748 lines
22 KiB
Rust
748 lines
22 KiB
Rust
|
|
use std::cell::RefCell;
|
|
use std::rc::Rc;
|
|
use std::fmt::Write;
|
|
use std::io;
|
|
|
|
use itertools::Itertools;
|
|
|
|
use crate::util::ScopeStack;
|
|
use crate::reduced_ast::{BoundVars, ReducedAST, Stmt, Expr, Lit, Func, Alternative, Subpattern};
|
|
use crate::symbol_table::{SymbolSpec, Symbol, SymbolTable};
|
|
|
|
pub struct State<'a> {
|
|
values: ScopeStack<'a, Rc<String>, ValueEntry>,
|
|
symbol_table_handle: Rc<RefCell<SymbolTable>>,
|
|
}
|
|
|
|
macro_rules! builtin_binding {
|
|
($name:expr, $values:expr) => {
|
|
$values.insert(Rc::new(format!($name)), ValueEntry::Binding { constant: true, val: Node::Expr(Expr::Func(Func::BuiltIn(Rc::new(format!($name))))) });
|
|
}
|
|
}
|
|
|
|
impl<'a> State<'a> {
|
|
pub fn new(symbol_table_handle: Rc<RefCell<SymbolTable>>) -> State<'a> {
|
|
let mut values = ScopeStack::new(Some(format!("global")));
|
|
builtin_binding!("print", values);
|
|
builtin_binding!("println", values);
|
|
builtin_binding!("getline", values);
|
|
State { values, symbol_table_handle }
|
|
}
|
|
|
|
pub fn debug_print(&self) -> String {
|
|
format!("Values: {:?}", self.values)
|
|
}
|
|
|
|
fn new_frame(&'a self, items: &'a Vec<Node>, bound_vars: &BoundVars) -> State<'a> {
|
|
let mut inner_state = State {
|
|
values: self.values.new_scope(None),
|
|
symbol_table_handle: self.symbol_table_handle.clone(),
|
|
};
|
|
for (bound_var, val) in bound_vars.iter().zip(items.iter()) {
|
|
if let Some(bv) = bound_var.as_ref() {
|
|
inner_state.values.insert(bv.clone(), ValueEntry::Binding { constant: true, val: val.clone() });
|
|
}
|
|
}
|
|
inner_state
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
enum Node {
|
|
Expr(Expr),
|
|
PrimObject {
|
|
name: Rc<String>,
|
|
tag: usize,
|
|
items: Vec<Node>,
|
|
},
|
|
PrimTuple {
|
|
items: Vec<Node>
|
|
}
|
|
}
|
|
|
|
fn paren_wrapped_vec(terms: impl Iterator<Item=String>) -> String {
|
|
let mut buf = String::new();
|
|
write!(buf, "(").unwrap();
|
|
for term in terms.map(|e| Some(e)).intersperse(None) {
|
|
match term {
|
|
Some(e) => write!(buf, "{}", e).unwrap(),
|
|
None => write!(buf, ", ").unwrap(),
|
|
};
|
|
}
|
|
write!(buf, ")").unwrap();
|
|
buf
|
|
}
|
|
|
|
|
|
impl Node {
|
|
fn to_repl(&self) -> String {
|
|
match self {
|
|
Node::Expr(e) => e.to_repl(),
|
|
Node::PrimObject { name, items, .. } if items.len() == 0 => format!("{}", name),
|
|
Node::PrimObject { name, items, .. } => format!("{}{}", name, paren_wrapped_vec(items.iter().map(|x| x.to_repl()))),
|
|
Node::PrimTuple { items } => format!("{}", paren_wrapped_vec(items.iter().map(|x| x.to_repl()))),
|
|
}
|
|
}
|
|
fn is_true(&self) -> bool {
|
|
match self {
|
|
Node::Expr(Expr::Lit(crate::reduced_ast::Lit::Bool(true))) => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
enum ValueEntry {
