schala/src/schala_lang/parsing.rs

607 lines
16 KiB
Rust

extern crate itertools;
use std::collections::HashMap;
use std::rc::Rc;
use std::iter::{Enumerate, Peekable};
use self::itertools::Itertools;
use std::vec::IntoIter;
use std::str::Chars;
#[derive(Debug, PartialEq, Clone)]
pub enum TokenType {
Newline, Semicolon,
LParen, RParen,
LSquareBracket, RSquareBracket,
LAngleBracket, RAngleBracket,
LCurlyBrace, RCurlyBrace,
Pipe,
Comma, Period, Colon, Underscore,
Operator(Rc<String>),
DigitGroup(Rc<String>), HexNumberSigil, BinNumberSigil,
StrLiteral(Rc<String>),
Identifier(Rc<String>),
Keyword(Kw),
EOF,
Error(String),
}
use self::TokenType::*;
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum Kw {
If, Else,
Func,
For,
Match,
Var, Const, Let, In,
Alias, Type, SelfType, SelfIdent,
Trait, Impl,
True, False
}
use self::Kw::*;
lazy_static! {
static ref KEYWORDS: HashMap<&'static str, Kw> =
hashmap! {
"if" => Kw::If,
"else" => Kw::Else,
"fn" => Kw::Func,
"for" => Kw::For,
"match" => Kw::Match,
"var" => Kw::Var,
"const" => Kw::Const,
"let" => Kw::Let,
"in" => Kw::In,
"alias" => Kw::Alias,
"type" => Kw::Type,
"Self" => Kw::SelfType,
"self" => Kw::SelfIdent,
"trait" => Kw::Trait,
"impl" => Kw::Impl,
"true" => Kw::True,
"false" => Kw::False,
};
}
#[derive(Debug)]
pub struct Token {
token_type: TokenType,
offset: usize,
}
impl Token {
pub fn get_error(&self) -> Option<&String> {
match self.token_type {
TokenType::Error(ref s) => Some(s),
_ => None,
}
}
}
fn is_digit(c: &char) -> bool {
c.is_digit(10)
}
type CharIter<'a> = Peekable<Enumerate<Chars<'a>>>;
pub fn tokenize(input: &str) -> Vec<Token> {
let mut tokens: Vec<Token> = Vec::new();
let mut input: CharIter = input.chars().enumerate().peekable();
while let Some((idx, c)) = input.next() {
let cur_tok_type = match c {
'#' => {
if let Some(&(_, '{')) = input.peek() {
} else {
while let Some((_, c)) = input.next() {
if c == '\n' {
break;
}
}
}
continue;
},
c if c.is_whitespace() && c != '\n' => continue,
'\n' => Newline, ';' => Semicolon,
':' => Colon, ',' => Comma, '.' => Period,
'(' => LParen, ')' => RParen,
'{' => LCurlyBrace, '}' => RCurlyBrace,
'<' => LAngleBracket, '>' => RAngleBracket,
'[' => LSquareBracket, ']' => RSquareBracket,
'|' => Pipe,
'"' => handle_quote(&mut input),
c if is_digit(&c) => handle_digit(c, &mut input),
c if c.is_alphabetic() || c == '_' => handle_alphabetic(c, &mut input), //TODO I'll probably have to rewrite this if I care about types being uppercase, also type parameterization
c => handle_operator(c, &mut input),
};
tokens.push(Token { token_type: cur_tok_type, offset: idx });
}
tokens
}
fn handle_digit(c: char, input: &mut CharIter) -> TokenType {
if c == '0' && input.peek().map_or(false, |&(_, c)| { c == 'x' }) {
input.next();
HexNumberSigil
} else if c == '0' && input.peek().map_or(false, |&(_, c)| { c == 'b' }) {
input.next();
BinNumberSigil
} else {
let mut buf = c.to_string();
buf.extend(input.peeking_take_while(|&(_, ref c)| is_digit(c)).map(|(_, c)| { c }));
DigitGroup(Rc::new(buf))
}
}
fn handle_quote(input: &mut CharIter) -> TokenType {
let mut buf = String::new();
loop {
match input.next().map(|(_, c)| { c }) {
Some('"') => break,
Some('\\') => {
let next = input.peek().map(|&(_, c)| { c });
if next == Some('n') {
input.next();
buf.push('\n')
} else if next == Some('"') {
input.next();
buf.push('"');
} else if next == Some('t') {
input.next();
buf.push('\t');
}
},
Some(c) => buf.push(c),
None => return TokenType::Error(format!("Unclosed string")),
}
}
TokenType::StrLiteral(Rc::new(buf))
}
fn handle_alphabetic(c: char, input: &mut CharIter) -> TokenType {
