gh-120950: Fix overflow in math.log() with large int-like argument (GH-121011)

Handling of arbitrary large int-like argument is now consistent with
handling arbitrary large int arguments.
This commit is contained in:
Serhiy Storchaka
2025-11-12 00:27:13 +02:00
committed by GitHub
parent 9e7340cd3b
commit 4359706ac8
3 changed files with 111 additions and 30 deletions

View File

@@ -189,6 +189,22 @@ class MyIndexable(object):
def __index__(self):
return self.value
class IndexableFloatLike:
def __init__(self, float_value, index_value):
self.float_value = float_value
self.index_value = index_value
def __float__(self):
if isinstance(self.float_value, BaseException):
raise self.float_value
return self.float_value
def __index__(self):
if isinstance(self.index_value, BaseException):
raise self.index_value
return self.index_value
class BadDescr:
def __get__(self, obj, objtype=None):
raise ValueError
@@ -1192,13 +1208,32 @@ class MathTests(unittest.TestCase):
self.ftest('log(10**40, 10**20)', math.log(10**40, 10**20), 2)
self.ftest('log(10**1000)', math.log(10**1000),
2302.5850929940457)
self.ftest('log(10**2000, 10**1000)', math.log(10**2000, 10**1000), 2)
self.ftest('log(MyIndexable(32), MyIndexable(2))',
math.log(MyIndexable(32), MyIndexable(2)), 5)
self.ftest('log(MyIndexable(10**1000))',
math.log(MyIndexable(10**1000)),
2302.5850929940457)
self.ftest('log(MyIndexable(10**2000), MyIndexable(10**1000))',
math.log(MyIndexable(10**2000), MyIndexable(10**1000)),
2)
self.assertRaises(ValueError, math.log, 0.0)
self.assertRaises(ValueError, math.log, 0)
self.assertRaises(ValueError, math.log, MyIndexable(0))
self.assertRaises(ValueError, math.log, -1.5)
self.assertRaises(ValueError, math.log, -1)
self.assertRaises(ValueError, math.log, MyIndexable(-1))
self.assertRaises(ValueError, math.log, -10**1000)
self.assertRaises(ValueError, math.log, MyIndexable(-10**1000))
self.assertRaises(ValueError, math.log, 10, -10)
self.assertRaises(ValueError, math.log, NINF)
self.assertEqual(math.log(INF), INF)
self.assertTrue(math.isnan(math.log(NAN)))
self.assertEqual(math.log(IndexableFloatLike(math.e, 10**1000)), 1.0)
self.assertAlmostEqual(math.log(IndexableFloatLike(OverflowError(), 10**1000)),
2302.5850929940457)
def testLog1p(self):
self.assertRaises(TypeError, math.log1p)
for n in [2, 2**90, 2**300]:
@@ -1214,16 +1249,28 @@ class MathTests(unittest.TestCase):
self.assertEqual(math.log2(1), 0.0)
self.assertEqual(math.log2(2), 1.0)
self.assertEqual(math.log2(4), 2.0)
self.assertEqual(math.log2(MyIndexable(4)), 2.0)
# Large integer values
self.assertEqual(math.log2(2**1023), 1023.0)
self.assertEqual(math.log2(2**1024), 1024.0)
self.assertEqual(math.log2(2**2000), 2000.0)
self.assertEqual(math.log2(MyIndexable(2**2000)), 2000.0)
self.assertRaises(ValueError, math.log2, 0.0)
self.assertRaises(ValueError, math.log2, 0)
self.assertRaises(ValueError, math.log2, MyIndexable(0))
self.assertRaises(ValueError, math.log2, -1.5)
self.assertRaises(ValueError, math.log2, -1)
self.assertRaises(ValueError, math.log2, MyIndexable(-1))
self.assertRaises(ValueError, math.log2, -2**2000)
self.assertRaises(ValueError, math.log2, MyIndexable(-2**2000))
self.assertRaises(ValueError, math.log2, NINF)
self.assertTrue(math.isnan(math.log2(NAN)))
self.assertEqual(math.log2(IndexableFloatLike(8.0, 2**2000)), 3.0)
self.assertEqual(math.log2(IndexableFloatLike(OverflowError(), 2**2000)), 2000.0)
@requires_IEEE_754
# log2() is not accurate enough on Mac OS X Tiger (10.4)
@support.requires_mac_ver(10, 5)
@@ -1239,12 +1286,24 @@ class MathTests(unittest.TestCase):
self.ftest('log10(1)', math.log10(1), 0)
self.ftest('log10(10)', math.log10(10), 1)
self.ftest('log10(10**1000)', math.log10(10**1000), 1000.0)
self.ftest('log10(MyIndexable(10))', math.log10(MyIndexable(10)), 1)
self.ftest('log10(MyIndexable(10**1000))',
math.log10(MyIndexable(10**1000)), 1000.0)
self.assertRaises(ValueError, math.log10, 0.0)
self.assertRaises(ValueError, math.log10, 0)
self.assertRaises(ValueError, math.log10, MyIndexable(0))
self.assertRaises(ValueError, math.log10, -1.5)
self.assertRaises(ValueError, math.log10, -1)
self.assertRaises(ValueError, math.log10, MyIndexable(-1))
self.assertRaises(ValueError, math.log10, -10**1000)
self.assertRaises(ValueError, math.log10, MyIndexable(-10**1000))
self.assertRaises(ValueError, math.log10, NINF)
self.assertEqual(math.log(INF), INF)
self.assertTrue(math.isnan(math.log10(NAN)))
self.assertEqual(math.log10(IndexableFloatLike(100.0, 10**1000)), 2.0)
self.assertEqual(math.log10(IndexableFloatLike(OverflowError(), 10**1000)), 1000.0)
@support.bigmemtest(2**32, memuse=0.2)
def test_log_huge_integer(self, size):
v = 1 << size