|
|
Binding {
|
|
constant: bool,
|
|
val: /*FullyEvaluatedExpr*/ Node, //TODO make this use a subtype to represent fully evaluatedness
|
|
}
|
|
}
|
|
|
|
type EvalResult<T> = Result<T, String>;
|
|
|
|
impl Expr {
|
|
fn to_node(self) -> Node {
|
|
Node::Expr(self)
|
|
}
|
|
fn to_repl(&self) -> String {
|
|
use self::Lit::*;
|
|
use self::Func::*;
|
|
|
|
match self {
|
|
Expr::Lit(ref l) => match l {
|
|
Nat(n) => format!("{}", n),
|
|
Int(i) => format!("{}", i),
|
|
Float(f) => format!("{}", f),
|
|
Bool(b) => format!("{}", b),
|
|
StringLit(s) => format!("\"{}\"", s),
|
|
},
|
|
Expr::Func(f) => match f {
|
|
BuiltIn(name) => format!("<built-in function '{}'>", name),
|
|
UserDefined { name: None, .. } => format!("<function>"),
|
|
UserDefined { name: Some(name), .. } => format!("<function '{}'>", name),
|
|
},
|
|
Expr::Constructor {
|
|
type_name: _, name, arity, ..
|
|
} => if *arity == 0 {
|
|
format!("{}", name)
|
|
} else {
|
|
format!("<data constructor '{}'>", name)
|
|
},
|
|
Expr::Tuple(exprs) => paren_wrapped_vec(exprs.iter().map(|x| x.to_repl())),
|
|
_ => format!("{:?}", self),
|
|
}
|
|
}
|
|
|
|
fn replace_conditional_target_sigil(self, replacement: &Expr) -> Expr {
|
|
use self::Expr::*;
|
|
|
|
match self {
|
|
ConditionalTargetSigilValue => replacement.clone(),
|
|
Unit | Lit(_) | Func(_) | Val(_) | Constructor { .. } |
|
|
CaseMatch { .. } | UnimplementedSigilValue => self,
|
|
Tuple(exprs) => Tuple(exprs.into_iter().map(|e| e.replace_conditional_target_sigil(replacement)).collect()),
|
|
Call { f, args } => {
|
|
let new_args = args.into_iter().map(|e| e.replace_conditional_target_sigil(replacement)).collect();
|
|
Call { f, args: new_args }
|
|
},
|
|
Conditional { .. } => panic!("Dunno if I need this, but if so implement"),
|
|
Assign { .. } => panic!("I'm pretty sure I don't need this"),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> State<'a> {
|
|
pub fn evaluate(&mut self, ast: ReducedAST, repl: bool) -> Vec<Result<String, String>> {
|
|
let mut acc = vec![];
|
|
|
|
// handle prebindings
|
|
for statement in ast.0.iter() {
|
|
self.prebinding(statement);
|
|
}
|
|
|
|
for statement in ast.0 {
|
|
match self.statement(statement) {
|
|
Ok(Some(ref output)) if repl => acc.push(Ok(output.to_repl())),
|
|
Ok(_) => (),
|
|
Err(error) => {
|
|
acc.push(Err(format!("Runtime error: {}", error)));
|
|
return acc;
|
|
},
|
|
}
|
|
}
|
|
acc
|
|
}
|
|
|
|
fn prebinding(&mut self, stmt: &Stmt) {
|
|
match stmt {
|
|
Stmt::PreBinding { name, func } => {
|
|
let v_entry = ValueEntry::Binding { constant: true, val: Node::Expr(Expr::Func(func.clone())) };
|
|
self.values.insert(name.clone(), v_entry);
|
|
},
|
|
Stmt::Expr(_expr) => {
|
|
//TODO have this support things like nested function defs
|
|
|
|
},
|
|
_ => ()
|
|
}
|
|
}
|
|
|
|