let mut buf = String::new();
buf.push(c);
if c == '_' && input.peek().map(|&(_, c)| { !c.is_alphabetic() }).unwrap_or(true) {
return TokenType::Underscore
}
loop {
match input.peek().map(|&(_, c)| { c }) {
Some(c) if c.is_alphanumeric() => {
input.next();
buf.push(c);
},
_ => break,
}
}
match KEYWORDS.get(buf.as_str()) {
Some(kw) => TokenType::Keyword(kw.clone()),
None => TokenType::Identifier(Rc::new(buf)),
}
}
fn handle_operator(c: char, input: &mut CharIter) -> TokenType {
let mut buf = String::new();
buf.push(c);
loop {
match input.peek().map(|&(_, c)| { c }) {
Some(c) if !c.is_alphabetic() && !c.is_whitespace() => {
input.next();
buf.push(c);
},
_ => break
}
}
TokenType::Operator(Rc::new(buf))
}
#[cfg(test)]
mod schala_tokenizer_tests {
use super::*;
use super::TokenType::*;
use super::Kw::*;
macro_rules! digit { ($ident:expr) => { DigitGroup(Rc::new($ident.to_string())) } }
macro_rules! ident { ($ident:expr) => { Identifier(Rc::new($ident.to_string())) } }
macro_rules! op { ($ident:expr) => { Operator(Rc::new($ident.to_string())) } }
#[test]
fn tokens() {
let a = tokenize("let a: A<B> = c ++ d");
let token_types: Vec<TokenType> = a.into_iter().map(move |t| t.token_type).collect();
assert_eq!(token_types, vec![Keyword(Let), ident!("a"), Colon, ident!("A"),
LAngleBracket, ident!("B"), RAngleBracket, op!("="), ident!("c"), op!("++"), ident!("d")]);
}
#[test]
fn underscores() {
let token_types: Vec<TokenType> = tokenize("4_8").into_iter().map(move |t| t.token_type).collect();
assert_eq!(token_types, vec![digit!("4"), Underscore, digit!("8")]);
}
}
/*
Schala (PROVISIONAL!!) EBNF grammar
'' = literal, all other symbols are nonterminals
program := (statement delimiter ?)*
delimiter := 'Newline' | ';'
statement := declaration | expression
declaration := module | function | type_decl
type_decl := 'type' type_format
type_format := 'alias' '=' type | type_constructor
type_constructor := capital_ident '=' type_rhs
type_rhs := struct_decl | type_variant ('|' type_variant)*
struct_decl := 'struct' '{' (ident ':' type)* '}'
type_variant := capital_ident | tuple_type | capital_ident struct_decl
tuple_type := // something like Variant(a,b)
type := // something like Type[A[b]]
ascription := expression (':' type)+
function := 'fn' prototype '{' (statement)* '}'
prototype := identifier '(' identlist ')'
identlist := identifier (',' identifier)* | ε
declaration := FN prototype LCurlyBrace (statement)* RCurlyBrace
prototype := identifier LParen identlist RParen
identlist := Ident (Comma Ident)* | ε
exprlist := Expression (Comma Expression)* | ε
itemlist := Ident COLON Expression (Comma Ident COLON Expression)* | ε
expression := postop_expression (op postop_expression)*
postop_expression := primary_expression postop
primary_expression := number_expr | String | identifier_expr | paren_expr | conditional_expr | while_expr | lambda_expr | list_expr | struct_expr
number_expr := (PLUS | MINUS ) number_expr | Number
identifier_expr := call_expression | Variable
list_expr := LSquareBracket exprlist RSquareBracket
struct_expr := LCurlyBrace itemlist RCurlyBrace
call_expression := Identifier LParen exprlist RParen
while_expr := WHILE primary_expression LCurlyBrace (expression delimiter)* RCurlyBrace
paren_expr := LParen expression RParen
conditional_expr := IF expression LCurlyBrace (expression delimiter)* RCurlyBrace (LCurlyBrace (expresion delimiter)* RCurlyBrace)?
lambda_expr := FN LParen identlist RParen LCurlyBrace (expression delimiter)* RCurlyBrace
lambda_call := | LParen exprlist RParen
postop := ε | LParen exprlist RParen | LBracket expression RBracket
op := '+', '-', etc.
