
self.current_language_index = i;
return Some(format!("Switching to {}", self.languages[self.current_language_index].get_language_name()));
}
}
Some(format!("Language {} not found", desired_name))
}
},
Some(&"next") | Some(&"n") => {
self.current_language_index = (self.current_language_index + 1) % self.languages.len();
Some(format!("Switching to {}", self.languages[self.current_language_index].get_language_name()))
},
Some(&"previous") | Some(&"p") | Some(&"prev") => {
self.current_language_index = if self.current_language_index == 0 { self.languages.len() - 1 } else { self.current_language_index - 1 };
Some(format!("Switching to {}", self.languages[self.current_language_index].get_language_name()))
},
Some(e) => Some(format!("Bad `lang(uage)` argument: {}", e)),
None => Some(format!("Valid arguments for `lang(uage)` are `show`, `next`|`n`, `previous`|`prev`|`n`"))
},
"help" => {
let mut buf = String::new();
let ref lang = self.languages[self.current_language_index];
writeln!(buf, "MetaInterpreter options").unwrap();
writeln!(buf, "-----------------------").unwrap();
writeln!(buf, "exit | quit - exit the REPL").unwrap();
writeln!(buf, "lang [prev|next|go <name> |show] - toggle to previous or next language, go to a specific language by name, or show all languages").unwrap();
writeln!(buf, "Language-specific help for {}", lang.get_language_name()).unwrap();
writeln!(buf, "-----------------------").unwrap();
writeln!(buf, "{}", lang.custom_interpreter_directives_help()).unwrap();
Some(buf)
},
"set" => {
let show = match commands.get(1) {
Some(&"show") => true,
Some(&"hide") => false,
Some(e) => {
return Some(format!("Bad `set` argument: {}", e));
}
None => {
return Some(format!("`set` - valid arguments `show {{option}}`, `hide {{option}}`"));
}
};
match commands.get(2) {
Some(&"tokens") => self.options.debug.tokens = show,
Some(&"parse") => self.options.debug.parse_tree = show,
Some(&"ast") => self.options.debug.ast = show,
Some(&"symbols") => self.options.debug.symbol_table = show,
Some(&"llvm") => self.options.debug.llvm_ir = show,
Some(e) => return Some(format!("Bad `show`/`hide` argument: {}", e)),
None => return Some(format!("`show`/`hide` requires an argument")),
};
None
},
"options" => {
let ref d = self.options.debug;
let tokens = if d.tokens { "true".green() } else { "false".red() };
let parse_tree = if d.parse_tree { "true".green() } else { "false".red() };
let ast = if d.ast { "true".green() } else { "false".red() };
let symbol_table = if d.symbol_table { "true".green() } else { "false".red() };
Some(format!(r#"Debug:
tokens: {}, parse: {}, ast: {}, symbols: {}"#, tokens, parse_tree, ast, symbol_table))
},
e => self.languages[self.current_language_index]
.handle_custom_interpreter_directives(&commands)
.or(Some(format!("Unknown command: {}", e)))
}
}
}
/*
pub fn compilation_sequence(llvm_code: LLVMCodeString, sourcefile: &str) {
use std::process::Command;
let ll_filename = "out.ll";
let obj_filename = "out.o";
let q: Vec<&str> = sourcefile.split('.').collect();
let bin_filename = match &q[..] {
&[name, "maaru"] => name,
_ => panic!("Bad filename {}", sourcefile),
};
let LLVMCodeString(llvm_str) = llvm_code;
println!("Compilation process finished for {}", ll_filename);
File::create(ll_filename)
.and_then(|mut f| f.write_all(llvm_str.as_bytes()))
.expect("Error writing file");
let llc_output = Command::new("llc")
.args(&["-filetype=obj", ll_filename, "-o", obj_filename])
.output()
.expect("Failed to run llc");
if !llc_output.status.success() {
println!("{}", String::from_utf8_lossy(&llc_output.stderr));
}
let gcc_output = Command::new("gcc")
.args(&["-o", bin_filename, &obj_filename])
.output()
.expect("failed to run gcc");
if !gcc_output.status.success() {
println!("{}", String::from_utf8_lossy(&gcc_output.stdout));
println!("{}", String::from_utf8_lossy(&gcc_output.stderr));
}
for filename in [obj_filename].iter() {
Command::new("rm")
.arg(filename)
.output()
.expect(&format!("failed to run rm {}", filename));
}
}
*/
fn program_options() -> getopts::Options {
let mut options = getopts::Options::new();
options.optopt("s",

