schala/schala-lang/language/src/reduced_ast.rs

341 lines
10 KiB
Rust

use std::rc::Rc;
use ast::{AST, Statement, Expression, ExpressionType, Declaration, Discriminator, IfExpressionBody, Pattern, PatternLiteral, Guard, HalfExpr};
use symbol_table::{Symbol, SymbolSpec, SymbolTable};
use builtin::{BinOp, PrefixOp};
#[derive(Debug)]
pub struct ReducedAST(pub Vec<Stmt>);
#[derive(Debug, Clone)]
pub enum Stmt {
PreBinding {
name: Rc<String>,
func: Func,
},
Binding {
name: Rc<String>,
constant: bool,
expr: Expr,
},
Expr(Expr),
Noop,
}
#[derive(Debug, Clone)]
pub enum Expr {
Unit,
Lit(Lit),
Tuple(Vec<Expr>),
Func(Func),
Val(Rc<String>),
Constructor {
type_name: Rc<String>,
name: Rc<String>,
tag: usize,
arity: usize,
},
Call {
f: Box<Expr>,
args: Vec<Expr>,
},
Assign {
val: Box<Expr>,
expr: Box<Expr>,
},
Conditional {
cond: Box<Expr>,
then_clause: Vec<Stmt>,
else_clause: Vec<Stmt>,
},
CaseMatch {
cond: Box<Expr>,
alternatives: Vec<Alternative>
},
UnimplementedSigilValue
}
#[derive(Debug, Clone)]
pub struct Alternative {
pub tag: Option<usize>,
pub subpatterns: Vec<Alternative>,
pub guard: Option<Expr>,
pub bound_vars: Vec<Option<Rc<String>>>, //remember that order matters here
pub item: Vec<Stmt>,
}
impl Alternative {
fn default(item: Vec<Stmt>) -> Alternative {
Alternative { tag: None, subpatterns: vec![], guard: None, bound_vars: vec![], item }
}
}
#[derive(Debug, Clone)]
pub enum Lit {
Nat(u64),
Int(i64),
Float(f64),
Bool(bool),
StringLit(Rc<String>),
}
#[derive(Debug, Clone)]
pub enum Func {
BuiltIn(Rc<String>),
UserDefined {
name: Option<Rc<String>>,
params: Vec<Rc<String>>,
body: Vec<Stmt>,
}
}
impl AST {
pub fn reduce(&self, symbol_table: &SymbolTable) -> ReducedAST {
let mut output = vec![];
for statement in self.0.iter() {
output.push(statement.reduce(symbol_table));
}
ReducedAST(output)
}
}
impl Statement {
fn reduce(&self, symbol_table: &SymbolTable) -> Stmt {
use ast::Statement::*;
match self {
ExpressionStatement(expr) => Stmt::Expr(expr.reduce(symbol_table)),
Declaration(decl) => decl.reduce(symbol_table),
}
}
}
impl Expression {
fn reduce(&self, symbol_table: &SymbolTable) -> Expr {
use ast::ExpressionType::*;
let ref input = self.0;
match input {
NatLiteral(n) => Expr::Lit(Lit::Nat(*n)),
FloatLiteral(f) => Expr::Lit(Lit::Float(*f)),
StringLiteral(s) => Expr::Lit(Lit::StringLit(s.clone())),
BoolLiteral(b) => Expr::Lit(Lit::Bool(*b)),
BinExp(binop, lhs, rhs) => binop.reduce(symbol_table, lhs, rhs),
PrefixExp(op, arg) => op.reduce(symbol_table, arg),
Value(name) => match symbol_table.lookup_by_name(name) {
Some(Symbol { spec: SymbolSpec::DataConstructor { index, type_args, type_name}, .. }) => Expr::Constructor {
type_name: type_name.clone(),
name: name.clone(),
tag: index.clone(),
arity: type_args.len(),
},
_ => Expr::Val(name.clone()),
},
Call { f, arguments } => Expr::Call {
f: Box::new(f.reduce(symbol_table)),
args: arguments.iter().map(|arg| arg.reduce(symbol_table)).collect(),
},
TupleLiteral(exprs) => Expr::Tuple(exprs.iter().map(|e| e.reduce(symbol_table)).collect()),
IfExpression { discriminator, body } => reduce_if_expression(discriminator, body, symbol_table),
_ => Expr::UnimplementedSigilValue,
}
}
}
fn reduce_if_expression(discriminator: &Discriminator, body: &IfExpressionBody, symbol_table: &SymbolTable) -> Expr {
let cond = Box::new(match *discriminator {
Discriminator::Simple(ref expr) => expr.reduce(symbol_table),
Discriminator::BinOp(ref _expr, ref _binop) => panic!("Can't yet handle binop discriminators")
});
match *body {
IfExpressionBody::SimpleConditional(ref then_clause, ref else_clause) => {
let then_clause = then_clause.iter().map(|expr| expr.reduce(symbol_table)).collect();
let else_clause = match else_clause {
None => vec![],
Some(stmts) => stmts.iter().map(|expr| expr.reduce(symbol_table)).collect(),
};
Expr::Conditional { cond, then_clause, else_clause }
},
IfExpressionBody::SimplePatternMatch(ref pat, ref then_clause, ref else_clause) => {
let then_clause = then_clause.iter().map(|expr| expr.reduce(symbol_table)).collect();
let else_clause = match else_clause {
None => vec![],
Some(stmts) => stmts.iter().map(|expr| expr.reduce(symbol_table)).collect(),
};
let alternatives = vec![
pat.to_alternative(&cond, then_clause, symbol_table),
Alternative::default(else_clause),
];
