schala/schala-lang/src/parsing/combinator.rs

1086 lines
36 KiB
Rust

use std::rc::Rc;
use nom::{
branch::alt,
bytes::complete::{escaped_transform, tag, take_while},
character::{
complete::{alpha1, char, line_ending, none_of, not_line_ending, one_of, space1},
is_alphanumeric,
},
combinator::{cut, eof, map, not, opt, peek, recognize, value, verify},
error::{context, ErrorKind, ParseError, VerboseError},
multi::{many0, many1, separated_list0, separated_list1},
sequence::{delimited, pair, preceded, separated_pair, terminated, tuple},
IResult, InputIter, InputLength, InputTake, Parser, Slice,
};
use nom_locate::{position, LocatedSpan};
use crate::{
identifier::{Id, IdStore},
parsing::StoreRef,
};
pub type Span<'a> = LocatedSpan<&'a str, StoreRef>;
pub type ParseResult<'a, O> = IResult<Span<'a>, O, VerboseError<Span<'a>>>;
use crate::ast::*;
fn rc_string(s: &str) -> Rc<String> {
Rc::new(s.to_string())
}
fn is_keyword(input: &str) -> bool {
let keywords = [
"if",
"then",
"else",
"is",
"fn",
"for",
"while",
"in",
"true",
"false",
"let",
"in",
"mut",
"return",
"break",
"continue",
"type",
"alias",
"self",
"Self",
"interface",
"impl",
"module",
"import",
];
keywords.iter().any(|kw| kw == &input)
}
fn fresh_id(span: &Span) -> Id<ASTItem> {
let mut table_handle = span.extra.borrow_mut();
table_handle.fresh()
}
fn tok<'a, O>(
input_parser: impl Parser<Span<'a>, O, VerboseError<Span<'a>>>,
) -> impl FnMut(Span<'a>) -> IResult<Span<'a>, O, VerboseError<Span<'a>>> {
context("token", preceded(ws0, input_parser))
}
fn toknl<'a, O>(
input_parser: impl Parser<Span<'a>, O, VerboseError<Span<'a>>>,
) -> impl FnMut(Span<'a>) -> IResult<Span<'a>, O, VerboseError<Span<'a>>> {
context("token/newline", preceded(pair(many0(tok(statement_delimiter)), ws0), input_parser))
}
fn kw<'a>(keyword_str: &'static str) -> impl FnMut(Span<'a>) -> ParseResult<()> {
context("keyword", tok(value((), tag(keyword_str))))
}
// whitespace does consume at least one piece of whitespace - use ws0 for maybe none
fn whitespace(input: Span) -> ParseResult<()> {
context("whitespace", alt((preceded(peek(tag("/*")), block_comment), line_comment, value((), space1))))(
input,
)
}
fn ws0(input: Span) -> ParseResult<()> {
context("WS0", value((), many0(whitespace)))(input)
}
fn line_comment(input: Span) -> ParseResult<()> {
value((), tuple((tag("//"), not_line_ending)))(input)
}
fn block_comment(input: Span) -> ParseResult<()> {
fn inner_parser(mut input: Span) -> ParseResult<()> {
loop {
let mut iter = input.iter_indices();
while let Some((idx, _ch)) = iter.next() {
if idx + 2 > input.input_len() {
return Err(nom::Err::Failure(VerboseError::from_error_kind(input, ErrorKind::Verify)));
}
if input.slice(idx..idx + 2).fragment() == &"/*" {
let (rest, _seen) = input.take_split(idx);
let (rest, ()) = block_comment(rest)?;
input = rest;
break;
}
if input.slice(idx..idx + 2).fragment() == &"*/" {
let (rest, _seen) = input.take_split(idx);
return Ok((rest, ()));
}
}
}
}
context("block-comment", value((), tuple((tag("/*"), inner_parser, tag("*/")))))(input)
}
fn statement_delimiter(input: Span) -> ParseResult<()> {
context("statement-delimiter", tok(alt((value((), line_ending), value((), char(';'))))))(input)
}
pub fn program(input: Span) -> ParseResult<AST> {
let id = fresh_id(&input);
let (rest, statements) = context(
"AST",
terminated(
map(
delimited(
many0(statement_delimiter),
separated_list0(many1(statement_delimiter), statement),
many0(statement_delimiter),
),
|items| items.into(),
),
tok(eof),
),
)(input)?;
let ast = AST { id, statements };
Ok((rest, ast))
}
