356 lines
12 KiB
Rust
356 lines
12 KiB
Rust
use std::collections::HashMap;
|
|
use std::collections::hash_map::Entry;
|
|
use std::rc::Rc;
|
|
use std::fmt;
|
|
|
|
use crate::tokenizing::Location;
|
|
use crate::ast;
|
|
use crate::ast::{ItemId, TypeBody, Variant, TypeSingletonName, Declaration, Statement, StatementKind, ModuleSpecifier};
|
|
use crate::typechecking::TypeName;
|
|
|
|
mod resolver;
|
|
mod tables;
|
|
mod symbol_trie;
|
|
use symbol_trie::SymbolTrie;
|
|
mod test;
|
|
|
|
/// Fully-qualified symbol name
|
|
#[derive(Debug, Clone, Eq, PartialEq, Hash, PartialOrd, Ord)]
|
|
pub struct FQSN {
|
|
//TODO FQSN's need to be cheaply cloneable
|
|
scopes: Vec<Scope>, //TODO rename to ScopeSegment
|
|
}
|
|
|
|
impl FQSN {
|
|
fn from_scope_stack(scopes: &[Scope], new_name: String) -> Self {
|
|
let mut v = Vec::new();
|
|
for s in scopes {
|
|
v.push(s.clone());
|
|
}
|
|
v.push(Scope::Name(new_name));
|
|
FQSN { scopes: v }
|
|
}
|
|
}
|
|
|
|
//TODO eventually this should use ItemId's to avoid String-cloning
|
|
/// One segment within a scope.
|
|
#[derive(Debug, Clone, Eq, PartialEq, Hash, PartialOrd, Ord)]
|
|
enum Scope {
|
|
Name(String)
|
|
}
|
|
|
|
#[allow(dead_code)]
|
|
#[derive(Debug, Clone)]
|
|
struct DuplicateName {
|
|
prev_name: FQSN,
|
|
location: Location
|
|
}
|
|
|
|
#[allow(dead_code)]
|
|
#[derive(Debug)]
|
|
struct NameSpec<K> {
|
|
location: Location,
|
|
kind: K
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
enum NameKind {
|
|
Module,
|
|
Function,
|
|
Binding,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct TypeKind;
|
|
|
|
/// Keeps track of what names were used in a given namespace.
|
|
struct NameTable<K> {
|
|
table: HashMap<FQSN, NameSpec<K>>
|
|
}
|
|
|
|
impl<K> NameTable<K> {
|
|
fn new() -> Self {
|
|
Self { table: HashMap::new() }
|
|
}
|
|
|
|
fn register(&mut self, name: FQSN, spec: NameSpec<K>) -> Result<(), DuplicateName> {
|
|
match self.table.entry(name.clone()) {
|
|
Entry::Occupied(o) => {
|
|
Err(DuplicateName { prev_name: name, location: o.get().location })
|
|
},
|
|
Entry::Vacant(v) => {
|
|
v.insert(spec);
|
|
Ok(())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//cf. p. 150 or so of Language Implementation Patterns
|
|
pub struct SymbolTable {
|
|
/// Used for import resolution.
|
|
symbol_trie: SymbolTrie,
|
|
|
|
/// These tables are responsible for preventing duplicate names.
|
|
fq_names: NameTable<NameKind>, //Note that presence of two tables implies that a type and other binding with the same name can co-exist
|
|
types: NameTable<TypeKind>,
|
|
|
|
/// A map of the `ItemId`s of instances of use of names to their fully-canonicalized FQSN form.
|
|
/// Updated by the item id resolver.
|
|
id_to_fqsn: HashMap<ItemId, FQSN>,
|
|
|
|
/// A map of the FQSN of an AST definition to a Symbol data structure, which contains
|
|
/// some basic information about what that symbol is and (ideally) references to other tables
|
|
/// (e.g. typechecking tables) with more information about that symbol.