View File

@@ -0,0 +1,2 @@
:func:`math.log` now supports arbitrary large integer-like arguments in the
same way as arbitrary large integer arguments.

View File

@@ -57,6 +57,7 @@ raised for division by zero and mod by zero.
#endif
#include "Python.h"
#include "pycore_abstract.h" // _PyNumber_Index()
#include "pycore_bitutils.h" // _Py_bit_length()
#include "pycore_call.h" // _PyObject_CallNoArgs()
#include "pycore_import.h" // _PyImport_SetModuleString()
@@ -1577,44 +1578,63 @@ math_modf_impl(PyObject *module, double x)
However, intermediate overflow is possible for an int if the number of bits
in that int is larger than PY_SSIZE_T_MAX. */
static PyObject*
loghelper_int(PyObject* arg, double (*func)(double))
{
/* If it is int, do it ourselves. */
double x, result;
int64_t e;
/* Negative or zero inputs give a ValueError. */
if (!_PyLong_IsPositive((PyLongObject *)arg)) {
PyErr_SetString(PyExc_ValueError,
"expected a positive input");
return NULL;
}
x = PyLong_AsDouble(arg);
if (x == -1.0 && PyErr_Occurred()) {
if (!PyErr_ExceptionMatches(PyExc_OverflowError))
return NULL;
/* Here the conversion to double overflowed, but it's possible
to compute the log anyway. Clear the exception and continue. */
PyErr_Clear();
x = _PyLong_Frexp((PyLongObject *)arg, &e);
assert(!PyErr_Occurred());
/* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
result = fma(func(2.0), (double)e, func(x));
}
else
/* Successfully converted x to a double. */
result = func(x);
return PyFloat_FromDouble(result);
}
static PyObject*
loghelper(PyObject* arg, double (*func)(double))
{
/* If it is int, do it ourselves. */
if (PyLong_Check(arg)) {
double x, result;
int64_t e;
/* Negative or zero inputs give a ValueError. */
if (!_PyLong_IsPositive((PyLongObject *)arg)) {
/* The input can be an arbitrary large integer, so we
don't include it's value in the error message. */
PyErr_SetString(PyExc_ValueError,
"expected a positive input");
return loghelper_int(arg, func);
}
/* Else let libm handle it by itself. */
PyObject *res = math_1(arg, func, 0, "expected a positive input, got %s");
if (res == NULL &&
PyErr_ExceptionMatches(PyExc_OverflowError) &&
PyIndex_Check(arg))
{
/* Here the conversion to double overflowed, but it's possible
to compute the log anyway. Clear the exception, convert to
integer and continue. */
PyErr_Clear();
arg = _PyNumber_Index(arg);
if (arg == NULL) {
return NULL;
}
x = PyLong_AsDouble(arg);
if (x == -1.0 && PyErr_Occurred()) {
if (!PyErr_ExceptionMatches(PyExc_OverflowError))
return NULL;
/* Here the conversion to double overflowed, but it's possible
to compute the log anyway. Clear the exception and continue. */
PyErr_Clear();
x = _PyLong_Frexp((PyLongObject *)arg, &e);
assert(e >= 0);
assert(!PyErr_Occurred());
/* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
result = fma(func(2.0), (double)e, func(x));
}
else
/* Successfully converted x to a double. */
result = func(x);
return PyFloat_FromDouble(result);
res = loghelper_int(arg, func);
Py_DECREF(arg);
}
/* Else let libm handle it by itself. */
return math_1(arg, func, 0, "expected a positive input, got %s");
return res;
}