View File

@@ -1,279 +0,0 @@
#![allow(non_snake_case)]
#![allow(dead_code)]
extern crate llvm_sys;
use self::llvm_sys::{LLVMIntPredicate, LLVMRealPredicate};
use self::llvm_sys::prelude::*;
use self::llvm_sys::core;
use std::ptr;
use std::ffi::{CString, CStr};
use std::os::raw::c_char;
pub fn create_context() -> LLVMContextRef {
unsafe { core::LLVMContextCreate() }
}
pub fn module_create_with_name(name: &str) -> LLVMModuleRef {
unsafe {
let n = name.as_ptr() as *const _;
core::LLVMModuleCreateWithName(n)
}
}
pub fn CreateBuilderInContext(context: LLVMContextRef) -> LLVMBuilderRef {
unsafe { core::LLVMCreateBuilderInContext(context) }
}
pub fn AppendBasicBlockInContext(context: LLVMContextRef,
function: LLVMValueRef,
name: &str)
-> LLVMBasicBlockRef {
let c_name = CString::new(name).unwrap();
unsafe { core::LLVMAppendBasicBlockInContext(context, function, c_name.as_ptr()) }
}
pub fn AddFunction(module: LLVMModuleRef, name: &str, function_type: LLVMTypeRef) -> LLVMValueRef {
let c_name = CString::new(name).unwrap();
unsafe { core::LLVMAddFunction(module, c_name.as_ptr(), function_type) }
}
pub fn FunctionType(return_type: LLVMTypeRef,
mut param_types: Vec<LLVMTypeRef>,
is_var_rag: bool)
-> LLVMTypeRef {
let len = param_types.len();
unsafe {
let pointer = param_types.as_mut_ptr();
core::LLVMFunctionType(return_type,
pointer,
len as u32,
if is_var_rag { 1 } else { 0 })
}
}
pub fn GetNamedFunction(module: LLVMModuleRef,
name: &str) -> Option<LLVMValueRef> {
let c_name = CString::new(name).unwrap();
let ret = unsafe { core::LLVMGetNamedFunction(module, c_name.as_ptr()) };
if ret.is_null() {
None
} else {
Some(ret)
}
}
pub fn VoidTypeInContext(context: LLVMContextRef) -> LLVMTypeRef {
unsafe { core::LLVMVoidTypeInContext(context) }
}
pub fn DisposeBuilder(builder: LLVMBuilderRef) {
unsafe { core::LLVMDisposeBuilder(builder) }
}
pub fn DisposeModule(module: LLVMModuleRef) {
unsafe { core::LLVMDisposeModule(module) }
}
pub fn ContextDispose(context: LLVMContextRef) {
unsafe { core::LLVMContextDispose(context) }
}
pub fn PositionBuilderAtEnd(builder: LLVMBuilderRef, basic_block: LLVMBasicBlockRef) {
unsafe { core::LLVMPositionBuilderAtEnd(builder, basic_block) }
}
pub fn BuildRet(builder: LLVMBuilderRef, val: LLVMValueRef) -> LLVMValueRef {
unsafe { core::LLVMBuildRet(builder, val) }
}
pub fn BuildRetVoid(builder: LLVMBuilderRef) -> LLVMValueRef {
unsafe { core::LLVMBuildRetVoid(builder) }
}
pub fn DumpModule(module: LLVMModuleRef) {
unsafe { core::LLVMDumpModule(module) }
}
pub fn Int64TypeInContext(context: LLVMContextRef) -> LLVMTypeRef {
unsafe { core::LLVMInt64TypeInContext(context) }
}
pub fn ConstInt(int_type: LLVMTypeRef, n: u64, sign_extend: bool) -> LLVMValueRef {
unsafe { core::LLVMConstInt(int_type, n, if sign_extend { 1 } else { 0 }) }
}
pub fn BuildAdd(builder: LLVMBuilderRef,
lhs: LLVMValueRef,
rhs: LLVMValueRef,
reg_name: &str)
-> LLVMValueRef {
let name = CString::new(reg_name).unwrap();
unsafe { core::LLVMBuildAdd(builder, lhs, rhs, name.as_ptr()) }
}
pub fn BuildSub(builder: LLVMBuilderRef,
lhs: LLVMValueRef,
rhs: LLVMValueRef,
reg_name: &str)
-> LLVMValueRef {
let name = CString::new(reg_name).unwrap();
unsafe { core::LLVMBuildSub(builder, lhs, rhs, name.as_ptr()) }
}
pub fn BuildMul(builder: LLVMBuilderRef,
lhs: LLVMValueRef,
rhs: LLVMValueRef,
reg_name: &str)
-> LLVMValueRef {
let name = CString::new(reg_name).unwrap();
unsafe { core::LLVMBuildMul(builder, lhs, rhs, name.as_ptr()) }
}
pub fn BuildUDiv(builder: LLVMBuilderRef,
lhs: LLVMValueRef,
rhs: LLVMValueRef,
reg_name: &str)
-> LLVMValueRef {
let name = CString::new(reg_name).unwrap();
unsafe { core::LLVMBuildUDiv(builder, lhs, rhs, name.as_ptr()) }
}
pub fn BuildSRem(builder: LLVMBuilderRef,
lhs: LLVMValueRef,
rhs: LLVMValueRef,