|
|
fqsn_to_symbol: HashMap<FQSN, Symbol>,
|
|
}
|
|
|
|
impl SymbolTable {
|
|
pub fn new() -> SymbolTable {
|
|
SymbolTable {
|
|
symbol_trie: SymbolTrie::new(),
|
|
fq_names: NameTable::new(),
|
|
types: NameTable::new(),
|
|
id_to_fqsn: HashMap::new(),
|
|
fqsn_to_symbol: HashMap::new(),
|
|
}
|
|
}
|
|
|
|
/// The main entry point into the symbol table. This will traverse the AST in several
|
|
/// different ways and populate subtables with information that will be used further in the
|
|
/// compilation process.
|
|
pub fn process_ast(&mut self, ast: &ast::AST) -> Result<(), String> {
|
|
|
|
self.populate_name_tables(ast)?;
|
|
self.resolve_symbol_ids(ast)?;
|
|
Ok(())
|
|
}
|
|
|
|
pub fn lookup_symbol(&self, id: &ItemId) -> Option<&Symbol> {
|
|
let fqsn = self.id_to_fqsn.get(id);
|
|
fqsn.and_then(|fqsn| self.fqsn_to_symbol.get(fqsn))
|
|
}
|
|
}
|
|
|
|
#[allow(dead_code)]
|
|
#[derive(Debug)]
|
|
pub struct Symbol {
|
|
pub local_name: Rc<String>,
|
|
//fully_qualified_name: FullyQualifiedSymbolName,
|
|
pub spec: SymbolSpec,
|
|
}
|
|
|
|
impl fmt::Display for Symbol {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "<Local name: {}, Spec: {}>", self.local_name, self.spec)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub enum SymbolSpec {
|
|
Func(Vec<TypeName>),
|
|
DataConstructor {
|
|
index: usize,
|
|
arity: usize,
|
|
type_name: TypeName, //TODO this eventually needs to be some kind of ID
|
|
},
|
|
RecordConstructor {
|
|
index: usize,
|
|
members: HashMap<Rc<String>, TypeName>,
|
|
type_name: TypeName,
|
|
},
|
|
Binding,
|
|
}
|
|
|
|
impl fmt::Display for SymbolSpec {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
use self::SymbolSpec::*;
|
|
match self {
|
|
Func(type_names) => write!(f, "Func({:?})", type_names),
|
|
DataConstructor { index, type_name, arity } => write!(f, "DataConstructor(idx: {}, arity: {}, type: {})", index, arity, type_name),
|
|
RecordConstructor { type_name, index, ..} => write!(f, "RecordConstructor(idx: {})(<members> -> {})", index, type_name),
|
|
Binding => write!(f, "Binding"),
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
impl SymbolTable {
|
|
/* note: this adds names for *forward reference* but doesn't actually create any types. solve that problem
|
|
* later */
|
|
|
|
/// Register a new mapping of a fully-qualified symbol name (e.g. `Option::Some`)
|
|
/// to a Symbol, a descriptor of what that name refers to.
|
|
fn add_symbol(&mut self, fqsn: FQSN, symbol: Symbol) {
|
|
self.symbol_trie.insert(&fqsn);
|
|
self.fqsn_to_symbol.insert(fqsn, symbol);
|
|
}
|
|
|
|
/// Walks the AST, matching the ID of an identifier used in some expression to
|
|
/// the corresponding Symbol.