fn block_template<'a, O, O2>(
delimiter: impl Parser<Span<'a>, O2, VerboseError<Span<'a>>>,
input_parser: impl Parser<Span<'a>, O, VerboseError<Span<'a>>>,
) -> impl FnMut(Span<'a>) -> IResult<Span<'a>, Vec<O>, VerboseError<Span<'a>>> {
delimited(
pair(tok(char('{')), many0(statement_delimiter)),
cut(separated_list0(delimiter, input_parser)),
pair(many0(statement_delimiter), tok(char('}'))),
)
}
pub fn block(input: Span) -> ParseResult<Block> {
context("block", map(block_template(many1(statement_delimiter), statement), |items| items.into()))(input)
}
fn statement(input: Span) -> ParseResult<Statement> {
let (input, pos) = position(input)?;
let location = pos.location_offset().into();
let id = fresh_id(&input);
let (rest, kind) = context(
"Parsing-statement",
alt((
map(flow, StatementKind::Flow),
map(import, StatementKind::Import),
map(declaration, StatementKind::Declaration),
map(expression, StatementKind::Expression),
)),
)(input)?;
Ok((rest, Statement { id, location, kind }))
}
fn import(input: Span) -> ParseResult<ImportSpecifier> {
fn path_components(input: Span) -> ParseResult<Vec<Rc<String>>> {
map(
tuple((opt(tag("::")), identifier, many0(preceded(tag("::"), identifier_span)))),
|(_maybe_root, first, rest)| {
let mut components = vec![rc_string(first.fragment())];
components.extend(rest.into_iter().map(|n| rc_string(n.fragment())));
components
},
)(input)
}
fn import_suffix(input: Span) -> ParseResult<ImportedNames> {
alt((
value(ImportedNames::All, tag("::*")),
map(
preceded(
tag("::"),
delimited(char('{'), cut(separated_list1(tok(char(',')), identifier)), char('}')),
),
|names| ImportedNames::List(names.into_iter().map(|n| rc_string(n.fragment())).collect()),
),
))(input)
}
let id = fresh_id(&input);
map(
preceded(kw("import"), cut(pair(path_components, opt(import_suffix)))),
move |(path_components, suffix)| ImportSpecifier {
id,
path_components,
imported_names: suffix.unwrap_or(ImportedNames::LastOfPath),
},
)(input)
}
fn flow(input: Span) -> ParseResult<FlowControl> {
alt((
map(kw("continue"), |_| FlowControl::Continue),
map(kw("break"), |_| FlowControl::Break),
map(preceded(kw("return"), opt(expression)), FlowControl::Return),
))(input)
}
fn declaration(input: Span) -> ParseResult<Declaration> {
alt((binding, type_decl, func, annotation, module, interface, implementation))(input)
}
fn implementation(input: Span) -> ParseResult<Declaration> {
alt((
map(
preceded(kw("impl"), tuple((type_singleton_name, kw("for"), type_identifier, decl_block))),
|(if_name, _, type_name, block)| Declaration::Impl {
type_name,
interface_name: Some(if_name),
block,
},
),
map(preceded(kw("impl"), pair(type_identifier, decl_block)), |(type_name, block)| {
Declaration::Impl { type_name, interface_name: None, block }
}),
))(input)
}
fn decl_block(input: Span) -> ParseResult<Vec<Declaration>> {
block_template(many1(statement_delimiter), func_decl)(input)
}
fn interface(input: Span) -> ParseResult<Declaration> {
map(preceded(kw("interface"), pair(identifier, signature_block)), |(name, signatures)| {
Declaration::Interface { name: rc_string(name.fragment()), signatures }
})(input)
}
fn signature_block(input: Span) -> ParseResult<Vec<Signature>> {
block_template(many1(statement_delimiter), func_signature)(input)
}
fn annotation(input: Span) -> ParseResult<Declaration> {
map(
tuple((
tok(char('@')),
identifier,
opt(delimited(tok(char('(')), separated_list1(tok(char(',')), expression), tok(char(')')))),
statement_delimiter,
statement,
)),
|(_, name, args, _, inner)| Declaration::Annotation {
name: rc_string(name.fragment()),