fn statement(&mut self, stmt: Stmt) -> EvalResult<Option<Node>> {
|
|
match stmt {
|
|
Stmt::Binding { name, constant, expr } => {
|
|
let val = self.expression(Node::Expr(expr))?;
|
|
self.values.insert(name.clone(), ValueEntry::Binding { constant, val });
|
|
Ok(None)
|
|
},
|
|
Stmt::Expr(expr) => Ok(Some(self.expression(expr.to_node())?)),
|
|
Stmt::PreBinding {..} | Stmt::Noop => Ok(None),
|
|
}
|
|
}
|
|
|
|
fn block(&mut self, stmts: Vec<Stmt>) -> EvalResult<Node> {
|
|
let mut ret = None;
|
|
for stmt in stmts {
|
|
ret = self.statement(stmt)?;
|
|
}
|
|
Ok(ret.unwrap_or(Node::Expr(Expr::Unit)))
|
|
}
|
|
|
|
fn expression(&mut self, node: Node) -> EvalResult<Node> {
|
|
use self::Expr::*;
|
|
match node {
|
|
t @ Node::PrimTuple { .. } => Ok(t),
|
|
obj @ Node::PrimObject { .. } => Ok(obj),
|
|
Node::Expr(expr) => match expr {
|
|
literal @ Lit(_) => Ok(Node::Expr(literal)),
|
|
Call { box f, args } => self.call_expression(f, args),
|
|
Val(v) => self.value(v),
|
|
Constructor { arity, ref name, tag, .. } if arity == 0 => Ok(Node::PrimObject { name: name.clone(), tag, items: vec![] }),
|
|
constructor @ Constructor { .. } => Ok(Node::Expr(constructor)),
|
|
func @ Func(_) => Ok(Node::Expr(func)),
|
|
Tuple(exprs) => {
|
|
let nodes = exprs.into_iter().map(|expr| self.expression(Node::Expr(expr))).collect::<Result<Vec<Node>,_>>()?;
|
|
Ok(Node::PrimTuple { items: nodes })
|
|
},
|
|
Conditional { box cond, then_clause, else_clause } => self.conditional(cond, then_clause, else_clause),
|
|
Assign { box val, box expr } => self.assign_expression(val, expr),
|
|
Unit => Ok(Node::Expr(Unit)),
|
|
CaseMatch { box cond, alternatives } => self.case_match_expression(cond, alternatives),
|
|
ConditionalTargetSigilValue => Ok(Node::Expr(ConditionalTargetSigilValue)),
|
|
UnimplementedSigilValue => Err(format!("Sigil value eval not implemented")),
|
|
}
|
|
}
|
|
}
|
|
|
|
fn call_expression(&mut self, f: Expr, args: Vec<Expr>) -> EvalResult<Node> {
|
|
use self::Expr::*;
|
|
match self.expression(Node::Expr(f))? {
|
|
Node::Expr(Constructor { type_name, name, tag, arity }) => self.apply_data_constructor(type_name, name, tag, arity, args),
|
|
Node::Expr(Func(f)) => self.apply_function(f, args),
|
|
other => return Err(format!("Tried to call {:?} which is not a function or data constructor", other)),
|
|
}
|
|
}
|
|
|
|
fn apply_data_constructor(&mut self, _type_name: Rc<String>, name: Rc<String>, tag: usize, arity: usize, args: Vec<Expr>) -> EvalResult<Node> {
|
|
if arity != args.len() {
|
|
return Err(format!("Data constructor {} requires {} args", name, arity));
|
|
}
|
|
|
|
let evaled_args = args.into_iter().map(|expr| self.expression(Node::Expr(expr))).collect::<Result<Vec<Node>,_>>()?;
|
|
//let evaled_args = vec![];
|
|
Ok(Node::PrimObject {
|
|
name: name.clone(),
|
|
items: evaled_args,
|
|
tag
|
|
})
|
|
}