|
|
fn resolve_symbol_ids(&mut self, ast: &ast::AST) -> Result<(), String> {
|
|
let mut resolver = resolver::Resolver::new(self);
|
|
resolver.resolve(ast)?;
|
|
Ok(())
|
|
}
|
|
|
|
/// This function traverses the AST and adds symbol table entries for
|
|
/// constants, functions, types, and modules defined within. This simultaneously
|
|
/// checks for dupicate definitions (and returns errors if discovered), and sets
|
|
/// up name tables that will be used by further parts of the compiler
|
|
fn populate_name_tables(&mut self, ast: &ast::AST) -> Result<(), String> {
|
|
let mut scope_stack = vec![];
|
|
self.add_from_scope(ast.statements.as_ref(), &mut scope_stack)
|
|
.map_err(|err| format!("{:?}", err))?;
|
|
Ok(())
|
|
}
|
|
|
|
//TODO this should probably return a vector of duplicate name errors
|
|
fn add_from_scope<'a>(&'a mut self, statements: &[Statement], scope_stack: &mut Vec<Scope>) -> Result<(), DuplicateName> {
|
|
for statement in statements {
|
|
//TODO I'm not sure if I need to do anything with this ID
|
|
let Statement { id: _, kind, location } = statement;
|
|
let location = *location;
|
|
match kind {
|
|
StatementKind::Declaration(Declaration::FuncSig(signature)) => {
|
|
let fn_name: String = signature.name.as_str().to_owned();
|
|
let fq_function = FQSN::from_scope_stack(scope_stack.as_ref(), fn_name);
|
|
self.fq_names.register(fq_function.clone(), NameSpec { location, kind: NameKind::Function })?;
|
|
self.types.register(fq_function.clone(), NameSpec { location, kind: TypeKind } )?;
|
|
|
|
self.add_symbol(fq_function, Symbol {
|
|
local_name: signature.name.clone(),
|
|
spec: SymbolSpec::Func(vec![]), //TODO does this inner vec need to exist at all?
|
|
});
|
|
}
|
|
StatementKind::Declaration(Declaration::FuncDecl(signature, body)) => {
|
|
let fn_name: String = signature.name.as_str().to_owned();
|
|
let new_scope = Scope::Name(fn_name.clone());
|
|
let fq_function = FQSN::from_scope_stack(scope_stack.as_ref(), fn_name);
|
|
self.fq_names.register(fq_function.clone(), NameSpec { location, kind: NameKind::Function })?;
|
|
self.types.register(fq_function.clone(), NameSpec { location, kind: TypeKind } )?;
|
|
|
|
self.add_symbol(fq_function, Symbol {
|
|
local_name: signature.name.clone(),
|
|
spec: SymbolSpec::Func(vec![]), //TODO does this inner vec need to exist at all?
|
|
});
|
|
|
|
scope_stack.push(new_scope);
|
|
let output = self.add_from_scope(body.as_ref(), scope_stack);
|
|
scope_stack.pop();
|
|
output?
|
|
},
|
|
StatementKind::Declaration(Declaration::TypeDecl { name, body, mutable }) => {
|
|
let fq_type = FQSN::from_scope_stack(scope_stack.as_ref(), name.name.as_ref().to_owned());
|
|
self.types.register(fq_type, NameSpec { location, kind: TypeKind } )?;
|
|
if let Err(errors) = self.add_type_members(name, body, mutable, location, scope_stack) {
|
|
return Err(errors[0].clone());
|
|
}
|
|
},
|
|
StatementKind::Declaration(Declaration::Binding { name, .. }) => {
|
|
let fq_binding = FQSN::from_scope_stack(scope_stack.as_ref(), name.as_str().to_owned());
|
|
self.fq_names.register(fq_binding.clone(), NameSpec { location, kind: NameKind::Binding })?;
|
|
self.add_symbol(fq_binding, Symbol {
|
|
local_name: name.clone(),
|
|
spec: SymbolSpec::Binding,
|
|
});
|
|
}
|
|
StatementKind::Module(ModuleSpecifier { name, contents }) => {
|
|
let mod_name = name.as_str().to_owned();
|
|
let fq_module = FQSN::from_scope_stack(scope_stack.as_ref(), mod_name.clone());
|
|
let new_scope = Scope::Name(mod_name);
|
|
self.fq_names.register(fq_module, NameSpec { location, kind: NameKind::Module })?;
|
|
scope_stack.push(new_scope);
|
|
let output = self.add_from_scope(contents.as_ref(), scope_stack);
|
|
scope_stack.pop();
|
|
output?
