schala/schala-lang/src/type_check.rs

446 lines
14 KiB
Rust

use std::collections::HashMap;
use std::rc::Rc;
use parsing::{AST, Statement, Declaration, Signature, Expression, ExpressionType, Operation, Variant, TypeName, TypeSingletonName};
// from Niko's talk
/* fn type_check(expression, expected_ty) -> Ty {
let ty = bare_type_check(expression, expected_type);
if ty icompatible with expected_ty {
try_coerce(expression, ty, expected_ty)
} else {
ty
}
}
fn bare_type_check(exprssion, expected_type) -> Ty { ... }
*/
/* H-M ALGO NOTES
from https://www.youtube.com/watch?v=il3gD7XMdmA
(also check out http://dev.stephendiehl.com/fun/006_hindley_milner.html)
typeInfer :: Expr a -> Matching (Type a)
unify :: Type a -> Type b -> Matching (Type c)
(Matching a) is a monad in which unification is done
ex:
typeInfer (If e1 e2 e3) = do
t1 <- typeInfer e1
t2 <- typeInfer e2
t3 <- typeInfer e3
_ <- unify t1 BoolType
unify t2 t3 -- b/c t2 and t3 have to be the same type
typeInfer (Const (ConstInt _)) = IntType -- same for other literals
--function application
typeInfer (Apply f x) = do
tf <- typeInfer f
tx <- typeInfer x
case tf of
FunctionType t1 t2 -> do
_ <- unify t1 tx
return t2
_ -> fail "Not a function"
--type annotation
typeInfer (Typed x t) = do
tx <- typeInfer x
unify tx t
--variable and let expressions - need to pass around a map of variable names to types here
typeInfer :: [ (Var, Type Var) ] -> Expr Var -> Matching (Type Var)
typeInfer ctx (Var x) = case (lookup x ctx) of
Just t -> return t
Nothing -> fail "Unknown variable"
--let x = e1 in e2
typeInfer ctx (Let x e1 e2) = do
t1 <- typeInfer ctx e1
typeInfer ((x, t1) :: ctx) e2
--lambdas are complicated (this represents ʎx.e)
typeInfer ctx (Lambda x e) = do
t1 <- allocExistentialVariable
t2 <- typeInfer ((x, t1) :: ctx) e
return $ FunctionType t1 t2 -- ie. t1 -> t2
--to solve the problem of map :: (a -> b) -> [a] -> [b]
when we use a variable whose type has universal tvars, convert those universal
tvars to existential ones
-and each distinct universal tvar needs to map to the same existential type
-so we change typeinfer:
typeInfer ctx (Var x) = do
case (lookup x ctx) of
Nothing -> ...
Just t -> do
let uvars = nub (toList t) -- nub removes duplicates, so this gets unique universally quantified variables
evars <- mapM (const allocExistentialVariable) uvars
let varMap = zip uvars evars
let vixVar varMap v = fromJust $ lookup v varMap
return (fmap (fixVar varMap) t)
--how do we define unify??
-recall, type signature is:
unify :: Type a -> Type b -> Matching (Type c)
unify BoolType BoolType = BoolType --easy, same for all constants
unify (FunctionType t1 t2) (FunctionType t3 t4) = do
t5 <- unify t1 t3
t6 <- unify t2 t4
return $ FunctionType t5 t6
unify (TVar a) (TVar b) = if a == b then TVar a else fail
--existential types can be assigned another type at most once
--some complicated stuff about hanlding existential types
--everything else is a type error
unify a b = fail
SKOLEMIZATION - how you prevent an unassigned existential type variable from leaking!