|
|
|
|
fn apply_function(&mut self, f: Func, args: Vec<Expr>) -> EvalResult<Node> {
|
|
match f {
|
|
Func::BuiltIn(sigil) => Ok(Node::Expr(self.apply_builtin(sigil, args)?)),
|
|
Func::UserDefined { params, body, name } => {
|
|
|
|
if params.len() != args.len() {
|
|
return Err(format!("calling a {}-argument function with {} args", params.len(), args.len()))
|
|
}
|
|
let mut func_state = State {
|
|
values: self.values.new_scope(name.map(|n| format!("{}", n))),
|
|
symbol_table_handle: self.symbol_table_handle.clone(),
|
|
};
|
|
for (param, val) in params.into_iter().zip(args.into_iter()) {
|
|
let val = func_state.expression(Node::Expr(val))?;
|
|
func_state.values.insert(param, ValueEntry::Binding { constant: true, val });
|
|
}
|
|
// TODO figure out function return semantics
|
|
func_state.block(body)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn apply_builtin(&mut self, name: Rc<String>, args: Vec<Expr>) -> EvalResult<Expr> {
|
|
use self::Expr::*;
|
|
use self::Lit::*;
|
|
let evaled_args: Result<Vec<Expr>, String> = args.into_iter().map(|arg| {
|
|
match self.expression(Node::Expr(arg)) {
|
|
Ok(Node::Expr(e)) => Ok(e),
|
|
Ok(Node::PrimTuple { .. }) => Err(format!("Trying to apply a builtin to a tuple")),
|
|
Ok(Node::PrimObject { .. }) => Err(format!("Trying to apply a builtin to a primitive object")),
|
|
Err(e) => Err(e)
|
|
}
|
|
}).collect();
|
|
let evaled_args = evaled_args?;
|
|
|
|
Ok(match (name.as_str(), evaled_args.as_slice()) {
|
|
/* binops */
|
|
("+", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Nat(l + r)),
|
|
("++", &[Lit(StringLit(ref s1)), Lit(StringLit(ref s2))]) => Lit(StringLit(Rc::new(format!("{}{}", s1, s2)))),
|
|
("-", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Nat(l - r)),
|
|
("*", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Nat(l * r)),
|
|
("/", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Float((l as f64)/ (r as f64))),
|
|
("quot", &[Lit(Nat(l)), Lit(Nat(r))]) => if r == 0 {
|
|
return Err(format!("divide by zero"));
|
|
} else {
|
|
Lit(Nat(l / r))
|
|
},
|
|
("%", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Nat(l % r)),
|
|
("^", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Nat(l ^ r)),
|
|
("&", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Nat(l & r)),
|
|
("|", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Nat(l | r)),
|
|
|
|
/* comparisons */
|
|
("==", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Bool(l == r)),
|
|
("==", &[Lit(Int(l)), Lit(Int(r))]) => Lit(Bool(l == r)),
|
|
("==", &[Lit(Float(l)), Lit(Float(r))]) => Lit(Bool(l == r)),
|
|
("==", &[Lit(Bool(l)), Lit(Bool(r))]) => Lit(Bool(l == r)),
|
|
("==", &[Lit(StringLit(ref l)), Lit(StringLit(ref r))]) => Lit(Bool(l == r)),
|
|
|
|
("<", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Bool(l < r)),
|
|