reg_name: &str)
-> LLVMValueRef {
let name = CString::new(reg_name).unwrap();
unsafe { core::LLVMBuildSRem(builder, lhs, rhs, name.as_ptr()) }
}
pub fn BuildCondBr(builder: LLVMBuilderRef,
if_expr: LLVMValueRef,
then_expr: LLVMBasicBlockRef,
else_expr: LLVMBasicBlockRef) -> LLVMValueRef {
unsafe { core::LLVMBuildCondBr(builder, if_expr, then_expr, else_expr) }
}
pub fn BuildBr(builder: LLVMBuilderRef,
dest: LLVMBasicBlockRef) -> LLVMValueRef {
unsafe { core::LLVMBuildBr(builder, dest) }
}
pub fn GetInsertBlock(builder: LLVMBuilderRef) -> LLVMBasicBlockRef {
unsafe { core::LLVMGetInsertBlock(builder) }
}
pub fn BuildPhi(builder: LLVMBuilderRef, ty: LLVMTypeRef, name: &str) -> LLVMValueRef {
let name = CString::new(name).unwrap();
unsafe { core::LLVMBuildPhi(builder, ty, name.as_ptr()) }
}
pub fn SetValueName(value: LLVMValueRef, name: &str) {
let name = CString::new(name).unwrap();
unsafe {
core::LLVMSetValueName(value, name.as_ptr())
}
}
pub fn GetValueName(value: LLVMValueRef) -> String {
unsafe {
let name_ptr: *const c_char = core::LLVMGetValueName(value);
CStr::from_ptr(name_ptr).to_string_lossy().into_owned()
}
}
pub fn GetParams(function: LLVMValueRef) -> Vec<LLVMValueRef> {
let size = CountParams(function);
unsafe {
let mut container = Vec::with_capacity(size);
container.set_len(size);
core::LLVMGetParams(function, container.as_mut_ptr());
container
}
}
pub fn CountParams(function: LLVMValueRef) -> usize {
unsafe { core::LLVMCountParams(function) as usize }
}
pub fn BuildFCmp(builder: LLVMBuilderRef,
op: LLVMRealPredicate,
lhs: LLVMValueRef,
rhs: LLVMValueRef,
name: &str) -> LLVMValueRef {
let name = CString::new(name).unwrap();
unsafe { core::LLVMBuildFCmp(builder, op, lhs, rhs, name.as_ptr()) }
}
pub fn BuildZExt(builder: LLVMBuilderRef,
val: LLVMValueRef,
dest_type: LLVMTypeRef,
name: &str) -> LLVMValueRef {
let name = CString::new(name).unwrap();
unsafe { core::LLVMBuildZExt(builder, val, dest_type, name.as_ptr()) }
}
pub fn BuildUIToFP(builder: LLVMBuilderRef,
val: LLVMValueRef,
dest_type: LLVMTypeRef,
name: &str) -> LLVMValueRef {
let name = CString::new(name).unwrap();
unsafe { core::LLVMBuildUIToFP(builder, val, dest_type, name.as_ptr()) }
}
pub fn BuildICmp(builder: LLVMBuilderRef,
op: LLVMIntPredicate,
lhs: LLVMValueRef,
rhs: LLVMValueRef,
name: &str) -> LLVMValueRef {
let name = CString::new(name).unwrap();
unsafe { core::LLVMBuildICmp(builder, op, lhs, rhs, name.as_ptr()) }
}
pub fn GetBasicBlockParent(block: LLVMBasicBlockRef) -> LLVMValueRef {
unsafe { core::LLVMGetBasicBlockParent(block) }
}
pub fn GetBasicBlocks(function: LLVMValueRef) -> Vec<LLVMBasicBlockRef> {
let size = CountBasicBlocks(function);
unsafe {
let mut container = Vec::with_capacity(size);
container.set_len(size);
core::LLVMGetBasicBlocks(function, container.as_mut_ptr());
container
}
}
pub fn CountBasicBlocks(function: LLVMValueRef) -> usize {
unsafe { core::LLVMCountBasicBlocks(function) as usize }
}
pub fn PrintModuleToString(module: LLVMModuleRef) -> String {
unsafe {
let str_ptr: *const c_char = core::LLVMPrintModuleToString(module);
CStr::from_ptr(str_ptr).to_string_lossy().into_owned()
}
}
pub fn AddIncoming(phi_node: LLVMValueRef, mut incoming_values: Vec<LLVMValueRef>,
mut incoming_blocks: Vec<LLVMBasicBlockRef>) {
let count = incoming_blocks.len() as u32;
if incoming_values.len() as u32 != count {
panic!("Bad invocation of AddIncoming");
}
unsafe {
let vals = incoming_values.as_mut_ptr();
let blocks = incoming_blocks.as_mut_ptr();
core::LLVMAddIncoming(phi_node, vals, blocks, count)
}
}
pub fn PrintModuleToFile(module: LLVMModuleRef, filename: &str) -> LLVMBool {
let out_file = CString::new(filename).unwrap();
unsafe { core::LLVMPrintModuleToFile(module, out_file.as_ptr(), ptr::null_mut()) }
}