arguments: if let Some(args) = args { args } else { vec![] },
inner: Box::new(inner),
},
)(input)
}
fn func(input: Span) -> ParseResult<Declaration> {
alt((func_decl, map(func_signature, Declaration::FuncSig)))(input)
}
fn func_decl(input: Span) -> ParseResult<Declaration> {
map(pair(func_signature, block), |(sig, decl)| Declaration::FuncDecl(sig, decl))(input)
}
fn func_signature(input: Span) -> ParseResult<Signature> {
let normal_fn = context("ordinary-fn", tuple((identifier, formal_params, opt(type_anno))));
let operator_fn = context(
"operator-fn",
tuple((delimited(tok(char('(')), operator, tok(char(')'))), formal_params, opt(type_anno))),
);
context(
"func-signature",
preceded(
kw("fn"),
cut(alt((
map(normal_fn, |(name, params, type_anno)| Signature {
name: rc_string(name.fragment()),
operator: false,
params,
type_anno,
}),
map(operator_fn, |(op, params, type_anno)| Signature {
name: rc_string(op.sigil()),
operator: true,
params,
type_anno,
}),
))),
),
)(input)
}
fn formal_params(input: Span) -> ParseResult<Vec<FormalParam>> {
context(
"formal-params",
verify(
delimited(tok(char('(')), separated_list0(tok(char(',')), formal_param), tok(char(')'))),
|params: &Vec<_>| params.len() < 256,
),
)(input)
}
fn formal_param(input: Span) -> ParseResult<FormalParam> {
map(
tuple((identifier, opt(type_anno), opt(preceded(tok(char('=')), expression)))),
|(name, anno, default)| FormalParam { name: rc_string(name.fragment()), anno, default },
)(input)
}
fn type_decl(input: Span) -> ParseResult<Declaration> {
context(
"type-decl",
alt((
map(
tuple((kw("type"), kw("alias"), identifier, tok(char('=')), identifier)),
|(_, _, alias, _, name)| Declaration::TypeAlias {
alias: rc_string(alias.fragment()),
original: rc_string(name.fragment()),
},
),
map(
tuple((kw("type"), opt(kw("mut")), type_singleton_name, tok(char('=')), type_body)),
|(_, mutable, name, _, body)| Declaration::TypeDecl {
name,
body,
mutable: mutable.is_some(),
},
),
)),
)(input)
}
fn type_body(input: Span) -> ParseResult<TypeBody> {
let id = fresh_id(&input);
context(
"type-body",
alt((
map(record_variant, move |fields| TypeBody::ImmediateRecord { id, fields }),
map(separated_list0(tok(char('|')), variant_spec), TypeBody::Variants),
)),
)(input)
}
fn record_variant(input: Span) -> ParseResult<Vec<(Rc<String>, TypeIdentifier)>> {
context(
"record-variant",
delimited(
pair(tok(char('{')), many0(statement_delimiter)),
terminated(separated_list1(toknl(char(',')), toknl(record_variant_item)), opt(toknl(char(',')))),
pair(many0(statement_delimiter), tok(char('}'))),
),
)(input)
}
fn variant_spec(input: Span) -> ParseResult<Variant> {
fn tuple_variant(input: Span) -> ParseResult<VariantKind> {
map(
delimited(tok(char('(')), separated_list1(tok(char(',')), type_identifier), tok(char(')'))),
VariantKind::TupleStruct,
)(input)
}
let id = fresh_id(&input);
let (rest, (name, kind)) = alt((
pair(identifier, map(record_variant, VariantKind::Record)),
pair(identifier, tuple_variant),
map(identifier, |ident| (ident, VariantKind::UnitStruct)),
))(input)?;
Ok((rest, Variant { id, name: rc_string(name.fragment()), kind }))
}
fn record_variant_item(input: Span) -> ParseResult<(Rc<String>, TypeIdentifier)> {
context(
"record-variant-item",
map(tuple((identifier, tok(char(':')), type_identifier)), |(name, _, ty)| {
(rc_string(name.fragment()), ty)
}),
)(input)
}
fn binding(input: Span) -> ParseResult<Declaration> {
let parser = tuple((kw("let"), opt(kw("mut")), identifier, opt(type_anno), tok(char('=')), expression));
map(parser, |(_, maybe_mut, ident, type_anno, _, expr)| Declaration::Binding {