("<", &[Lit(Int(l)), Lit(Int(r))]) => Lit(Bool(l < r)),
|
|
("<", &[Lit(Float(l)), Lit(Float(r))]) => Lit(Bool(l < r)),
|
|
|
|
("<=", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Bool(l <= r)),
|
|
("<=", &[Lit(Int(l)), Lit(Int(r))]) => Lit(Bool(l <= r)),
|
|
("<=", &[Lit(Float(l)), Lit(Float(r))]) => Lit(Bool(l <= r)),
|
|
|
|
(">", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Bool(l > r)),
|
|
(">", &[Lit(Int(l)), Lit(Int(r))]) => Lit(Bool(l > r)),
|
|
(">", &[Lit(Float(l)), Lit(Float(r))]) => Lit(Bool(l > r)),
|
|
|
|
(">=", &[Lit(Nat(l)), Lit(Nat(r))]) => Lit(Bool(l >= r)),
|
|
(">=", &[Lit(Int(l)), Lit(Int(r))]) => Lit(Bool(l >= r)),
|
|
(">=", &[Lit(Float(l)), Lit(Float(r))]) => Lit(Bool(l >= r)),
|
|
|
|
/* prefix ops */
|
|
("!", &[Lit(Bool(true))]) => Lit(Bool(false)),
|
|
("!", &[Lit(Bool(false))]) => Lit(Bool(true)),
|
|
("-", &[Lit(Nat(n))]) => Lit(Int(-1*(n as i64))),
|
|
("-", &[Lit(Int(n))]) => Lit(Int(-1*(n as i64))),
|
|
("+", &[Lit(Int(n))]) => Lit(Int(n)),
|
|
("+", &[Lit(Nat(n))]) => Lit(Nat(n)),
|
|
|
|
|
|
/* builtin functions */
|
|
("print", &[ref anything]) => {
|
|
print!("{}", anything.to_repl());
|
|
Expr::Unit
|
|
},
|
|
("println", &[ref anything]) => {
|
|
println!("{}", anything.to_repl());
|
|
Expr::Unit
|
|
},
|
|
("getline", &[]) => {
|
|
let mut buf = String::new();
|
|
io::stdin().read_line(&mut buf).expect("Error readling line in 'getline'");
|
|
Lit(StringLit(Rc::new(buf.trim().to_string())))
|
|
},
|
|
(x, args) => return Err(format!("bad or unimplemented builtin {:?} | {:?}", x, args)),
|
|
})
|
|
}
|
|
|
|
fn conditional(&mut self, cond: Expr, then_clause: Vec<Stmt>, else_clause: Vec<Stmt>) -> EvalResult<Node> {
|
|
let cond = self.expression(Node::Expr(cond))?;
|
|
Ok(match cond {
|
|
Node::Expr(Expr::Lit(Lit::Bool(true))) => self.block(then_clause)?,
|
|
Node::Expr(Expr::Lit(Lit::Bool(false))) => self.block(else_clause)?,
|
|
_ => return Err(format!("Conditional with non-boolean condition"))
|
|
})
|
|
}
|
|
|
|
fn assign_expression(&mut self, val: Expr, expr: Expr) -> EvalResult<Node> {
|
|
let name = match val {
|
|
Expr::Val(name) => name,
|
|
_ => return Err(format!("Trying to assign to a non-value")),
|
|
};
|
|
|
|
let constant = match self.values.lookup(&name) {
|
|
None => return Err(format!("Constant {} is undefined", name)),
|
|
Some(ValueEntry::Binding { constant, .. }) => constant.clone(),
|
|
};
|
|
if constant {
|
|
return Err(format!("trying to update {}, a non-mutable binding", name));
|
|
}
|
|
let val = self.expression(Node::Expr(expr))?;
|
|
self.values.insert(name.clone(), ValueEntry::Binding { constant: false, val });
|
|
Ok(Node::Expr(Expr::Unit))
|
|
}
|
|
|
|
fn guard_passes(&mut self, guard: &Option<Expr>, cond: &Node) -> EvalResult<bool> {
|
|
if let Some(ref guard_expr) = guard {
|
|
let guard_expr = match cond {