View File

@@ -0,0 +1,11 @@
use cursive::Cursive;
use cursive::views::{Dialog, TextView};
pub fn run() {
println!("YOLO");
let mut siv = Cursive::default();
siv.add_layer(Dialog::around(TextView::new("FUCKO"))
.title("YOLO SWAGGGGG")
.button("exit", |s| { s.quit() }));
siv.run();
}

View File

@@ -0,0 +1,53 @@
#[derive(Clone)]
pub enum CommandTree {
Terminal {
name: String,
help_msg: Option<String>,
function: Option<Box<(fn() -> Option<String>)>>,
},
NonTerminal {
name: String,
children: Vec<CommandTree>,
help_msg: Option<String>,
function: Option<Box<(fn() -> Option<String>)>>,
},
Top(Vec<CommandTree>),
}
impl CommandTree {
pub fn term(s: &str, help: Option<&str>) -> CommandTree {
CommandTree::Terminal {name: s.to_string(), help_msg: help.map(|x| x.to_string()), function: None }
}
pub fn nonterm(s: &str, help: Option<&str>, children: Vec<CommandTree>) -> CommandTree {
CommandTree::NonTerminal {
name: s.to_string(),
help_msg: help.map(|x| x.to_string()),
children,
function: None,
}
}
pub fn get_cmd(&self) -> &str {
match self {
CommandTree::Terminal { name, .. } => name.as_str(),
CommandTree::NonTerminal {name, ..} => name.as_str(),
CommandTree::Top(_) => "",
}
}
pub fn get_help(&self) -> &str {
match self {
CommandTree::Terminal { help_msg, ..} => help_msg.as_ref().map(|s| s.as_str()).unwrap_or(""),
CommandTree::NonTerminal { help_msg, .. } => help_msg.as_ref().map(|s| s.as_str()).unwrap_or(""),
CommandTree::Top(_) => ""
}
}
pub fn get_children(&self) -> Vec<&str> {
match self {
CommandTree::Terminal { .. } => vec![],
CommandTree::NonTerminal { children, .. } => children.iter().map(|x| x.get_cmd()).collect(),
CommandTree::Top(children) => children.iter().map(|x| x.get_cmd()).collect(),
}
}
}