*/
/* Schala EBNF Grammar */
/*
program := (statement delimiter)* EOF
delimiter := NEWLINE | SEMICOLON
statement := expression | declaration
declaration := type_declaration | func_declaration
type_declaration := TYPE identifier
func_declaration := FN identifier LParen param_list RParen
param_list := (identifier type_anno+ Comma)*
type_anno := Colon type
expression := precedence_expr
precedence_expr := primary
primary := literal
literal := TRUE | FALSE | number_literal | str_literal
identifier := IDENTIFIER
// a float_literal can still be assigned to an int in type-checking
number_literal := int_literal | float_literal
int_literal = (HEX_SIGIL | BIN_SIGIL) digits
float_literal := digits (PERIOD digits)
digits := (digit_group underscore)+
*/
type TokenIter = Peekable<IntoIter<Token>>;
#[derive(Debug)]
pub struct ParseError {
pub msg: String,
}
impl ParseError {
fn new<T>(msg: &str) -> ParseResult<T> {
Err(ParseError { msg: msg.to_string() })
}
}
pub type ParseResult<T> = Result<T, ParseError>;
struct Parser {
tokens: TokenIter,
}
impl Parser {
fn new(input: Vec<Token>) -> Parser {
Parser { tokens: input.into_iter().peekable() }
}
fn peek(&mut self) -> TokenType {
self.tokens.peek().map(|ref t| { t.token_type.clone() }).unwrap_or(TokenType::EOF)
}
fn next(&mut self) -> TokenType {
self.tokens.next().map(|ref t| { t.token_type.clone() }).unwrap_or(TokenType::EOF)
}
}
macro_rules! expect {
($self:expr, $token_type:pat, $message:expr) => {
match $self.peek() {
$token_type => $self.next(),
_ => return Err(ParseError { msg: $message.to_string() }),
}
}
}
#[derive(Debug, PartialEq)]
pub struct AST(Vec<Statement>);
#[derive(Debug, PartialEq)]
pub enum Statement {
Expression(Expression),
Declaration(Declaration),
}
#[derive(Debug, PartialEq)]
pub enum Declaration {
FuncDecl,
TypeDecl(Rc<String>, TypeBody)
}
#[derive(Debug, PartialEq)]
pub enum TypeBody {
TypeBody
}
#[derive(Debug, PartialEq)]
pub enum Expression {
IntLiteral(u64),
FloatLiteral(f64),
BinExp(Operation, Box<Expression>, Box<Expression>)
}
#[derive(Debug, PartialEq)]
pub struct Operation {
op: Rc<String>
}
impl Operation {
fn min_precedence() -> i32 {
i32::min_value()
}
fn get_precedence(op: Rc<String>) -> i32 {
let c: char = op.chars().next().unwrap();
match c {
'+' | '-' => 10,
'*' | '/' | '%' => 20,
_ => 30,
}
}
}
impl Parser {
fn program(&mut self) -> ParseResult<AST> {
let mut statements = Vec::new();
loop {
match self.peek() {
EOF => break,
Newline | Semicolon => {
self.next();
continue;
},
_ => statements.push(self.statement()?),
}
}
Ok(AST(statements))
}
fn statement(&mut self) -> ParseResult<Statement> {
//TODO handle error recovery here
match self.peek() {
Keyword(Type) => self.type_declaration().map(|decl| { Statement::Declaration(decl) }),
Keyword(Func)=> self.func_declaration().map(|func| { Statement::Declaration(func) }),
_ => self.expression().map(|expr| { Statement::Expression(expr) } ),
}
}
fn type_declaration(&mut self) -> ParseResult<Declaration> {
expect!(self, Keyword(Type), "Expected 'type'");
let name = self.identifier()?;
Ok(Declaration::TypeDecl(name, TypeBody::TypeBody))
}
fn func_declaration(&mut self) -> ParseResult<Declaration> {
expect!(self, Keyword(Func), "Expected 'fn'");
let name = self.identifier()?;
expect!(self, LParen, "Expected '('");
let params = self.param_list();
expect!(self, RParen, "Expected ')'");
Ok(Declaration::FuncDecl)
}
fn param_list(&mut self) -> ParseResult<Vec<Rc<String>>> {
Ok(vec!())
}
fn expression(&mut self) -> ParseResult<Expression> {
self.precedence_expr(Operation::min_precedence())
}
// this implements Pratt parsing, see http://journal.stuffwithstuff.com/2011/03/19/pratt-parsers-expression-parsing-made-easy/
fn precedence_expr(&mut self, precedence: i32) -> ParseResult<Expression> {