|
|
Node::Expr(ref e) => guard_expr.clone().replace_conditional_target_sigil(e),
|
|
_ => guard_expr.clone()
|
|
};
|
|
Ok(self.expression(guard_expr.to_node())?.is_true())
|
|
} else {
|
|
Ok(true)
|
|
}
|
|
}
|
|
|
|
fn case_match_expression(&mut self, cond: Expr, alternatives: Vec<Alternative>) -> EvalResult<Node> {
|
|
|
|
//TODO need to handle recursive subpatterns
|
|
let all_subpatterns_pass = |state: &mut State, subpatterns: &Vec<Option<Subpattern>>, items: &Vec<Node>| -> EvalResult<bool> {
|
|
|
|
if subpatterns.len() == 0 {
|
|
return Ok(true)
|
|
}
|
|
|
|
if items.len() != subpatterns.len() {
|
|
return Err(format!("Subpattern length isn't correct items {} subpatterns {}", items.len(), subpatterns.len()));
|
|
}
|
|
|
|
for (maybe_subp, cond) in subpatterns.iter().zip(items.iter()) {
|
|
if let Some(subp) = maybe_subp {
|
|
if !state.guard_passes(&subp.guard, &cond)? {
|
|
return Ok(false)
|
|
}
|
|
}
|
|
}
|
|
Ok(true)
|
|
};
|
|
|
|
let cond = self.expression(Node::Expr(cond))?;
|
|
for alt in alternatives {
|
|
// no matter what type of condition we have, ignore alternative if the guard evaluates false
|
|
if !self.guard_passes(&alt.guard, &cond)? {
|
|
continue;
|
|
}
|
|
|
|
match cond {
|
|
Node::PrimObject { ref tag, ref items, .. } => {
|
|
if alt.tag.map(|t| t == *tag).unwrap_or(true) {
|
|
let mut inner_state = self.new_frame(items, &alt.bound_vars);
|
|
if all_subpatterns_pass(&mut inner_state, &alt.subpatterns, items)? {
|
|
return inner_state.block(alt.item);
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
},
|
|
Node::PrimTuple { ref items } => {
|
|
let mut inner_state = self.new_frame(items, &alt.bound_vars);
|
|
if all_subpatterns_pass(&mut inner_state, &alt.subpatterns, items)? {
|
|
return inner_state.block(alt.item);
|
|
} else {
|
|
continue;
|
|
}
|
|
},
|
|
Node::Expr(ref _e) => {
|
|
if let None = alt.tag {
|
|
return self.block(alt.item)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Err(format!("{:?} failed pattern match", cond))
|
|
}
|
|
|
|
//TODO if I don't need to lookup by name here...
|
|
fn value(&mut self, name: Rc<String>) -> EvalResult<Node> {
|
|
use self::ValueEntry::*;
|
|
use self::Func::*;
|
|
//TODO add a layer of indirection here to talk to the symbol table first, and only then look up
|
|
//in the values table
|
|
|
|
let symbol_table = self.symbol_table_handle.borrow();
|
|
let value = symbol_table.lookup_by_name(&name);
|
|
Ok(match value {
|
|
Some(Symbol { name, spec, .. }) => match spec {
|
|
//TODO I'll need this type_name later to do a table lookup
|
|
SymbolSpec::DataConstructor { type_name: _type_name, type_args, .. } => {
|
|
if type_args.len() == 0 {
|
|
Node::PrimObject { name: name.clone(), tag: 0, items: vec![] }
|
|
} else {
|
|
return Err(format!("This data constructor thing not done"))
|
|
}
|
|
},
|