Expr::CaseMatch {
cond,
alternatives,
}
},
IfExpressionBody::GuardList(ref guard_arms) => {
let mut alternatives = vec![];
for arm in guard_arms {
match arm.guard {
Guard::Pat(ref p) => {
let item = arm.body.iter().map(|expr| expr.reduce(symbol_table)).collect();
let alt = p.to_alternative(&cond, item, symbol_table);
alternatives.push(alt);
},
Guard::HalfExpr(HalfExpr { op: _, expr: _ }) => {
return Expr::UnimplementedSigilValue
}
}
}
Expr::CaseMatch { cond, alternatives }
}
}
}
/* ig var pat
* x is SomeBigOldEnum(_, x, Some(t))
*/
impl Pattern {
fn to_alternative(&self, cond: &Box<Expr>, item: Vec<Stmt>, symbol_table: &SymbolTable) -> Alternative {
use self::Pattern::*;
fn handle_symbol(symbol: &Symbol, subpatterns: &Vec<Pattern>, item: Vec<Stmt>) -> Alternative {
let tag = match symbol.spec {
SymbolSpec::DataConstructor { index, .. } => index.clone(),
_ => panic!("Symbol is not a data constructor - this should've been caught in type-checking"),
};
let bound_vars = subpatterns.iter().map(|p| match p {
Literal(PatternLiteral::VarPattern(var)) => Some(var.clone()),
_ => None,
}).collect();
/*
let guard_equality_exprs: Vec<Expr> = subpatterns.iter().map(|p| match p {
Literal(lit) => match lit {
_ => unimplemented!()
},
_ => unimplemented!()
}).collect();
*/
let guard = None;
let subpatterns = vec![];
Alternative {
tag: Some(tag),
subpatterns,
guard,
bound_vars,
item,
}
}
match self {
TupleStruct(name, subpatterns) => {
let symbol = symbol_table.lookup_by_name(name).expect(&format!("Symbol {} not found", name));
handle_symbol(symbol, subpatterns, item)
},
TuplePattern(_items) => {
unimplemented!()
},
Record(_name, _pairs) => {
unimplemented!()
},
Ignored => Alternative::default(item),
Literal(lit) => match lit {
PatternLiteral::NumPattern { neg, num } => {
let comparison = Expr::Lit(match (neg, num) {
(false, ExpressionType::NatLiteral(n)) => Lit::Nat(*n),
(false, ExpressionType::FloatLiteral(f)) => Lit::Float(*f),
(true, ExpressionType::NatLiteral(n)) => Lit::Int(-1*(*n as i64)),
(true, ExpressionType::FloatLiteral(f)) => Lit::Float(-1.0*f),
_ => panic!("This should never happen")
});
let guard = Some(Expr::Call {
f: Box::new(Expr::Func(Func::BuiltIn(Rc::new("==".to_string())))),
args: vec![comparison, *cond.clone()]
});
Alternative {
tag: None,
subpatterns: vec![],
guard,
bound_vars: vec![],
item
}
},
PatternLiteral::StringPattern(_s) => unimplemented!(),
PatternLiteral::BoolPattern(b) => {
let guard = Some(if *b {
*cond.clone()
} else {
Expr::Call {
f: Box::new(Expr::Func(Func::BuiltIn(Rc::new("!".to_string())))),
args: vec![*cond.clone()]
}
});
Alternative {
tag: None,
subpatterns: vec![],
guard,
bound_vars: vec![],
item
}
},
PatternLiteral::VarPattern(var) => match symbol_table.lookup_by_name(var) {
Some(symbol) => handle_symbol(symbol, &vec![], item),
None => Alternative {
tag: None,
subpatterns: vec![],
guard: None,
bound_vars: vec![Some(var.clone())],
item
}
}
},
}
}
}
impl Declaration {
fn reduce(&self, symbol_table: &SymbolTable) -> Stmt {
use self::Declaration::*;
use ::ast::Signature;
match self {
Binding {name, constant, expr } => Stmt::Binding { name: name.clone(), constant: *constant, expr: expr.reduce(symbol_table) },
FuncDecl(Signature { name, params, .. }, statements) => Stmt::PreBinding {
name: name.clone(),
func: Func::UserDefined {
name: Some(name.clone()),
params: params.iter().map(|param| param.0.clone()).collect(),
body: statements.iter().map(|stmt| stmt.reduce(symbol_table)).collect(),
}
},
TypeDecl { .. } => Stmt::Noop,
TypeAlias(_, _) => Stmt::Noop,
Interface { .. } => Stmt::Noop,
Impl { .. } => Stmt::Expr(Expr::UnimplementedSigilValue),
_ => Stmt::Expr(Expr::UnimplementedSigilValue)
}
}
}
impl BinOp {
fn reduce(&self, symbol_table: &SymbolTable, lhs: &Box<Expression>, rhs: &Box<Expression>) -> Expr {
if **self.sigil() == "=" {
Expr::Assign {
val: Box::new(lhs.reduce(symbol_table)),
expr: Box::new(rhs.reduce(symbol_table)),
}
} else {
let f = Box::new(Expr::Func(Func::BuiltIn(self.sigil().clone())));
Expr::Call { f, args: vec![lhs.reduce(symbol_table), rhs.reduce(symbol_table)]}
}
}
}
impl PrefixOp {
fn reduce(&self, symbol_table: &SymbolTable, arg: &Box<Expression>) -> Expr {
let f = Box::new(Expr::Func(Func::BuiltIn(self.sigil().clone())));
Expr::Call { f, args: vec![arg.reduce(symbol_table)]}
}
}