schala/schala-lang/src/reduced_ast.rs

218 lines
6.1 KiB
Rust

use std::rc::Rc;
use ast::{AST, Statement, Expression, Declaration, Discriminator, IfExpressionBody, Pattern};
use symbol_table::{Symbol, SymbolSpec, SymbolTable};
use builtin::{BinOp, PrefixOp};
#[derive(Debug)]
pub struct ReducedAST(pub Vec<Stmt>);
#[derive(Debug, Clone)]
pub enum Stmt {
PreBinding {
name: Rc<String>,
func: Func,
},
Binding {
name: Rc<String>,
constant: bool,
expr: Expr,
},
Expr(Expr),
Noop,
}
#[derive(Debug, Clone)]
pub enum Expr {
Lit(Lit),
Func(Func),
Tuple(Vec<Expr>),
Constructor {
variant: usize,
expr: Box<Expr>,
},
Val(Rc<String>),
Call {
f: Box<Expr>,
args: Vec<Expr>,
},
Assign {
val: Box<Expr>,
expr: Box<Expr>,
},
Conditional {
cond: Box<Expr>,
then_clause: Vec<Stmt>,
else_clause: Vec<Stmt>,
},
Match {
cond: Box<Expr>,
arms: Vec<(Pattern, Vec<Stmt>)>
},
UnimplementedSigilValue
}
pub enum Pat {
Ignored
}
#[derive(Debug, Clone)]
pub enum Lit {
Nat(u64),
Int(i64),
Float(f64),
Bool(bool),
StringLit(Rc<String>),
Custom(Rc<String>, Vec<Expr>),
}
#[derive(Debug, Clone)]
pub enum Func {
BuiltIn(Rc<String>),
UserDefined {
name: Option<Rc<String>>,
params: Vec<Rc<String>>,
body: Vec<Stmt>,
}
}
impl AST {
pub fn reduce(&self, symbol_table: &SymbolTable) -> ReducedAST {
let mut output = vec![];
for statement in self.0.iter() {
output.push(statement.reduce(symbol_table));
}
ReducedAST(output)
}
}
impl Statement {
fn reduce(&self, symbol_table: &SymbolTable) -> Stmt {
use ast::Statement::*;
match self {
ExpressionStatement(expr) => Stmt::Expr(expr.reduce(symbol_table)),
Declaration(decl) => decl.reduce(symbol_table),
}
}
}
impl Expression {
fn reduce(&self, symbol_table: &SymbolTable) -> Expr {
use ast::ExpressionType::*;
let ref input = self.0;
match input {
NatLiteral(n) => Expr::Lit(Lit::Nat(*n)),
FloatLiteral(f) => Expr::Lit(Lit::Float(*f)),
StringLiteral(s) => Expr::Lit(Lit::StringLit(s.clone())),
BoolLiteral(b) => Expr::Lit(Lit::Bool(*b)),
BinExp(binop, lhs, rhs) => binop.reduce(symbol_table, lhs, rhs),
PrefixExp(op, arg) => op.reduce(symbol_table, arg),
//remember Some(5) is a CallExpr
// => ast: Ok(AST([ExpressionStatement(Expression(Call { f: Expression(Value("Some"), None), arguments: [Expression(NatLiteral(5), None)] }, None))]))
Value(name) => {
match symbol_table.values.get(name) {
Some(Symbol { spec: SymbolSpec::DataConstructor { type_args, .. }, .. }) => {
Expr::Constructor { type_name: name.clone() }
},
_ => Expr::Val(name.clone()),
}
},
Call { f, arguments } => Expr::Call {
f: Box::new(f.reduce(symbol_table)),
args: arguments.iter().map(|arg| arg.reduce(symbol_table)).collect(),
},
TupleLiteral(exprs) => Expr::Tuple(exprs.iter().map(|e| e.reduce(symbol_table)).collect()),
IfExpression { discriminator, body } => reduce_if_expression(discriminator, body, symbol_table),
_ => Expr::UnimplementedSigilValue,
}
}
}
fn reduce_if_expression(discriminator: &Discriminator, body: &IfExpressionBody, symbol_table: &SymbolTable) -> Expr {
let cond = Box::new(match *discriminator {
Discriminator::Simple(ref expr) => expr.reduce(symbol_table),
_ => panic!(),
});
match *body {
IfExpressionBody::SimpleConditional(ref then_clause, ref else_clause) => {
let then_clause = then_clause.iter().map(|expr| expr.reduce(symbol_table)).collect();
let else_clause = match else_clause {
None => vec![],
Some(stmts) => stmts.iter().map(|expr| expr.reduce(symbol_table)).collect(),
};
Expr::Conditional { cond, then_clause, else_clause }
},
IfExpressionBody::SimplePatternMatch(ref pat, ref then_clause, ref else_clause) => {
let then_clause = then_clause.iter().map(|expr| expr.reduce(symbol_table)).collect();
let else_clause = match else_clause {
None => vec![],
Some(stmts) => stmts.iter().map(|expr| expr.reduce(symbol_table)).collect(),
};
Expr::Match {
cond,
arms: vec![
(pat.clone(), then_clause),
(Pattern::Ignored, else_clause)
],
}
},
IfExpressionBody::GuardList(ref _guard_arms) => panic!(),
}
}
impl Pattern {
fn reduce(&self, symbol_table: &SymbolTable) -> Pat {
match self {
Pattern::Ignored => Pat::Ignored,
Pattern::TuplePattern(_) => panic!(),
Pattern::Literal(_) => panic!(),
Pattern::TupleStruct(_, _) => panic!(),
Pattern::Record(_, _) => panic!(),
}
}
}
impl Declaration {
fn reduce(&self, symbol_table: &SymbolTable) -> Stmt {
use self::Declaration::*;
use ::ast::Signature;
match self {
Binding {name, constant, expr } => Stmt::Binding { name: name.clone(), constant: *constant, expr: expr.reduce(symbol_table) },
FuncDecl(Signature { name, params, .. }, statements) => Stmt::PreBinding {
name: name.clone(),
func: Func::UserDefined {
name: Some(name.clone()),
params: params.iter().map(|param| param.0.clone()).collect(),
body: statements.iter().map(|stmt| stmt.reduce(symbol_table)).collect(),
}
},
TypeDecl { .. } => Stmt::Noop,
TypeAlias(_, _) => Stmt::Noop,
Interface { .. } => Stmt::Noop,
Impl { .. } => Stmt::Expr(Expr::UnimplementedSigilValue),
_ => Stmt::Expr(Expr::UnimplementedSigilValue)
}
}
}
impl BinOp {
fn reduce(&self, symbol_table: &SymbolTable, lhs: &Box<Expression>, rhs: &Box<Expression>) -> Expr {
if **self.sigil() == "=" {
Expr::Assign {
val: Box::new(lhs.reduce(symbol_table)),
expr: Box::new(rhs.reduce(symbol_table)),
}
} else {
let f = Box::new(Expr::Func(Func::BuiltIn(self.sigil().clone())));
Expr::Call { f, args: vec![lhs.reduce(symbol_table), rhs.reduce(symbol_table)]}
}
}
}
impl PrefixOp {
fn reduce(&self, symbol_table: &SymbolTable, arg: &Box<Expression>) -> Expr {
let f = Box::new(Expr::Func(Func::BuiltIn(self.sigil().clone())));
Expr::Call { f, args: vec![arg.reduce(symbol_table)]}
}
}