355
schala-repl/src/repl/mod.rs Normal file
View File

@@ -0,0 +1,355 @@
use std::fmt::Write as FmtWrite;
use std::io::{Read, Write};
use std::fs::File;
use std::sync::Arc;
use colored::*;
use itertools::Itertools;
use language::{ProgrammingLanguageInterface, EvalOptions,
PassDebugOptionsDescriptor};
mod command_tree;
use self::command_tree::CommandTree;
const HISTORY_SAVE_FILE: &'static str = ".schala_history";
const OPTIONS_SAVE_FILE: &'static str = ".schala_repl";
pub struct Repl {
options: EvalOptions,
languages: Vec<Box<ProgrammingLanguageInterface>>,
current_language_index: usize,
interpreter_directive_sigil: char,
line_reader: ::linefeed::interface::Interface<::linefeed::terminal::DefaultTerminal>,
}
impl Repl {
pub fn new(languages: Vec<Box<ProgrammingLanguageInterface>>, initial_index: usize) -> Repl {
use linefeed::Interface;
let current_language_index = if initial_index < languages.len() { initial_index } else { 0 };
let line_reader = Interface::new("schala-repl").unwrap();
Repl {
options: Repl::get_options(),
languages,
current_language_index,
interpreter_directive_sigil: ':',
line_reader
}
}
fn get_cur_language(&self) -> &ProgrammingLanguageInterface {
self.languages[self.current_language_index].as_ref()
}
fn get_options() -> EvalOptions {
File::open(OPTIONS_SAVE_FILE)
.and_then(|mut file| {
let mut contents = String::new();
file.read_to_string(&mut contents)?;
Ok(contents)
})
.and_then(|contents| {
let options: EvalOptions = ::serde_json::from_str(&contents)?;
Ok(options)
}).unwrap_or(EvalOptions::default())
}
fn save_options(&self) {
let ref options = self.options;
let read = File::create(OPTIONS_SAVE_FILE)
.and_then(|mut file| {
let buf = ::serde_json::to_string(options).unwrap();
file.write_all(buf.as_bytes())
});
if let Err(err) = read {
println!("Error saving {} file {}", OPTIONS_SAVE_FILE, err);
}
}
pub fn run(&mut self) {
use linefeed::ReadResult;
println!("Schala MetaInterpreter version {}", ::VERSION_STRING);
println!("Type {}help for help with the REPL", self.interpreter_directive_sigil);
self.line_reader.load_history(HISTORY_SAVE_FILE).unwrap_or(());
loop {
let language_name = self.get_cur_language().get_language_name();
let directives = self.get_directives();
let tab_complete_handler = TabCompleteHandler::new(self.interpreter_directive_sigil, directives);
self.line_reader.set_completer(Arc::new(tab_complete_handler));
let prompt_str = format!("{} >> ", language_name);
self.line_reader.set_prompt(&prompt_str).unwrap();
match self.line_reader.read_line() {
Err(e) => {
println!("Terminal read error: {}", e);
},
Ok(ReadResult::Eof) => break,
Ok(ReadResult::Signal(_)) => break,
Ok(ReadResult::Input(ref input)) => {
self.line_reader.add_history_unique(input.to_string());
let output = match input.chars().nth(0) {
Some(ch) if ch == self.interpreter_directive_sigil => self.handle_interpreter_directive(input),
_ => Some(self.input_handler(input)),
};
if let Some(o) = output {
println!("=> {}", o);
}
}
}
}
self.line_reader.save_history(HISTORY_SAVE_FILE).unwrap_or(());
self.save_options();
println!("Exiting...");
}
fn input_handler(&mut self, input: &str) -> String {
let ref mut language = self.languages[self.current_language_index];
let interpreter_output = language.execute_pipeline(input, &self.options);
interpreter_output.to_repl()
}
fn get_directives(&self) -> CommandTree {
let ref passes = self.get_cur_language().get_passes();
let passes_directives: Vec<CommandTree> = passes.iter()
.map(|pass_descriptor| {
let name = &pass_descriptor.name;
if pass_descriptor.debug_options.len() == 0 {
CommandTree::term(name, None)
} else {
let children: Vec<CommandTree> = pass_descriptor.debug_options.iter()
.map(|o| CommandTree::term(o, None)).collect();
CommandTree::NonTerminal {
name: name.clone(),
children,
help_msg: None,
function: None,
}
}
}).collect();
CommandTree::Top(vec![
CommandTree::term("exit", Some("exit the REPL")),
CommandTree::term("quit", Some("exit the REPL")),
CommandTree::term("help", Some("Print this help message")),
CommandTree::nonterm("debug",
Some("show or hide pass debug info for a given pass, or display the names of all passes, or turn timing on/off"),
vec![
CommandTree::term("passes", None),
CommandTree::nonterm("show", None, passes_directives.clone()),
CommandTree::nonterm("hide", None, passes_directives.clone()),
CommandTree::nonterm("timing", None, vec![
CommandTree::term("on", None),
CommandTree::term("off", None),
])
]
),
CommandTree::nonterm("lang",
Some("switch between languages, or go directly to a langauge by name"),
vec![
CommandTree::term("next", None),
CommandTree::term("prev", None),
CommandTree::nonterm("go", None, vec![]),
]
),
CommandTree::term("doc", Some("Get language-specific help for an item")),
])
}
fn handle_interpreter_directive(&mut self, input: &str) -> Option<String> {
let mut iter = input.chars();
iter.next();
let commands: Vec<&str> = iter
.as_str()
.split_whitespace()
.collect();
let initial_cmd: &str = match commands.get(0).clone() {
None => return None,
Some(s) => s
};
match initial_cmd {
"exit" | "quit" => {
self.save_options();
::std::process::exit(0)
},
"lang" | "language" => match commands.get(1) {
Some(&"show") => {
let mut buf = String::new();
for (i, lang) in self.languages.iter().enumerate() {