name: rc_string(ident.fragment()),
constant: maybe_mut.is_none(),
type_anno,
expr,
})(input)
}
fn module(input: Span) -> ParseResult<Declaration> {
map(tuple((kw("module"), identifier, block)), |(_, name, items)| Declaration::Module {
name: rc_string(name.fragment()),
items,
})(input)
}
pub fn expression(input: Span) -> ParseResult<Expression> {
let id = fresh_id(&input);
map(pair(expression_kind(true), opt(type_anno)), move |(kind, type_anno)| Expression {
id,
type_anno,
kind,
})(input)
}
fn expression_no_struct(input: Span) -> ParseResult<Expression> {
let id = fresh_id(&input);
map(pair(expression_kind(false), opt(type_anno)), move |(kind, type_anno)| Expression {
id,
type_anno,
kind,
})(input)
}
fn expr_or_block(input: Span) -> ParseResult<Block> {
let (input, pos) = position(input)?;
let id = fresh_id(&input);
let location = pos.location_offset().into();
alt((
block,
map(expression, move |expr| Statement { id, location, kind: StatementKind::Expression(expr) }.into()),
))(input)
}
fn type_anno(input: Span) -> ParseResult<TypeIdentifier> {
preceded(tok(char(':')), type_identifier)(input)
}
fn type_identifier(input: Span) -> ParseResult<TypeIdentifier> {
alt((
map(
delimited(tok(char('(')), separated_list0(tok(char(',')), type_identifier), tok(char(')'))),
TypeIdentifier::Tuple,
),
map(type_singleton_name, TypeIdentifier::Singleton),
))(input)
}
fn type_singleton_name(input: Span) -> ParseResult<TypeSingletonName> {
map(pair(identifier, opt(type_params)), |(name, params)| TypeSingletonName {
name: rc_string(name.fragment()),
params: if let Some(params) = params { params } else { vec![] },
})(input)
}
fn type_params(input: Span) -> ParseResult<Vec<TypeIdentifier>> {
delimited(tok(char('<')), separated_list1(tok(char(',')), type_identifier), tok(char('>')))(input)
}
pub fn expression_kind(allow_struct: bool) -> impl FnMut(Span) -> ParseResult<ExpressionKind> {
move |input: Span| context("expression-kind", precedence_expr(allow_struct))(input)
}
fn precedence_expr(allow_struct: bool) -> impl FnMut(Span) -> ParseResult<ExpressionKind> {
move |input: Span| {
let handle = input.extra.clone();
let precedence_continuation = pair(operator, prefix_expr(allow_struct));
map(
pair(prefix_expr(allow_struct), many0(precedence_continuation)),
move |(first, rest): (ExpressionKind, Vec<(BinOp, ExpressionKind)>)| {
let mut handle_ref = handle.borrow_mut();
BinopSequence { first, rest }.do_precedence(&mut handle_ref)
},
)(input)
}
}
fn operator(input: Span) -> ParseResult<BinOp> {
context(
"operator",
tok(map(
preceded(cut(not(tag("*/"))), recognize(many1(one_of("+-*/%<>=!$&|?^`")))),
|sigil_span: Span| BinOp::from_sigil(sigil_span.fragment()),
)),
)(input)
}
fn prefix_op(input: Span) -> ParseResult<PrefixOp> {
tok(map(recognize(one_of("+-!")), |sigil: Span| PrefixOp::from_sigil(sigil.fragment())))(input)
}
fn prefix_expr(allow_struct: bool) -> impl FnMut(Span) -> ParseResult<ExpressionKind> {
move |input: Span| {
let id = fresh_id(&input);
context(
"prefix-expr",
map(pair(opt(prefix_op), extended_expr(allow_struct)), move |(prefix, expr)| {
if let Some(prefix) = prefix {
let expr = Expression::new(id, expr);
ExpressionKind::PrefixExp(prefix, Box::new(expr))
} else {
expr
}
}),
)(input)
}
}
#[derive(Debug)]
enum ExtendedPart<'a> {
Index(Vec<Expression>),
Call(Vec<InvocationArgument>),
Accessor(&'a str),
}
fn extended_expr(allow_struct: bool) -> impl FnMut(Span) -> ParseResult<ExpressionKind> {
move |input: Span| {
let (s, (primary, parts)) =
context("extended-expr", pair(primary_expr(allow_struct), many0(extended_expr_part)))(input)?;
