schala/schala-lang/language/src/parser.rs

426 lines
13 KiB
Rust

extern crate nom;
use std::rc::Rc;
use std::str::FromStr;
use nom::IResult;
use nom::character::complete::{one_of, space0, alphanumeric0};
use nom::bytes::complete::{tag, take, take_while, take_while1, take_until};
use nom::combinator::{cut, cond, map, map_res, value, opt, verify};
use nom::multi::{separated_list, separated_nonempty_list, many1, many0};
use nom::error::{context, ParseError, VerboseError};
use nom::branch::alt;
use nom::sequence::{pair, tuple, delimited, preceded};
use crate::ast::*;
use crate::builtin::Builtin;
type ParseResult<'a, T> = IResult<&'a str, T, VerboseError<&'a str>>;
pub fn ws<I, O, E: ParseError<I>, F>(parser: F) -> impl Fn(I) -> IResult<I, O, E>
where
I: nom::InputTakeAtPosition,
<I as nom::InputTakeAtPosition>::Item: nom::AsChar + Clone,
F: Fn(I) -> IResult<I, O, E>,
{
delimited(space0, parser, space0)
}
fn statement_sep(text: &str) -> ParseResult<()> {
value((), one_of("\n;"))(text)
}
fn single_alphabetic_character(text: &str) -> ParseResult<char> {
let p = verify(take(1usize), |s: &str| s.chars().nth(0).map(|c| c.is_alphabetic()).unwrap_or(false));
map(p, |s: &str| s.chars().nth(0).unwrap())(text)
}
fn single_alphanumeric_character(text: &str) -> ParseResult<char> {
let p = verify(take(1usize), |s: &str| s.chars().nth(0).map(|c| c.is_alphanumeric() || c == '_').unwrap_or(false));
map(p, |s: &str| s.chars().nth(0).unwrap())(text)
}
fn identifier(text: &str) -> ParseResult<Rc<String>> {
use nom::character::complete::char;
map(alt((
pair(char('_'), many1(single_alphanumeric_character)),
pair(single_alphabetic_character, many0(single_alphanumeric_character))
)),
|(first, rest): (char, Vec<char>)| Rc::new(format!("{}{}", first, rest.into_iter().collect::<String>()))
)(text)
}
const OPERATOR_CHARS: &'static str = "~`!@#$%^&*-+=<>?/|";
fn operator(text: &str) -> ParseResult<Vec<char>> {
many1(one_of(OPERATOR_CHARS))(text)
}
fn binop(text: &str) -> ParseResult<BinOp> {
context("Binop", map(
operator,
|op| BinOp::from_sigil(&op.into_iter().collect::<String>())
))(text)
}
fn bool_literal(text: &str) -> ParseResult<ExpressionKind> {
let p = alt((
value(true, tag("true")),
value(false, tag("false"))
));
map(p, ExpressionKind::BoolLiteral)(text)
}
fn number_literal(text: &str) -> ParseResult<ExpressionKind> {
let num_lit = many1(alt((
map(one_of("1234567890"), |s: char| Some(s)),
value(None, nom::character::complete::char('_')),
)));
let (text, n) = map_res(num_lit,
|digits: Vec<Option<char>>| {
let num_str: String = digits.into_iter().filter_map(|x| x).collect();
u64::from_str_radix(&num_str, 10)
})(text)?;
Ok((text, ExpressionKind::NatLiteral(n)))
}
fn binary_literal(text: &str) -> ParseResult<ExpressionKind> {
let p = preceded(tag("0b"), cut(take_while1(|c: char| c == '0' || c == '1')));
let (rest, n): (&str, u64) = map_res(
p, |hex_str: &str| u64::from_str_radix(hex_str, 2)
)(text)?;
let expr = ExpressionKind::NatLiteral(n);
Ok((rest, expr))
}
fn hex_literal(text: &str) -> ParseResult<ExpressionKind> {
let p = preceded(tag("0x"), cut(take_while1(|c: char| c.is_digit(16))));
let (rest, n): (&str, u64) = map_res(
p, |hex_str: &str| u64::from_str_radix(hex_str, 16)
)(text)?;
let expr = ExpressionKind::NatLiteral(n);
Ok((rest, expr))
}
fn string_literal(text: &str) -> ParseResult<ExpressionKind> {
use nom::character::complete::char;
let (text, string_output) = delimited(
char('"'), take_until("\""), char('"')
)(text)?;
let expr = ExpressionKind::StringLiteral(Rc::new(string_output.to_string()));
Ok((text, expr))
}
fn literal(text: &str) -> ParseResult<ExpressionKind> {
alt((
string_literal,
hex_literal,
binary_literal,
number_literal,
bool_literal,
))(text)
}
fn paren_expr(text: &str) -> ParseResult<ExpressionKind> {
use nom::character::complete::char;
context("Paren expression", delimited(char('('), expression_kind, char(')')))(text)
}
fn prefix_op(text: &str) -> ParseResult<PrefixOp> {
use nom::character::complete::char;
let p = alt((char('+'), char('-'), char('!')));
map(p, |sigil| PrefixOp::from_str(&sigil.to_string()).unwrap())(text)
}
fn qualified_name(text: &str) -> ParseResult<QualifiedName> {
map(
separated_nonempty_list(tag("::"), identifier),
|components| QualifiedName { id: ItemId::new(0), components }
)(text)
}
fn identifier_expr(text: &str) -> ParseResult<ExpressionKind> {
map(qualified_name, ExpressionKind::Value)(text)
}
fn primary_expr(text: &str) -> ParseResult<ExpressionKind> {
// primary := literal | paren_expr | if_expr | for_expr | while_expr | identifier_expr | lambda_expr | anonymous_struct | list_expr
alt((
if_expr,
for_expr,
literal,
paren_expr,
identifier_expr,
))(text)
}
fn for_expr(text: &str) -> ParseResult<ExpressionKind> {
//TODO do I need something like no struct literal here?