write!(buf, "{}{}\n", if i == self.current_language_index { "* "} else { "" }, lang.get_language_name()).unwrap();
}
Some(buf)
},
Some(&"go") => match commands.get(2) {
None => Some(format!("Must specify a language name")),
Some(&desired_name) => {
for (i, _) in self.languages.iter().enumerate() {
let lang_name = self.languages[i].get_language_name();
if lang_name.to_lowercase() == desired_name.to_lowercase() {
self.current_language_index = i;
return Some(format!("Switching to {}", self.languages[self.current_language_index].get_language_name()));
}
}
Some(format!("Language {} not found", desired_name))
}
},
Some(&"next") | Some(&"n") => {
self.current_language_index = (self.current_language_index + 1) % self.languages.len();
Some(format!("Switching to {}", self.languages[self.current_language_index].get_language_name()))
},
Some(&"previous") | Some(&"p") | Some(&"prev") => {
self.current_language_index = if self.current_language_index == 0 { self.languages.len() - 1 } else { self.current_language_index - 1 };
Some(format!("Switching to {}", self.languages[self.current_language_index].get_language_name()))
},
Some(e) => Some(format!("Bad `lang(uage)` argument: {}", e)),
None => Some(format!("Valid arguments for `lang(uage)` are `show`, `next`|`n`, `previous`|`prev`|`n`"))
},
"help" => {
let mut buf = String::new();
let ref lang = self.languages[self.current_language_index];
let directives = match self.get_directives() {
CommandTree::Top(children) => children,
_ => panic!("Top-level CommandTree not Top")
};
writeln!(buf, "MetaInterpreter options").unwrap();
writeln!(buf, "-----------------------").unwrap();
for directive in directives {
let trailer = " ";
writeln!(buf, "{}{}- {}", directive.get_cmd(), trailer, directive.get_help()).unwrap();
}
writeln!(buf, "").unwrap();
writeln!(buf, "Language-specific help for {}", lang.get_language_name()).unwrap();
writeln!(buf, "-----------------------").unwrap();
writeln!(buf, "{}", lang.custom_interpreter_directives_help()).unwrap();
Some(buf)
},
"debug" => self.handle_debug(commands),
"doc" => self.languages[self.current_language_index]
.get_doc(&commands)
.or(Some(format!("No docs implemented"))),
e => {
self.languages[self.current_language_index]
.handle_custom_interpreter_directives(&commands)
.or(Some(format!("Unknown command: {}", e)))
}
}
}
fn handle_debug(&mut self, commands: Vec<&str>) -> Option<String> {
let passes = self.get_cur_language().get_passes();
match commands.get(1) {
Some(&"timing") => match commands.get(2) {
Some(&"on") => { self.options.debug_timing = true; None }
Some(&"off") => { self.options.debug_timing = false; None }
_ => return Some(format!(r#"Argument to "timing" must be "on" or "off""#)),
},
Some(&"passes") => Some(
passes.into_iter()
.map(|desc| {
if self.options.debug_passes.contains_key(&desc.name) {
let color = "green";
format!("*{}", desc.name.color(color))
} else {
desc.name
}
})
.intersperse(format!(" -> "))
.collect()),
b @ Some(&"show") | b @ Some(&"hide") => {
let show = b == Some(&"show");
let debug_pass: String = match commands.get(2) {
Some(s) => s.to_string(),
None => return Some(format!("Must specify a stage to debug")),
};
let pass_opt = commands.get(3);
if let Some(desc) = passes.iter().find(|desc| desc.name == debug_pass) {
let mut opts = vec![];
if let Some(opt) = pass_opt {
opts.push(opt.to_string());
}
let msg = format!("{} debug for pass {}", if show { "Enabling" } else { "Disabling" }, debug_pass);
if show {
self.options.debug_passes.insert(desc.name.clone(), PassDebugOptionsDescriptor { opts });
} else {
self.options.debug_passes.remove(&desc.name);
}
Some(msg)
} else {
Some(format!("Couldn't find stage: {}", debug_pass))
}
},
_ => Some(format!("Unknown debug command"))
}
}
}
struct TabCompleteHandler {
sigil: char,
top_level_commands: CommandTree,
}
use linefeed::complete::{Completion, Completer};
use linefeed::terminal::Terminal;
impl TabCompleteHandler {
fn new(sigil: char, top_level_commands: CommandTree) -> TabCompleteHandler {
TabCompleteHandler {
top_level_commands,
sigil,
}
}
}
impl<T: Terminal> Completer<T> for TabCompleteHandler {
fn complete(&self, word: &str, prompter: &::linefeed::prompter::Prompter<T>, start: usize, _end: usize) -> Option<Vec<Completion>> {
let line = prompter.buffer();
if line.starts_with(&format!("{}", self.sigil)) {
let mut words = line[1..(if start == 0 { 1 } else { start })].split_whitespace();
let mut completions = Vec::new();
let mut command_tree: Option<&CommandTree> = Some(&self.top_level_commands);
loop {
match words.next() {
None => {
let top = match command_tree {
Some(CommandTree::Top(_)) => true,
_ => false
};
let word = if top { word.get(1..).unwrap() } else { word };
for cmd in command_tree.map(|x| x.get_children()).unwrap_or(vec![]).into_iter() {
if cmd.starts_with(word) {
completions.push(Completion {
completion: format!("{}{}", if top { ":" } else { "" }, cmd),
display: Some(cmd.to_string()),
suffix: ::linefeed::complete::Suffix::Some(' ')
})
}
}
break;
},
Some(s) => {
let new_ptr: Option<&CommandTree> = command_tree.and_then(|cm| match cm {
CommandTree::Top(children) => children.iter().find(|c| c.get_cmd() == s),
CommandTree::NonTerminal { children, .. } => children.iter().find(|c| c.get_cmd() == s),
CommandTree::Terminal { .. } => None,
});
command_tree = new_ptr;
}
}
}
Some(completions)
} else {
None
}
}
}