let mut expression = Expression::new(fresh_id(&s), primary);
for part in parts.into_iter() {
let kind = match part {
ExtendedPart::Index(indexers) =>
ExpressionKind::Index { indexee: Box::new(expression), indexers },
ExtendedPart::Call(arguments) => ExpressionKind::Call { f: Box::new(expression), arguments },
ExtendedPart::Accessor(name) => {
let name = rc_string(name);
ExpressionKind::Access { name, expr: Box::new(expression) }
}
};
expression = Expression::new(fresh_id(&s), kind);
}
Ok((s, expression.kind))
}
}
fn extended_expr_part(input: Span) -> ParseResult<ExtendedPart> {
fn index_part(input: Span) -> ParseResult<Vec<Expression>> {
delimited(tok(char('[')), cut(separated_list1(tok(char(',')), expression)), tok(char(']')))(input)
}
fn call_part(input: Span) -> ParseResult<Vec<InvocationArgument>> {
context(
"call-part",
verify(
//TODO generalize this `not`
delimited(
tok(char('(')),
separated_list0(tok(char(',')), preceded(not(tok(char(')'))), invocation_argument)),
tok(char(')')),
),
|output: &Vec<_>| output.len() <= 255,
),
)(input)
}
fn access_part(input: Span) -> ParseResult<&str> {
preceded(tok(char('.')), map(identifier, |item| *item.fragment()))(input)
}
alt((
map(index_part, ExtendedPart::Index),
map(call_part, ExtendedPart::Call),
map(access_part, ExtendedPart::Accessor),
))(input)
}
fn invocation_argument(input: Span) -> ParseResult<InvocationArgument> {
context(
"invocation-argument",
cut(alt((
map(tok(char('_')), |_| InvocationArgument::Ignored),
map(tuple((identifier, tok(char('=')), expression)), |(name, _, expr)| {
InvocationArgument::Keyword { name: rc_string(name.fragment()), expr }
}),
map(expression, InvocationArgument::Positional),
))),
)(input)
}
fn primary_expr(allow_struct: bool) -> impl FnMut(Span) -> ParseResult<ExpressionKind> {
move |input: Span| {
if allow_struct {
context("primary-expr", alt((primary_expr_no_struct, named_struct, identifier_expr)))(input)
} else {
context("primary-expr", alt((primary_expr_no_struct, identifier_expr)))(input)
}
}
}
fn primary_expr_no_struct(input: Span) -> ParseResult<ExpressionKind> {
context(
"primary-expr-no-struct",
alt((
while_expr,
for_expr,
if_expr,
lambda_expr,
list_expr,
paren_expr,
bool_literal,
float_literal,
number_literal,
string_literal,
)),
)(input)
}
fn named_struct(input: Span) -> ParseResult<ExpressionKind> {
context(
"named-struct",
map(pair(qualified_identifier, record_block), |(name, fields)| ExpressionKind::NamedStruct {
name,
fields,
}),
)(input)
}
//TODO support anonymous structs and Elm-style update syntax for structs
fn record_block(input: Span) -> ParseResult<Vec<(Rc<String>, Expression)>> {
let record_entry =
separated_pair(map(identifier, |span| rc_string(span.fragment())), tok(char(':')), expression);
delimited(tok(char('{')), separated_list0(tok(char(',')), record_entry), tok(char('}')))(input)
}
fn lambda_expr(input: Span) -> ParseResult<ExpressionKind> {
context(
"lambda-expr",
preceded(
tok(char('\\')),
alt((
map(tuple((formal_params, opt(type_anno), block)), |(params, type_anno, body)| {
ExpressionKind::Lambda { params, type_anno, body }
}),
map(tuple((formal_param, opt(type_anno), block)), |(param, type_anno, body)| {
ExpressionKind::Lambda { params: vec![param], type_anno, body }
}),
)),
),
)(input)
}
fn while_expr(input: Span) -> ParseResult<ExpressionKind> {
context(
"while-expr",
map(preceded(kw("while"), pair(opt(expression_no_struct), block)), move |(condition, body)| {
ExpressionKind::WhileExpression { condition: condition.map(Box::new), body }
}),
)(input)
}