let en = alt((
map(enumerator, |e| vec![e]),
delimited(tag("{"), enumerators, tag("}"))
));
preceded(tag("for"),
map(tuple((en, for_expr_body)),
|(enumerators, body)| ExpressionKind::ForExpression { enumerators, body: Box::new(body) }
))(text)
}
fn enumerators(text: &str) -> ParseResult<Vec<Enumerator>> {
separated_nonempty_list(alt((value((), tag(",")), statement_sep)),
enumerator)(text)
}
fn enumerator(text: &str) -> ParseResult<Enumerator> {
map(
tuple((identifier, tag("<-"), expression)),
|(id, _, generator)| Enumerator { id, generator }
)(text)
}
fn for_expr_body(text: &str) -> ParseResult<ForBody> {
alt((
map(preceded(tag("return"), expression), ForBody::MonadicReturn),
map(delimited(tag("{"), block, tag("}")), ForBody::StatementBlock),
))(text)
}
fn invocation_argument(text: &str) -> ParseResult<InvocationArgument> {
use nom::character::complete::char;
alt((
value(InvocationArgument::Ignored, pair(char('_'), alphanumeric0)),
map(expression_kind, |kind: ExpressionKind| InvocationArgument::Positional(
Expression { id: ItemId::new(0), kind, type_anno: None }))
//map(identifier, |id: Rc<String>|
))(text)
}
fn if_expr(text: &str) -> ParseResult<ExpressionKind> {
let p = preceded(tag("if"), pair(ws(discriminator), ws(if_expr_body)));
map(p, |(discriminator, body)| {
let discriminator = discriminator.map(Box::new);
let body = Box::new(body);
ExpressionKind::IfExpression { discriminator, body }
}) (text)
}
fn discriminator(text: &str) -> ParseResult<Option<Expression>> {
use nom::combinator::verify;
cond(text.chars().next().map(|c| c != '{').unwrap_or(true),
expression
)(text)
}
fn if_expr_body(text: &str) -> ParseResult<IfExpressionBody> {
alt((
preceded(tag("then"), simple_conditional),
preceded(tag("is"), simple_pattern_match),
cond_block,
))(text)
}
fn simple_conditional(text: &str) -> ParseResult<IfExpressionBody> {
map(
pair(expr_or_block, else_case),
|(then_case, else_case)| IfExpressionBody::SimpleConditional { then_case, else_case }
)(text)
}
fn else_case(text: &str) -> ParseResult<Option<Block>> {
opt(preceded(tag("else"), expr_or_block))(text)
}
fn simple_pattern_match(text: &str) -> ParseResult<IfExpressionBody> {
let p = tuple((pattern, tag("then"), expr_or_block, else_case));
map(p, |(pattern, _, then_case, else_case)|
IfExpressionBody::SimplePatternMatch { pattern, then_case, else_case }
)(text)
}
fn pattern(text: &str) -> ParseResult<Pattern> {
use nom::character::complete::char;
let t = delimited(char('('),
separated_nonempty_list(char(','), pattern),
char(')')
);
alt((
map(t, |patterns| Pattern::TuplePattern(patterns)),
simple_pattern,
))(text)
}
fn simple_pattern(text: &str) -> ParseResult<Pattern> {
alt((
value(Pattern::Ignored, tag("_")),
tuple_struct_pattern,
record_pattern,
map(pattern_literal, Pattern::Literal),
map(qualified_name, Pattern::VarOrName),
))(text)
}
fn tuple_struct_pattern(text: &str) -> ParseResult<Pattern> {
unimplemented!()
}
fn record_pattern(text: &str) -> ParseResult<Pattern> {
unimplemented!()
}
fn pattern_literal(text: &str) -> ParseResult<PatternLiteral> {
use PatternLiteral::*;
use nom::character::complete::char;
alt((
value(BoolPattern(true), tag("true")),
value(BoolPattern(false), tag("false")),
map(delimited(char('"'), take_until("\""), char('"')), |s: &str| StringPattern(Rc::new(s.to_string()))),
))(text)
//TODO handle signed_number_literal
}
fn cond_block(text: &str) -> ParseResult<IfExpressionBody> {
use nom::character::complete::char;
//TODO maybe change this bit of syntax
let comma_or_delimitor = alt((value((), char(',')), statement_sep));
let p = delimited(char('{'),
separated_nonempty_list(comma_or_delimitor, cond_arm),
char('}'));
map(p, IfExpressionBody::CondList)(text)
}
fn cond_arm(text: &str) -> ParseResult<ConditionArm> {
let variant_1 = map(
tuple((condition, guard, tag("then"), expr_or_block)),
|(condition, guard, _, body)| ConditionArm { condition, guard, body }