-before a type gets to global scope, replace all unassigned existential vars w/ new unique universal
type variables
*/
#[derive(Debug, PartialEq, Clone)]
pub enum Type {
TVar(TypeVar),
TConst(TypeConst),
TFunc(Box<Type>, Box<Type>),
}
#[derive(Debug, PartialEq, Clone)]
pub enum TypeVar {
Univ(Rc<String>),
Exist(u64),
}
impl TypeVar {
fn univ(label: &str) -> TypeVar {
TypeVar::Univ(Rc::new(label.to_string()))
}
}
#[derive(Debug, PartialEq, Clone)]
pub enum TypeConst {
UserT(Rc<String>),
Integer,
Float,
StringT,
Boolean,
Unit,
Bottom,
}
type TypeCheckResult = Result<Type, String>;
#[derive(Debug, PartialEq, Eq, Hash)]
struct PathSpecifier(Rc<String>);
#[derive(Debug, PartialEq, Clone)]
struct TypeContextEntry {
ty: Type,
constant: bool
}
pub struct TypeContext {
symbol_table: HashMap<PathSpecifier, TypeContextEntry>,
evar_table: HashMap<u64, Type>,
existential_type_label_count: u64
}
impl TypeContext {
pub fn new() -> TypeContext {
TypeContext {
symbol_table: HashMap::new(),
evar_table: HashMap::new(),
existential_type_label_count: 0,
}
}
pub fn add_symbols(&mut self, ast: &AST) {
use self::Declaration::*;
use self::Type::*;
use self::TypeConst::*;
for statement in ast.0.iter() {
match *statement {
Statement::ExpressionStatement(_) => (),
Statement::Declaration(ref decl) => match *decl {
FuncSig(_) => (),
Impl { .. } => (),
TypeDecl(ref type_constructor, ref body) => {
for variant in body.0.iter() {
let (spec, ty) = match variant {
&Variant::UnitStruct(ref data_constructor) => {
let spec = PathSpecifier(data_constructor.clone());
let ty = TConst(UserT(type_constructor.name.clone()));
(spec, ty)
},
&Variant::TupleStruct(ref data_construcor, ref args) => {
//TODO fix
let arg = args.get(0).unwrap();
let type_arg = self.from_anno(arg);
let spec = PathSpecifier(data_construcor.clone());
let ty = TFunc(Box::new(type_arg), Box::new(TConst(UserT(type_constructor.name.clone()))));
(spec, ty)
},
&Variant::Record(_, _) => unimplemented!(),
};
let entry = TypeContextEntry { ty, constant: true };
self.symbol_table.insert(spec, entry);
}
},
TypeAlias { .. } => (),
Binding {ref name, ref constant, ref expr} => {
let spec = PathSpecifier(name.clone());
let ty = expr.1.as_ref()
.map(|ty| self.from_anno(ty))
.unwrap_or_else(|| { self.alloc_existential_type() }); // this call to alloc_existential is OK b/c a binding only ever has one type, so if the annotation is absent, it's fine to just make one de novo
let entry = TypeContextEntry { ty, constant: *constant };
self.symbol_table.insert(spec, entry);
},
FuncDecl(ref signature, _) => {
let spec = PathSpecifier(signature.name.clone());
let ty = self.from_signature(signature);
let entry = TypeContextEntry { ty, constant: true };
self.symbol_table.insert(spec, entry);
},
}
}
}
}
fn lookup(&mut self, binding: &Rc<String>) -> Option<TypeContextEntry> {
let key = PathSpecifier(binding.clone());
self.symbol_table.get(&key).map(|entry| entry.clone())
}
pub fn debug_symbol_table(&self) -> String {
format!("Symbol table:\n {:?}\nEvar table:\n{:?}", self.symbol_table, self.evar_table)
}
fn alloc_existential_type(&mut self) -> Type {
let ret = Type::TVar(TypeVar::Exist(self.existential_type_label_count));
self.existential_type_label_count += 1;
ret
}
fn from_anno(&mut self, anno: &TypeName) -> Type {
use self::Type::*;
use self::TypeConst::*;
match anno {
&TypeName::Singleton(TypeSingletonName { ref name, .. }) => {
match name.as_ref().as_ref() {
"Int" => TConst(Integer),
"Float" => TConst(Float),
"Bool" => TConst(Boolean),
"String" => TConst(StringT),
s => TVar(TypeVar::Univ(Rc::new(format!("{}",s)))),
}
},
&TypeName::Tuple(ref items) => {
if items.len() == 1 {
TConst(Unit)
} else {
TConst(Bottom)
}
}
}
}
fn from_signature(&mut self, sig: &Signature) -> Type {
use self::Type::*;
use self::TypeConst::*;
//TODO this won't work properly until you make sure that all (universal) type vars in the function have the same existential type var
// actually this should never even put existential types into the symbol table at all
//this will crash if more than 5 arg function is used
let names = vec!["a", "b", "c", "d", "e", "f"];
let mut idx = 0;
let mut get_type = || { let q = TVar(TypeVar::Univ(Rc::new(format!("{}", names.get(idx).unwrap())))); idx += 1; q };
let return_type = sig.type_anno.as_ref().map(|anno| self.from_anno(&anno)).unwrap_or_else(|| { get_type() });
if sig.params.len() == 0 {
TFunc(Box::new(TConst(Unit)), Box::new(return_type))
} else {
let mut output_type = return_type;
for p in sig.params.iter() {
let p_type = p.1.as_ref().map(|anno| self.from_anno(anno)).unwrap_or_else(|| { get_type() });
output_type = TFunc(Box::new(p_type), Box::new(output_type));
}
output_type
}
}
pub fn type_check(&mut self, ast: &AST) -> TypeCheckResult {
use self::Type::*;
use self::TypeConst::*;
let mut last = TConst(Unit);
for statement in ast.0.iter() {
match statement {
&Statement::Declaration(ref _decl) => {
//return Err(format!("Declarations not supported"));
},
&Statement::ExpressionStatement(ref expr) => {
last = self.infer(expr)?;
}
}
}
Ok(last)
}
fn infer(&mut self, expr: &Expression) -> TypeCheckResult {
match (&expr.0, &expr.1) {
(exprtype, &Some(ref anno)) => {
let tx = self.infer_no_anno(exprtype)?;
let ty = self.from_anno(anno);
self.unify(tx, ty)
},
(exprtype, &None) => self.infer_no_anno(exprtype),
}
}
fn infer_no_anno(&mut self, ex: &ExpressionType) -> TypeCheckResult {
use self::ExpressionType::*;
use self::Type::*;
use self::TypeConst::*;
Ok(match ex {
&IntLiteral(_) => TConst(Integer),
&FloatLiteral(_) => TConst(Float),
&StringLiteral(_) => TConst(StringT),
&BoolLiteral(_) => TConst(Boolean),
&Value(ref name, _) => {
self.lookup(name)
.map(|entry| entry.ty)
.ok_or(format!("Couldn't find {}", name))?