View File

@@ -2,7 +2,7 @@ use rocket;
use rocket::State;
use rocket::response::Content;
use rocket::http::ContentType;
use rocket_contrib::Json;
use rocket_contrib::json::Json;
use language::{ProgrammingLanguageInterface, EvalOptions};
use WEBFILES;
use ::PLIGenerator;
@@ -35,8 +35,8 @@ struct Output {
fn interpreter_input(input: Json<Input>, generators: State<Vec<PLIGenerator>>) -> Json<Output> {
let schala_gen = generators.get(0).unwrap();
let mut schala: Box<ProgrammingLanguageInterface> = schala_gen();
let code_output = schala.evaluate_in_repl(&input.source, &EvalOptions::default());
Json(Output { text: code_output.to_string() })
let code_output = schala.execute_pipeline(&input.source, &EvalOptions::default());
Json(Output { text: code_output.to_repl() })
}
pub fn web_main(language_generators: Vec<PLIGenerator>) {

View File

@@ -0,0 +1,11 @@
let c = 10
fn add(a, b) {
let c = a + b
c
}
let mut b = 20
println(add(1,2))
println(c + b)

View File

@@ -1,12 +0,0 @@
fn main() {
const a = 10
const b = 20
a + b
}
//foo
print(main())

View File

@@ -0,0 +1,17 @@
fn main() {
let a = 10
let b = 20
a + b
}
//this is a one-line comment
/* this is
a multiline
comment
*/
print(main())