use self::Expression::*;
//TODO clean this up
let mut lhs = self.primary()?;
loop {
let op_str = match self.peek() {
Operator(op) => op,
_ => break,
};
println!("Opstr: {}", op_str);
let new_precedence = Operation::get_precedence(op_str);
println!("new {} and old {} precedence", new_precedence, precedence);
if precedence >= new_precedence {
break;
}
let op_str = match self.next() {
Operator(op) => op,
_ => unreachable!(),
};
let rhs = self.precedence_expr(new_precedence)?;
let operation = Operation { op: op_str };
lhs = BinExp(operation, Box::new(lhs), Box::new(rhs));
}
Ok(lhs)
}
fn primary(&mut self) -> ParseResult<Expression> {
self.literal()
}
fn identifier(&mut self) -> ParseResult<Rc<String>> {
match self.next() {
Identifier(s) => Ok(s),
p => ParseError::new(&format!("Expected an identifier, got {:?}", p)),
}
}
fn literal(&mut self) -> ParseResult<Expression> {
match self.peek() {
DigitGroup(_) | HexNumberSigil | BinNumberSigil | Period => self.number_literal(),
t => panic!("trying to parse {:?}", t),
}
}
fn number_literal(&mut self) -> ParseResult<Expression> {
match self.peek() {
HexNumberSigil | BinNumberSigil => self.int_literal(),
_ => self.float_literal(),
}
}
fn int_literal(&mut self) -> ParseResult<Expression> {
use self::Expression::*;
match self.next() {
BinNumberSigil => {
let digits = self.digits()?;
let n = parse_binary(digits)?;
Ok(IntLiteral(n))
},
HexNumberSigil => {
unimplemented!()
},
_ => return ParseError::new("Expected '0x' or '0b'"),
}
}
fn float_literal(&mut self) -> ParseResult<Expression> {
use self::Expression::*;
let mut digits = self.digits()?;
if let TokenType::Period = self.peek() {
self.next();
digits.push_str(".");
digits.push_str(&self.digits()?);
match digits.parse::<f64>() {
Ok(f) => Ok(FloatLiteral(f)),
Err(e) => unimplemented!("Float didn't parse with error: {}", e),
}
} else {
match digits.parse::<u64>() {
Ok(d) => Ok(IntLiteral(d)),
Err(e) => unimplemented!("Need to handle numbers that don't parse to a Rust u64 {}", e),
}
}
}
fn digits(&mut self) -> ParseResult<String> {
let mut ds = String::new();
loop {
match self.peek() {
Underscore => { self.next(); continue; },
DigitGroup(ref s) => { self.next(); ds.push_str(s)},
_ => break,
}
}
Ok(ds)
}
}
fn parse_binary(digits: String) -> ParseResult<u64> {
let mut result: u64 = 0;
let mut multiplier = 1;
for d in digits.chars().rev() {
match d {
'1' => result += multiplier,
'0' => (),
_ => return ParseError::new("Encountered a character not '1' or '0 while parsing a binary literal"),
}
multiplier *= 2;
}
Ok(result)
}
pub fn parse(input: Vec<Token>) -> Result<AST, ParseError> {
let mut parser = Parser::new(input);
parser.program()
}
#[cfg(test)]
mod parse_tests {
use super::*;
use super::Statement::*;
use super::Expression::*;
use super::ParseError;
macro_rules! parse_test {
($string:expr, $correct:expr) => { assert_eq!(parse(tokenize($string)).unwrap(), $correct) }
}
macro_rules! binexp {
($op:expr, $lhs:expr, $rhs:expr) => { BinExp($op, Box::new($lhs), Box::new($rhs)) }
}
macro_rules! op {
($op:expr) => { Operation { op: Rc::new($op.to_string()) } }
}
#[test]
fn test_parsing() {
parse_test!("8.1", AST(vec![Expression(FloatLiteral(8.1))]));
parse_test!("0b010", AST(vec![Expression(IntLiteral(2))]));
parse_test!("3; 4; 4.3", AST(
vec![Expression(IntLiteral(3)), Expression(IntLiteral(4)),
Expression(FloatLiteral(4.3))]));
parse_test!("1 + 2 * 3", AST(vec!
[
Expression(binexp!(op!("+"), IntLiteral(1), binexp!(op!("*"), IntLiteral(2), IntLiteral(3))))
]));
parse_test!("1 * 2 + 3", AST(vec!
[
Expression(binexp!(op!("+"), binexp!(op!("*"), IntLiteral(1), IntLiteral(2)), IntLiteral(3)))
]));
parse_test!("1 && 2", AST(vec![Expression(binexp!(op!("&&"), IntLiteral(1), IntLiteral(2)))]));
}
}