schala/schala-lang/language/src/typechecking.rs

255 lines
6.7 KiB
Rust

use std::rc::Rc;
use crate::ast::*;
use crate::util::ScopeStack;
pub type TypeName = Rc<String>;
pub struct TypeContext<'a> {
variable_map: ScopeStack<'a, Rc<String>, Type<TVar>>,
evar_count: u32
}
/// `InferResult` is the monad in which type inference takes place.
type InferResult<T> = Result<T, TypeError>;
#[derive(Debug, Clone)]
struct TypeError { msg: String }
impl TypeError {
fn new<A>(msg: &str) -> InferResult<A> {
Err(TypeError { msg: msg.to_string() })
}
}
/// `Type` is parameterized by whether the type variables can be just universal, or universal or
/// existential.
#[derive(Debug, Clone)]
enum Type<A> {
Var(A),
Const(TConst),
Arrow(Box<Type<A>>, Box<Type<A>>),
}
#[derive(Debug, Clone)]
enum TVar {
Univ(UVar),
Exist(ExistentialVar)
}
#[derive(Debug, Clone)]
struct UVar(Rc<String>);
#[derive(Debug, Clone)]
struct ExistentialVar(u32);
impl Type<UVar> {
fn to_tvar(&self) -> Type<TVar> {
match self {
Type::Var(UVar(name)) => Type::Var(TVar::Univ(UVar(name.clone()))),
Type::Const(ref c) => Type::Const(c.clone()),
Type::Arrow(a, b) => Type::Arrow(
Box::new(a.to_tvar()),
Box::new(b.to_tvar())
)
}
}
}
impl Type<TVar> {
fn skolemize(&self) -> Type<UVar> {
match self {
Type::Var(TVar::Univ(uvar)) => Type::Var(uvar.clone()),
Type::Var(TVar::Exist(_)) => Type::Var(UVar(Rc::new(format!("sk")))),
Type::Const(ref c) => Type::Const(c.clone()),
Type::Arrow(a, b) => Type::Arrow(
Box::new(a.skolemize()),
Box::new(b.skolemize())
)
}
}
}
impl TypeIdentifier {
fn to_monotype(&self) -> Type<UVar> {
match self {
TypeIdentifier::Tuple(_) => Type::Const(TConst::Nat),
TypeIdentifier::Singleton(TypeSingletonName { name, .. }) => {
match &name[..] {
"Nat" => Type::Const(TConst::Nat),
"Int" => Type::Const(TConst::Int),
"Float" => Type::Const(TConst::Float),
"Bool" => Type::Const(TConst::Bool),
"String" => Type::Const(TConst::StringT),
_ => Type::Const(TConst::Nat),
}
}
}
}
}
#[derive(Debug, Clone)]
enum TConst {
User(Rc<String>),
Unit,
Nat,
Int,
Float,
StringT,
Bool,
}
impl TConst {
fn user(name: &str) -> TConst {
TConst::User(Rc::new(name.to_string()))
}
}
impl<'a> TypeContext<'a> {
pub fn new() -> TypeContext<'a> {
TypeContext {
variable_map: ScopeStack::new(None),
evar_count: 0
}
}
pub fn typecheck(&mut self, ast: &AST) -> Result<String, String> {
match self.infer_ast(ast) {
Ok(t) => Ok(format!("{:?}", t)),
Err(err) => Err(format!("Type error: {:?}", err))
}
}
}
impl<'a> TypeContext<'a> {
fn infer_ast(&mut self, ast: &AST) -> InferResult<Type<UVar>> {
self.infer_block(&ast.0)
}
fn infer_statement(&mut self, stmt: &Statement) -> InferResult<Type<UVar>> {
match stmt {
Statement::ExpressionStatement(ref expr) => self.infer_expr(expr.node()),
Statement::Declaration(ref decl) => self.infer_decl(decl),
}
}
fn infer_expr(&mut self, expr: &Expression) -> InferResult<Type<UVar>> {
match expr {
Expression(expr_type, Some(type_anno)) => {
let tx = self.infer_expr_type(expr_type)?;
let ty = type_anno.to_monotype();