|
SymbolSpec::Func(_) => match self.values.lookup(&name) {
|
|
Some(Binding { val: Node::Expr(Expr::Func(UserDefined { name, params, body })), .. }) => {
|
|
Node::Expr(Expr::Func(UserDefined { name: name.clone(), params: params.clone(), body: body.clone() }))
|
|
},
|
|
_ => unreachable!(),
|
|
},
|
|
SymbolSpec::RecordConstructor { .. } => return Err(format!("This shouldn't be a record!")),
|
|
SymbolSpec::Binding => match self.values.lookup(&name) {
|
|
Some(Binding { val, .. }) => val.clone(),
|
|
None => return Err(format!("Symbol {} exists in symbol table but not in evaluator table", name))
|
|
}
|
|
},
|
|
//TODO ideally this should be returning a runtime error if this is ever None, but it's not
|
|
//handling all bindings correctly yet
|
|
//None => return Err(format!("Couldn't find value {}", name)),
|
|
None => match self.values.lookup(&name) {
|
|
Some(Binding { val, .. }) => val.clone(),
|
|
None => return Err(format!("Couldn't find value {}", name)),
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod eval_tests {
|
|
use std::cell::RefCell;
|
|
use std::rc::Rc;
|
|
|
|
use crate::symbol_table::SymbolTable;
|
|
use crate::eval::State;
|
|
|
|
fn evaluate_all_outputs(input: &str) -> Vec<Result<String, String>> {
|
|
let symbol_table = Rc::new(RefCell::new(SymbolTable::new()));
|
|
let mut state = State::new(symbol_table);
|
|
let ast = crate::util::quick_ast(input);
|
|
state.symbol_table_handle.borrow_mut().add_top_level_symbols(&ast).unwrap();
|
|
let reduced = ast.reduce(&state.symbol_table_handle.borrow());
|
|
let all_output = state.evaluate(reduced, true);
|
|
all_output
|
|
}
|
|
|
|
macro_rules! test_in_fresh_env {
|
|
($string:expr, $correct:expr) => {
|
|
{
|
|
let all_output = evaluate_all_outputs($string);
|
|
let ref output = all_output.last().unwrap();
|
|
assert_eq!(**output, Ok($correct.to_string()));
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_basic_eval() {
|
|
test_in_fresh_env!("1 + 2", "3");
|
|
test_in_fresh_env!("let mut a = 1; a = 2", "Unit");
|
|
test_in_fresh_env!("let mut a = 1; a = 2; a", "2");
|
|
test_in_fresh_env!(r#"("a", 1 + 2)"#, r#"("a", 3)"#);
|
|
}
|
|
|
|
#[test]
|
|
fn function_eval() {
|
|
test_in_fresh_env!("fn oi(x) { x + 1 }; oi(4)", "5");
|
|
test_in_fresh_env!("fn oi(x) { x + 1 }; oi(1+2)", "4");
|
|
}
|
|
|
|
#[test]
|
|
fn scopes() {
|
|
let scope_ok = r#"
|
|
let a = 20
|
|
fn haha() {
|
|
let a = 10
|
|
a
|
|
}
|
|
haha()
|
|
"#;
|
|
test_in_fresh_env!(scope_ok, "10");
|
|
let scope_ok = r#"
|
|
let a = 20
|
|
fn haha() {
|
|
let a = 10
|
|
a
|
|
}
|
|
a
|
|
"#;
|
|
test_in_fresh_env!(scope_ok, "20");
|
|
}
|
|
|
|
#[test]
|
|
fn if_is_patterns() {
|
|
let source = r#"
|
|
type Option<T> = Some(T) | None
|
|
let x = Some(9); if x is Some(q) then { q } else { 0 }"#;
|
|
test_in_fresh_env!(source, "9");
|
|
|
|