fn if_expr(input: Span) -> ParseResult<ExpressionKind> {
fn else_case(input: Span) -> ParseResult<Option<Block>> {
opt(preceded(kw("else"), expr_or_block))(input)
}
fn cond_block(input: Span) -> ParseResult<IfExpressionBody> {
map(block_template(many1(statement_delimiter), cond_arm), IfExpressionBody::CondList)(input)
}
fn cond_arm(input: Span) -> ParseResult<ConditionArm> {
let condition = map(preceded(kw("is"), pattern), Condition::Pattern);
let condition_guard = opt(preceded(kw("if"), expression));
alt((
map(preceded(kw("else"), expr_or_block), |body| ConditionArm {
condition: Condition::Else,
guard: None,
body,
}),
map(
tuple((condition, condition_guard, kw("then"), expr_or_block)),
|(condition, guard, _, body)| ConditionArm { condition, guard, body },
),
))(input)
}
fn simple_pattern_match(input: Span) -> ParseResult<IfExpressionBody> {
map(
tuple((preceded(kw("is"), pattern), preceded(kw("then"), pair(expr_or_block, else_case)))),
|(pattern, (then_case, else_case))| IfExpressionBody::SimplePatternMatch {
pattern,
then_case,
else_case,
},
)(input)
}
fn simple_conditional(input: Span) -> ParseResult<IfExpressionBody> {
map(preceded(kw("then"), pair(expr_or_block, else_case)), |(then_case, else_case)| {
IfExpressionBody::SimpleConditional { then_case, else_case }
})(input)
}
fn if_expr_body(input: Span) -> ParseResult<IfExpressionBody> {
alt((cond_block, simple_pattern_match, simple_conditional))(input)
}
context(
"if-expr",
map(preceded(kw("if"), pair(opt(expression_no_struct), if_expr_body)), |(discriminator, body)| {
ExpressionKind::IfExpression { discriminator: discriminator.map(Box::new), body: Box::new(body) }
}),
)(input)
}
fn pattern(input: Span) -> ParseResult<Pattern> {
alt((
map(
delimited(tok(char('(')), separated_list1(tok(char(',')), pattern), tok(char(')'))),
Pattern::TuplePattern,
),
simple_pattern,
))(input)
}
fn simple_pattern(input: Span) -> ParseResult<Pattern> {
fn record_pattern_entry(input: Span) -> ParseResult<(Rc<String>, Pattern)> {
let id = fresh_id(&input);
alt((
map(separated_pair(identifier, tok(char(':')), pattern), |(ident, pat)| {
(rc_string(ident.fragment()), pat)
}),
map(identifier, move |ident| {
let qn = QualifiedName { id, components: vec![rc_string(ident.fragment())] };
(rc_string(ident.fragment()), Pattern::VarOrName(qn))
}),
))(input)
}
alt((
pattern_literal,
map(
pair(
qualified_identifier,
delimited(tok(char('(')), separated_list0(tok(char(',')), pattern), tok(char(')'))),
),
|(qn, members)| Pattern::TupleStruct(qn, members),
),
map(
pair(
qualified_identifier,
delimited(
tok(char('{')),
separated_list0(tok(char(',')), record_pattern_entry),
tok(char('}')),
),
),
|(qn, members)| Pattern::Record(qn, members),
),
map(qualified_identifier, Pattern::VarOrName),
))(input)
}
fn pattern_literal(input: Span) -> ParseResult<Pattern> {
alt((
value(Pattern::Ignored, kw("_")),
value(Pattern::Literal(PatternLiteral::BoolPattern(true)), kw("true")),
value(Pattern::Literal(PatternLiteral::BoolPattern(false)), kw("false")),
map(tok(bare_string_literal), |s| Pattern::Literal(PatternLiteral::StringPattern(Rc::new(s)))),
map(pair(opt(tok(char('-'))), alt((float_literal, number_literal))), |(sign, num)| {
Pattern::Literal(PatternLiteral::NumPattern { neg: sign.is_some(), num })
}),
))(input)
}
fn for_expr(input: Span) -> ParseResult<ExpressionKind> {
fn for_enumerators(input: Span) -> ParseResult<Vec<Enumerator>> {
alt((
delimited(tok(char('{')), separated_list0(tok(char(',')), enumerator), tok(char('}'))),
map(enumerator, |enumerator| vec![enumerator]),
))(input)
}
//TODO add guards, etc.