|
|
},
|
|
_ => (),
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn add_type_members(&mut self, type_name: &TypeSingletonName, type_body: &TypeBody, _mutable: &bool, location: Location, scope_stack: &mut Vec<Scope>) -> Result<(), Vec<DuplicateName>> {
|
|
let mut errors = vec![];
|
|
|
|
let mut register = |fqsn: FQSN, spec: SymbolSpec| {
|
|
let name_spec = NameSpec { location, kind: TypeKind };
|
|
if let Err(err) = self.types.register(fqsn.clone(), name_spec) {
|
|
errors.push(err);
|
|
} else {
|
|
let local_name = match spec {
|
|
SymbolSpec::DataConstructor { ref type_name, ..} | SymbolSpec::RecordConstructor { ref type_name, .. } => type_name.clone(),
|
|
_ => panic!("This should never happen"),
|
|
};
|
|
let symbol = Symbol { local_name, spec };
|
|
self.add_symbol(fqsn, symbol);
|
|
};
|
|
};
|
|
|
|
let TypeBody(variants) = type_body;
|
|
let new_scope = Scope::Name(type_name.name.as_ref().to_owned());
|
|
scope_stack.push(new_scope);
|
|
|
|
for (index, variant) in variants.iter().enumerate() {
|
|
match variant {
|
|
Variant::UnitStruct(name) => {
|
|
let fq_name = FQSN::from_scope_stack(scope_stack.as_ref(), name.as_ref().to_owned());
|
|
let spec = SymbolSpec::DataConstructor {
|
|
index,
|
|
arity: 0,
|
|
type_name: name.clone(),
|
|
};
|
|
register(fq_name, spec);
|
|
},
|
|
Variant::TupleStruct(name, items) => {
|
|
let fq_name = FQSN::from_scope_stack(scope_stack.as_ref(), name.as_ref().to_owned());
|
|
let spec = SymbolSpec::DataConstructor {
|
|
index,
|
|
arity: items.len(),
|
|
type_name: name.clone(),
|
|
};
|
|
register(fq_name, spec);
|
|
},
|
|
Variant::Record { name, members } => {
|
|
let fq_name = FQSN::from_scope_stack(scope_stack.as_ref(), name.as_ref().to_owned());
|
|
let spec = SymbolSpec::RecordConstructor {
|
|
index,
|
|
type_name: name.clone(),
|
|
members: members.iter()
|
|
.map(|(_, _)| (Rc::new("DUMMY_FIELD".to_string()), Rc::new("DUMMY_TYPE_ID".to_string()))).collect()
|
|
};
|
|
register(fq_name, spec);
|
|
//TODO check for duplicates among struct member definitions
|
|
/*
|
|
|
|
let mut duplicate_member_definitions = Vec::new();
|
|
for (member_name, member_type) in defined_members {
|
|
match members.entry(member_name.clone()) {
|
|
Entry::Occupied(_) => duplicate_member_definitions.push(member_name.clone()),
|
|
Entry::Vacant(v) => {
|
|
v.insert(match member_type {
|
|
TypeIdentifier::Singleton(TypeSingletonName { name, ..}) => name.clone(),
|
|
TypeIdentifier::Tuple(_) => unimplemented!(),
|
|
});
|
|
}
|
|
}
|
|
}
|
|
if duplicate_member_definitions.len() != 0 {
|
|
return Err(format!("Duplicate member(s) in definition of type {}: {:?}", type_name, duplicate_member_definitions));
|
|
}
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
|
|
scope_stack.pop();
|
|
|
|
if errors.is_empty() {
|
|
Ok(())
|
|
} else {
|
|
Err(errors)
|
|
}
|
|
}
|
|
}
|