schala/schala-lang/src/lib.rs
2018-07-26 00:52:46 -07:00

139 lines
3.8 KiB
Rust

#![feature(slice_patterns, box_patterns, box_syntax)]
#![feature(proc_macro)]
extern crate itertools;
#[macro_use]
extern crate lazy_static;
#[macro_use]
extern crate maplit;
#[macro_use]
extern crate schala_repl;
extern crate schala_codegen;
use itertools::Itertools;
use schala_repl::{ProgrammingLanguageInterface, EvalOptions, TraceArtifact, UnfinishedComputation, FinishedComputation};
macro_rules! bx {
($e:expr) => { Box::new($e) }
}
mod builtin;
mod tokenizing;
mod parsing;
mod typechecking;
mod eval;
use self::typechecking::{TypeContext};
pub struct Schala {
state: eval::State<'static>,
type_context: TypeContext
}
impl Schala {
pub fn new() -> Schala {
Schala {
state: eval::State::new(),
type_context: TypeContext::new(),
}
}
}
fn tokenizing_stage(input: &str) -> Result<Vec<tokenizing::Token>, ()> {
Ok(tokenizing::tokenize(input))
}
fn parsing_stage(input: Vec<tokenizing::Token>) -> Result<parsing::AST, parsing::ParseError> {
parsing::parse(input).0
}
impl ProgrammingLanguageInterface for Schala {
fn get_language_name(&self) -> String {
"Schala".to_string()
}
fn get_source_file_suffix(&self) -> String {
format!("schala")
}
fn execute_pipeline(&mut self, input: &str, options: &EvalOptions) -> FinishedComputation {
//let chain = pass_chain![tokenizing::tokenize, parsing::parse];
let chain = pass_chain![tokenizing_stage, parsing_stage];
chain(input)
}
fn execute(&mut self, input: &str, options: &EvalOptions) -> FinishedComputation {
schala_codegen::print_a_thing!();
let mut evaluation = UnfinishedComputation::default();
//tokenzing
let tokens = tokenizing::tokenize(input);
if options.debug.tokens {
let token_string = tokens.iter().map(|t| format!("{:?}<L:{},C:{}>", t.token_type, t.offset.0, t.offset.1)).join(", ");
evaluation.add_artifact(TraceArtifact::new("tokens", token_string));
}
{
let token_errors: Vec<&String> = tokens.iter().filter_map(|t| t.get_error()).collect();
if token_errors.len() != 0 {
return evaluation.output(Err(format!("Tokenization error: {:?}\n", token_errors)));
}
}
// parsing
let ast = match parsing::parse(tokens) {
(Ok(ast), trace) => {
if options.debug.parse_tree {
evaluation.add_artifact(TraceArtifact::new_parse_trace(trace));
}
if options.debug.ast {
evaluation.add_artifact(TraceArtifact::new("ast", format!("{:#?}", ast)));
}
ast
},
(Err(err), trace) => {
if options.debug.parse_tree {
evaluation.add_artifact(TraceArtifact::new_parse_trace(trace));
}
return evaluation.output(Err(format!("Parse error: {:?}\n", err.msg)));
}
};
//symbol table
match self.type_context.add_top_level_types(&ast) {
Ok(()) => (),
Err(msg) => {
if options.debug.type_checking {
evaluation.add_artifact(TraceArtifact::new("type_check", msg));
}
}
};
//typechecking
match self.type_context.type_check_ast(&ast) {
Ok(ty) => {
if options.debug.type_checking {
evaluation.add_artifact(TraceArtifact::new("type_check", format!("{:?}", ty)));
}
},
Err(msg) => evaluation.add_artifact(TraceArtifact::new("type_check", msg)),
};
let text = self.type_context.debug_symbol_table();
if options.debug.symbol_table {
evaluation.add_artifact(TraceArtifact::new("symbol_table", text));
}
let evaluation_outputs = self.state.evaluate(ast);
let text_output: Result<Vec<String>, String> = evaluation_outputs
.into_iter()
.collect();
let eval_output = text_output
.map(|v| { v.into_iter().intersperse(format!("\n")).collect() });
evaluation.output(eval_output)
}
}