fn enumerator(input: Span) -> ParseResult<Enumerator> {
alt((
map(separated_pair(identifier, kw("<-"), expression_no_struct), |(ident, generator)| {
Enumerator { identifier: rc_string(ident.fragment()), generator, assignment: false }
}),
//TODO distinguish these two cases in AST
map(separated_pair(identifier, kw("="), expression_no_struct), |(ident, generator)| Enumerator {
identifier: rc_string(ident.fragment()),
generator,
assignment: true,
}),
))(input)
}
fn for_body(input: Span) -> ParseResult<Box<ForBody>> {
alt((
preceded(kw("return"), map(expression_no_struct, |expr| Box::new(ForBody::MonadicReturn(expr)))),
map(block, |body| Box::new(ForBody::StatementBlock(body))),
))(input)
}
context(
"for-expr",
map(preceded(kw("for"), pair(for_enumerators, for_body)), |(enumerators, body)| {
ExpressionKind::ForExpression { enumerators, body }
}),
)(input)
}
fn paren_expr(input: Span) -> ParseResult<ExpressionKind> {
delimited(
tok(char('(')),
map(separated_list0(tok(char(',')), expression), |mut exprs| match exprs.len() {
1 => exprs.pop().unwrap().kind,
_ => ExpressionKind::TupleLiteral(exprs),
}),
tok(char(')')),
)(input)
}
fn list_expr(input: Span) -> ParseResult<ExpressionKind> {
map(delimited(tok(char('[')), separated_list0(tok(char(',')), expression), tok(char(']'))), |items| {
ExpressionKind::ListLiteral(items)
})(input)
}
fn string_literal(input: Span) -> ParseResult<ExpressionKind> {
context(
"string-literal",
tok(map(pair(opt(identifier), bare_string_literal), |(prefix, s)| ExpressionKind::StringLiteral {
s: Rc::new(s),
prefix: prefix.map(|s| rc_string(s.fragment())),
})),
)(input)
}
fn bare_string_literal(input: Span) -> ParseResult<String> {
let string_escape_transforms = alt((
value('\\', tag("\\")),
value('"', tag("\"")),
value('\n', tag("n")),
value('\t', tag("t")),
map(delimited(tag(r#"u{"#), recognize(digit_group_hex), tag("}")), |value| {
char::from_u32(u32::from_str_radix(value.fragment(), 16).unwrap()).unwrap()
}),
));
alt((
map(tag(r#""""#), |_| String::new()),
preceded(
peek(char('"')),
cut(delimited(
char('"'),
escaped_transform(none_of(r#""\"#), '\\', string_escape_transforms),
char('"'),
)),
),
))(input)
}
fn identifier_expr(input: Span) -> ParseResult<ExpressionKind> {
context("identifier-expr", map(qualified_identifier, ExpressionKind::Value))(input)
}
fn qualified_identifier(input: Span) -> ParseResult<QualifiedName> {
let id = fresh_id(&input);
tok(map(separated_list1(tag("::"), map(identifier_span, |x| rc_string(x.fragment()))), move |items| {
QualifiedName { id, components: items }
}))(input)
}
fn identifier(input: Span) -> ParseResult<Span> {
context("identifier", tok(identifier_span))(input)
}
fn identifier_span(input: Span) -> ParseResult<Span> {
let (rest, parsed) = recognize(tuple((
alt((tag("_"), alpha1)),
take_while(|ch: char| is_alphanumeric(ch as u8) || ch == '_'),
)))(input.clone())?;
if is_keyword(parsed.fragment()) {
return Err(nom::Err::Failure(VerboseError::from_error_kind(input, nom::error::ErrorKind::Verify)));
}
Ok((rest, parsed))
}
fn bool_literal(input: Span) -> ParseResult<ExpressionKind> {
context(
"bool-literal",
alt((
map(kw("true"), |_| ExpressionKind::BoolLiteral(true)),
map(kw("false"), |_| ExpressionKind::BoolLiteral(false)),
)),
)(input)
}
fn float_literal(input: Span) -> ParseResult<ExpressionKind> {
context(
"float-literal",
tok(map(
alt((
recognize(tuple((digits(digit_group_dec), char('.'), opt(digits(digit_group_dec))))),
recognize(tuple((char('.'), digits(digit_group_dec)))),
)),
|ds| ExpressionKind::FloatLiteral(ds.fragment().parse().unwrap()),
)),
)(input)
}
fn number_literal(input: Span) -> ParseResult<ExpressionKind> {
context(
"number-literal",
map(alt((tok(hex_literal), tok(bin_literal), tok(dec_literal))), ExpressionKind::NatLiteral),
)(input)
}
fn dec_literal(input: Span) -> ParseResult<u64> {
map(digits(digit_group_dec), |chars: Vec<char>| {
let s: String = chars.into_iter().collect();
s.parse().unwrap()
})(input)
}
fn hex_literal(input: Span) -> ParseResult<u64> {