);
let variant_2 = map(
preceded(tag("else"), expr_or_block),
|body| ConditionArm { condition: Condition::Else, guard: None, body }
);
alt((variant_1, variant_2))(text)
}
fn condition(text: &str) -> ParseResult<Condition> {
alt((
map(preceded(tag("is"), pattern), Condition::Pattern),
map(tuple((binop, expression)), |(op, expr)|
Condition::TruncatedOp(op, expr)),
map(expression, Condition::Expression),
))(text)
}
fn guard(text: &str) -> ParseResult<Option<Expression>> {
opt(preceded(tag("if"), expression))(text)
}
fn expr_or_block(text: &str) -> ParseResult<Block> {
//TODO fix
alt((block, map(expression, |expr| vec![Statement { id: ItemId::new(0), kind: StatementKind::Expression(expr)}])))(text)
}
fn block(text: &str) -> ParseResult<Block> {
use nom::character::complete::char;
//TODO fix this so it can handle nested statements
delimited(char('{'),
separated_nonempty_list(statement_sep,
map(expression, |e| Statement { id: ItemId::new(0), kind: StatementKind::Expression(e) })
),
char('}'))(text)
}
fn call_expr(text: &str) -> ParseResult<ExpressionKind> {
use nom::character::complete::char;
let parse_call = opt(
delimited(char('('), separated_list(char(','), invocation_argument), char(')'))
);
let p = pair(primary_expr, parse_call);
map(p, |(expr, call_part)| if let Some(arguments) = call_part {
let f = bx!(Expression { id: ItemId::new(0), kind: expr, type_anno: None });
ExpressionKind::Call { f, arguments }
} else {
expr
})(text)
}
fn prefix_expr(text: &str) -> ParseResult<ExpressionKind> {
let (text, pfx) = ws(opt(prefix_op))(text)?;
let (text, result) = call_expr(text)?;
match pfx {
None => Ok((text, result)),
Some(pfx) => {
let exp = Expression { id: ItemId::new(0), kind: result, type_anno: None };
Ok((text, ExpressionKind::PrefixExp(pfx, Box::new(exp))))
}
}
}
// this implements Pratt parsing, see http://journal.stuffwithstuff.com/2011/03/19/pratt-parsers-expression-parsing-made-easy/
fn precedence_expr(text: &str) -> ParseResult<ExpressionKind> {
fn inner_precedence_expr(input: &str, precedence: i32) -> ParseResult<ExpressionKind> {
let (mut outer_rest, mut lhs) = prefix_expr(input)?;
loop {
let (rest, _) = space0(outer_rest)?;
let (rest, maybe_binop) = opt(binop)(rest)?;
let (new_precedence, binop) = match maybe_binop {
Some(binop) => (binop.precedence(), binop),
None => break,
};
if precedence >= new_precedence {
break;
}
let (rest, _) = space0(rest)?;
let (rest, rhs) = inner_precedence_expr(rest, new_precedence)?;
outer_rest = rest;
lhs = ExpressionKind::BinExp(binop,
bx!(Expression::new(ItemId::new(0), lhs)),
bx!(Expression::new(ItemId::new(0), rhs))
);
}
Ok((outer_rest, lhs))
}
context("Precedence expression",
|input| inner_precedence_expr(input, BinOp::min_precedence())
)(text)
}
fn expression_kind(text: &str) -> ParseResult<ExpressionKind> {
context("Expression kind", ws(precedence_expr))(text)
}
fn type_anno(text: &str) -> ParseResult<TypeIdentifier> {
use nom::character::complete::char;
preceded(ws(char(':')), ws(type_name))(text)
}
fn type_name(text: &str) -> ParseResult<TypeIdentifier> {
//TODO incomplete
let (text, name) = identifier(text)?;
let id = TypeIdentifier::Singleton(TypeSingletonName { name, params: vec![] });
Ok((text, id))
}
fn expression(text: &str) -> ParseResult<Expression> {
let (rest, (kind, type_anno)) = ws(pair(expression_kind, opt(type_anno)))(text)?;
let expr = Expression { id: ItemId::new(0), kind, type_anno };
Ok((rest, expr))
}
pub fn perform_parsing(input: &str) -> Result<String, String> {
let output = match expression(input) {
Ok((rest, ast)) => format!("{:?} (rest: {})", ast, rest),
Err(nom::Err::Incomplete(needed)) => format!("Incomplete: {:?}" ,needed),
Err(nom::Err::Error(verbose_error) | nom::Err::Failure(verbose_error)) => {
format!("Verbose Error: ` {:?} `", verbose_error)
//nom::error::convert_error(input, verbose_error)
}
};
Ok(output)
}