self.unify(&ty.to_tvar(), &tx.to_tvar()).map(|x| x.skolemize())
},
Expression(expr_type, None) => self.infer_expr_type(expr_type)
}
}
fn infer_decl(&mut self, _decl: &Declaration) -> InferResult<Type<UVar>> {
Ok(Type::Const(TConst::user("unimplemented")))
}
fn infer_expr_type(&mut self, expr_type: &ExpressionType) -> InferResult<Type<UVar>> {
use self::ExpressionType::*;
Ok(match expr_type {
NatLiteral(_) => Type::Const(TConst::Nat),
FloatLiteral(_) => Type::Const(TConst::Float),
StringLiteral(_) => Type::Const(TConst::StringT),
BoolLiteral(_) => Type::Const(TConst::Bool),
Value(name) => {
//TODO handle the distinction between 0-arg constructors and variables at some point
// need symbol table for that
match self.variable_map.lookup(name) {
Some(ty) => ty.clone().skolemize(),
None => return TypeError::new(&format!("Variable {} not found", name))
}
},
IfExpression { discriminator, body } => self.infer_if_expr(discriminator, body)?,
Call { f, arguments } => {
let tf = self.infer_expr(f)?; //has to be an Arrow Type
let targ = self.infer_expr(&arguments[0].node())?; // TODO make this work with functions with more than one arg
match tf {
Type::Arrow(t1, t2) => {
self.unify(&t1.to_tvar(), &targ.to_tvar())?;
*t2.clone()
},
_ => return TypeError::new("not a function")
}
},
Lambda { params, .. } => {
let _arg_type = match &params[0] {
(_, Some(type_anno)) => type_anno.to_monotype().to_tvar(),
(_, None) => self.allocate_existential(),
};
//let _result_type = unimplemented!();
return TypeError::new("Unimplemented");
//Type::Arrow(Box::new(arg_type), Box::new(result_type))
}
_ => Type::Const(TConst::user("unimplemented"))
})
}
fn infer_if_expr(&mut self, discriminator: &Discriminator, body: &IfExpressionBody) -> InferResult<Type<UVar>> {
let _test = match discriminator {
Discriminator::Simple(expr) => expr,
_ => return TypeError::new("Dame desu")
};
let (_then_clause, _maybe_else_clause) = match body {
IfExpressionBody::SimpleConditional(a, b) => (a, b),
_ => return TypeError::new("Dont work")
};
TypeError::new("Not implemented")
}
fn infer_block(&mut self, block: &Block) -> InferResult<Type<UVar>> {
let mut output = Type::Const(TConst::Unit);
for statement in block.iter() {
output = self.infer_statement(statement.node())?;
}
Ok(output)
}
fn unify(&mut self, _t1: &Type<TVar>, _t2: &Type<TVar>) -> InferResult<Type<TVar>> {
TypeError::new("not implemented")
}
fn allocate_existential(&mut self) -> Type<TVar> {
let n = self.evar_count;
self.evar_count += 1;
Type::Var(TVar::Exist(ExistentialVar(n)))
}
}
#[cfg(test)]
mod tests {
use super::*;
fn parse(input: &str) -> AST {
let tokens: Vec<crate::tokenizing::Token> = crate::tokenizing::tokenize(input);
let mut parser = crate::parsing::Parser::new(tokens);
parser.parse().unwrap()
}
macro_rules! type_test {
($input:expr, $correct:expr) => {
{
let mut tc = TypeContext::new();
let ast = parse($input);
tc.add_symbols(&ast);
assert_eq!($correct, tc.type_check(&ast).unwrap())
}
}
}
#[test]
fn basic_inference() {
}
}