map(preceded(alt((tag("0x"), tag("0X"))), digits(digit_group_hex)), |chars: Vec<char>| {
let s: String = chars.into_iter().collect();
parse_hex(&s).unwrap()
})(input)
}
fn bin_literal(input: Span) -> ParseResult<u64> {
map(preceded(alt((tag("0b"), tag("0B"))), digits(digit_group_bin)), |chars: Vec<char>| {
let s: String = chars.into_iter().collect();
parse_binary(&s).unwrap()
})(input)
}
fn digits<'a, E: ParseError<Span<'a>>>(
digit_type: impl Parser<Span<'a>, Vec<char>, E>,
) -> impl FnMut(Span<'a>) -> IResult<Span<'a>, Vec<char>, E> {
map(separated_list1(many1(char('_')), digit_type), |items: Vec<Vec<char>>| {
items.into_iter().flatten().collect()
})
}
fn digit_group_dec(input: Span) -> ParseResult<Vec<char>> {
many1(one_of("0123456789"))(input)
}
fn digit_group_hex(input: Span) -> ParseResult<Vec<char>> {
many1(one_of("0123456789abcdefABCDEF"))(input)
}
fn digit_group_bin(input: Span) -> ParseResult<Vec<char>> {
many1(one_of("01"))(input)
}
fn parse_binary(digits: &str) -> Result<u64, &'static str> {
let mut result: u64 = 0;
let mut multiplier = 1;
for d in digits.chars().rev() {
match d {
'1' => result += multiplier,
'0' => (),
'_' => continue,
_ => unreachable!(),
}
multiplier = match multiplier.checked_mul(2) {
Some(m) => m,
None => return Err("Binary expression will overflow"),
}
}
Ok(result)
}
fn parse_hex(digits: &str) -> Result<u64, &'static str> {
let mut result: u64 = 0;
let mut multiplier: u64 = 1;
for d in digits.chars().rev() {
if d == '_' {
continue;
}
match d.to_digit(16) {
Some(n) => result += n as u64 * multiplier,
None => return Err("Internal parser error: invalid hex digit"),
}
multiplier = match multiplier.checked_mul(16) {
Some(m) => m,
None => return Err("Hexadecimal expression will overflow"),
}
}
Ok(result)
}
#[derive(Debug)]
struct BinopSequence {
first: ExpressionKind,
rest: Vec<(BinOp, ExpressionKind)>,
}
impl BinopSequence {
fn do_precedence(self, store: &mut IdStore<ASTItem>) -> ExpressionKind {
fn helper(
precedence: i32,
lhs: ExpressionKind,
rest: &mut Vec<(BinOp, ExpressionKind)>,
store: &mut IdStore<ASTItem>,
) -> Expression {
let mut lhs = Expression::new(store.fresh(), lhs);
while let Some((next_op, next_rhs)) = rest.pop() {
let new_precedence = next_op.get_precedence();
if precedence >= new_precedence {
rest.push((next_op, next_rhs));
break;
}
let rhs = helper(new_precedence, next_rhs, rest, store);
lhs = Expression::new(
store.fresh(),
ExpressionKind::BinExp(next_op, Box::new(lhs), Box::new(rhs)),
);
}
lhs
}
let mut as_stack = self.rest.into_iter().rev().collect();
helper(BinOp::min_precedence(), self.first, &mut as_stack, store).kind
}
}
#[cfg(test)]
mod test {
use std::cell::RefCell;
use pretty_assertions::assert_eq;
use super::*;
macro_rules! span {
($func:expr, $input:expr) => {{
let id_store: IdStore<ASTItem> = IdStore::new();
let span = Span::new_extra($input, Rc::new(RefCell::new(id_store)));
$func(span).map(|(span, x)| (*span.fragment(), x))
}};
}
#[test]
fn combinator_test1() {
assert_eq!(span!(digits(digit_group_dec), "342"), Ok(("", vec!['3', '4', '2'])));
assert_eq!(span!(bin_literal, "0b1111qsdf"), Ok(("qsdf", 15)));
assert_eq!(span!(bare_string_literal, r#""fah""#), Ok(("", "fah".to_string())));
assert_eq!(span!(bare_string_literal, r#""""#), Ok(("", "".to_string())));
assert_eq!(*span!(identifier_span, "modulek").unwrap().1.fragment(), "modulek");
assert!(span!(identifier_span, "module").is_err());
}
#[test]
fn combinator_test_ws0() {
assert_eq!(span!(block_comment, "/*yolo*/ "), Ok((" ", ())));
assert_eq!(span!(block_comment, "/*yolo*/ jumpy /*nah*/ "), Ok((" jumpy /*nah*/ ", ())));
assert_eq!(span!(ws0, " /* yolo */"), Ok(("", ())));
assert_eq!(span!(ws0, "/* /* no */ yolo */ "), Ok(("", ())));
}
#[test]
fn combinator_test2() {
for s in [" 15", " 0b1111", " 1_5_", "0XF__", "0Xf"].iter() {
assert_eq!(span!(expression_kind(true), s).unwrap().1, ExpressionKind::NatLiteral(15));
}
assert_eq!(
span!(expression_kind(true), " /*gay*/ true").unwrap().1,
ExpressionKind::BoolLiteral(true)
);
}
}