View File

@@ -0,0 +1,12 @@
for n <- 1..=100 {
if n % 15 == 0 {
print("FizzBuzz")
} else if n % 5 == 0 {
print("Buzz")
} else if n % 3 == 0 {
print("Fizz")
} else {
print(n.to_string())
}
}

View File

@@ -0,0 +1,114 @@
fn main() {
//comments are C-style
/* nested comments /* are cool */ */
}
@annotations are with @-
// variable expressions
var a: I32 = 20
const b: String = 20
there(); can(); be(); multiple(); statements(); per_line();
//string interpolation
const yolo = "I have ${a + b} people in my house"
// let expressions ??? not sure if I want this
let a = 10, b = 20, c = 30 in a + b + c
//list literal
const q = [1,2,3,4]
//lambda literal
q.map({|item| item * 100 })
fn yolo(a: MyType, b: YourType): ReturnType<Param1, Param2> {
if a == 20 {
return "early"
}
var sex = 20
sex
}
/* for/while loop topics */
//infinite loop
while {
if x() { break }
...
}
//conditional loop
while conditionHolds() {
...
}
//iteration over a variable
for i <- [1..1000] {
} //return type is return type of block
//monadic decomposition
for {
a <- maybeInt();
s <- foo()
} return {
a + s
} //return type is Monad<return type of block>
/* end of for loops */
/* conditionals/pattern matching */
// "is" operator for "does this pattern match"
x is Some(t) // type bool
if x {
is Some(t) => {
},
is None => {
}
}
//syntax is, I guess, for <expr> <brace-block>, where <expr> is a bool, or a <arrow-expr>
// type level alises
typealias <name> = <other type> #maybe thsi should be 'alias'?
/*
what if type A = B meant that you could had to create A's with A(B), but when you used A's the interface was exactly like B's?
maybe introduce a 'newtype' keyword for this
*/
//declaring types of all stripes
type MyData = { a: i32, b: String }
type MyType = MyType
type Option<a> = None | Some(a)
type Signal = Absence | SimplePresence(i32) | ComplexPresence {a: i32, b: MyCustomData}
//traits
trait Bashable { }
trait Luggable {
fn lug(self, a: Option<Self>)
}
}
// lambdas
// ruby-style not rust-style
const a: X -> Y -> Z = {|x,y| }

View File

@@ -1,105 +1,17 @@
fn main() {
//comments are C-style
/* nested comments /* are cool */ */
println(sua(4))
fn sua(x): Int {
x + 10
}
@annotations are with @-
// variable expressions
var a: I32 = 20
const b: String = 20
there(); can(); be(); multiple(); statements(); per_line();
//string interpolation
const yolo = "I have ${a + b} people in my house"
// let expressions ??? not sure if I want this
let a = 10, b = 20, c = 30 in a + b + c
//list literal
const q = [1,2,3,4]
//lambda literal
q.map({|item| item * 100 })
fn yolo(a: MyType, b: YourType): ReturnType<Param1, Param2> {
if a == 20 {
return "early"
}
var sex = 20
sex
}
for {
//infinite loop
}
//iteration over a variable
for i <- [1..1000] {
} //return type is return type of block
//while loop
for a != 3 || fuckTard() {
break
} //return type is return type of block
//monadic decomposition
for {
a <- maybeInt();
s <- foo()
} return {
a + s
} //return type is Monad<return type of block>
// let statements too!!
for (a = 20
b = fuck) {
a + b
}
// pattern-matching
match <expr> {
Some(a) => {
},
None => {
},
}
//syntax is, I guess, for <expr> <brace-block>, where <expr> is a bool, or a <arrow-expr>
// type level alises
typealias <name> = <other type> #maybe thsi should be 'alias'?
//let a = getline()
/*
what if type A = B meant that you could had to create A's with A(B), but when you used A's the interface was exactly like B's?
maybe introduce a 'newtype' keyword for this
*/
//declaring types of all stripes
type MyData = { a: i32, b: String }
type MyType = MyType
type Option<a> = None | Some(a)
type Signal = Absence | SimplePresence(i32) | ComplexPresence {a: i32, b: MyCustomData}
//traits
trait Bashable { }
trait Luggable {
fn lug(self, a: Option<Self>)
}
if a == "true" {
println("You typed true")
} else {
println("You typed something else")
}
// lambdas
// ruby-style not rust-style
const a: X -> Y -> Z = {|x,y| }
*/