},
&BinExp(ref op, ref lhs, ref rhs) => {
let t_lhs = self.infer(lhs)?;
match self.infer_op(op)? {
TFunc(t1, t2) => {
let _ = self.unify(t_lhs, *t1)?;
let t_rhs = self.infer(rhs)?;
let x = *t2;
match x {
TFunc(t3, t4) => {
let _ = self.unify(t_rhs, *t3)?;
*t4
},
_ => return Err(format!("Not a function type either")),
}
},
_ => return Err(format!("Op {:?} is not a function type", op)),
}
},
&Call { ref f, ref arguments } => {
let tf = self.infer(f)?;
let targ = self.infer(arguments.get(0).unwrap())?;
match tf {
TFunc(box t1, box t2) => {
let _ = self.unify(t1, targ)?;
t2
},
_ => return Err(format!("Not a function!")),
}
},
_ => TConst(Bottom),
})
}
fn infer_op(&mut self, op: &Operation) -> TypeCheckResult {
use self::Type::*;
use self::TypeConst::*;
macro_rules! binoptype {
($lhs:expr, $rhs:expr, $out:expr) => { TFunc(Box::new($lhs), Box::new(TFunc(Box::new($rhs), Box::new($out)))) };
}
Ok(match (*op.0).as_ref() {
"+" => binoptype!(TConst(Integer), TConst(Integer), TConst(Integer)),
"++" => binoptype!(TConst(StringT), TConst(StringT), TConst(StringT)),
"-" => binoptype!(TConst(Integer), TConst(Integer), TConst(Integer)),
"*" => binoptype!(TConst(Integer), TConst(Integer), TConst(Integer)),
"/" => binoptype!(TConst(Integer), TConst(Integer), TConst(Integer)),
"%" => binoptype!(TConst(Integer), TConst(Integer), TConst(Integer)),
_ => TConst(Bottom)
})
}
fn unify(&mut self, t1: Type, t2: Type) -> TypeCheckResult {
use self::Type::*;
use self::TypeVar::*;
println!("Calling unify with `{:?}` and `{:?}`", t1, t2);
match (&t1, &t2) {
(&TConst(ref c1), &TConst(ref c2)) if c1 == c2 => Ok(TConst(c1.clone())),
(&TFunc(ref t1, ref t2), &TFunc(ref t3, ref t4)) => {
let t5 = self.unify(*t1.clone().clone(), *t3.clone().clone())?;
let t6 = self.unify(*t2.clone().clone(), *t4.clone().clone())?;
Ok(TFunc(Box::new(t5), Box::new(t6)))
},
(&TVar(Univ(ref a)), &TVar(Univ(ref b))) => {
if a == b {
Ok(TVar(Univ(a.clone())))
} else {
Err(format!("Couldn't unify universal types {} and {}", a, b))
}
},
//the interesting case!!
(&TVar(Exist(ref a)), ref t2) => {
let x = self.evar_table.get(a).map(|x| x.clone());
match x {
Some(ref t1) => self.unify(t1.clone().clone(), t2.clone().clone()),
None => {
self.evar_table.insert(*a, t2.clone().clone());
Ok(t2.clone().clone())
}
}
},
(ref t1, &TVar(Exist(ref a))) => {
let x = self.evar_table.get(a).map(|x| x.clone());
match x {
Some(ref t2) => self.unify(t2.clone().clone(), t1.clone().clone()),
None => {
self.evar_table.insert(*a, t1.clone().clone());
Ok(t1.clone().clone())
}
}
},
_ => Err(format!("Types {:?} and {:?} don't unify", t1, t2))
}
}
}
#[cfg(test)]
mod tests {
use super::{Type, TypeVar, TypeConst, TypeContext};
use super::Type::*;
use super::TypeConst::*;
use schala_lang::parsing::{parse, tokenize};
macro_rules! type_test {
($input:expr, $correct:expr) => {
{
let mut tc = TypeContext::new();
let ast = parse(tokenize($input)).0.unwrap() ;
tc.add_symbols(&ast);
assert_eq!($correct, tc.type_check(&ast).unwrap())
}
}
}
#[test]
fn basic_inference() {
type_test!("30", TConst(Integer));
type_test!("fn x(a: Int): Bool {}; x(1)", TConst(Boolean));
}
}