let source = r#"
|
|
type Option<T> = Some(T) | None
|
|
let x = None; if x is Some(q) then { q } else { 0 }"#;
|
|
test_in_fresh_env!(source, "0");
|
|
}
|
|
|
|
#[test]
|
|
fn full_if_matching() {
|
|
let source = r#"
|
|
type Option<T> = Some(T) | None
|
|
let a = None
|
|
if a { is None -> 4, is Some(x) -> x }
|
|
"#;
|
|
test_in_fresh_env!(source, "4");
|
|
|
|
let source = r#"
|
|
type Option<T> = Some(T) | None
|
|
let a = Some(99)
|
|
if a { is None -> 4, is Some(x) -> x }
|
|
"#;
|
|
test_in_fresh_env!(source, "99");
|
|
|
|
let source = r#"
|
|
let a = 10
|
|
if a { is 10 -> "x", is 4 -> "y" }
|
|
"#;
|
|
test_in_fresh_env!(source, "\"x\"");
|
|
|
|
let source = r#"
|
|
let a = 10
|
|
if a { is 15 -> "x", is 10 -> "y" }
|
|
"#;
|
|
test_in_fresh_env!(source, "\"y\"");
|
|
}
|
|
|
|
#[test]
|
|
fn string_pattern() {
|
|
let source = r#"
|
|
let a = "foo"
|
|
if a { is "foo" -> "x", is _ -> "y" }
|
|
"#;
|
|
test_in_fresh_env!(source, "\"x\"");
|
|
}
|
|
|
|
#[test]
|
|
fn boolean_pattern() {
|
|
let source = r#"
|
|
let a = true
|
|
if a {
|
|
is true -> "x",
|
|
is false -> "y"
|
|
}
|
|
"#;
|
|
test_in_fresh_env!(source, "\"x\"");
|
|
}
|
|
|
|
#[test]
|
|
fn boolean_pattern_2() {
|
|
let source = r#"
|
|
let a = false
|
|
if a { is true -> "x", is false -> "y" }
|
|
"#;
|
|
test_in_fresh_env!(source, "\"y\"");
|
|
}
|
|
|
|
#[test]
|
|
fn ignore_pattern() {
|
|
let source = r#"
|
|
type Option<T> = Some(T) | None
|
|
if Some(10) {
|
|
is _ -> "hella"
|
|
}
|
|
"#;
|
|
test_in_fresh_env!(source, "\"hella\"");
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_pattern() {
|
|
let source = r#"
|
|
if (1, 2) {
|
|
is (1, x) -> x,
|
|
is _ -> 99
|
|
}
|
|
"#;
|
|
test_in_fresh_env!(source, 2);
|
|
}
|
|
|
|
|
|
#[test]
|
|
fn tuple_pattern_2() {
|
|
let source = r#"
|
|
if (1, 2) {
|
|
is (10, x) -> x,
|
|
is (y, x) -> x + y
|
|
}
|
|
"#;
|
|
test_in_fresh_env!(source, 3);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_pattern_3() {
|
|
let source = r#"
|
|
if (1, 5) {
|
|
is (10, x) -> x,
|
|
is (1, x) -> x
|
|
}
|
|
"#;
|
|
test_in_fresh_env!(source, 5);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_pattern_4() {
|
|
let source = r#"
|
|
if (1, 5) {
|
|
is (10, x) -> x,
|
|
is (1, x) -> x,
|
|
}
|
|
"#;
|
|
test_in_fresh_env!(source, 5);
|
|
}
|
|
|
|
#[test]
|
|
fn prim_obj_pattern() {
|
|
let source = r#"
|
|
type Stuff = Mulch(Nat) | Jugs(Nat, String) | Mardok
|
|
let a = Mulch(20)
|
|
let b = Jugs(1, "haha")
|
|
let c = Mardok
|
|
|
|
let x = if a {
|
|
is Mulch(20) -> "x",
|
|
is _ -> "ERR"
|
|
}
|
|
|
|
let y = if b {
|
|
is Mulch(n) -> "ERR",
|
|
is Jugs(2, _) -> "ERR",
|
|
is Jugs(1, s) -> s,
|
|
is _ -> "ERR",
|
|
}
|
|
|
|
let z = if c {
|
|
is Jugs(_, _) -> "ERR",
|
|
is Mardok -> "NIGH",
|
|
is _ -> "ERR",
|
|
}
|
|
|
|
(x, y, z)
|
|
"#;
|
|
test_in_fresh_env!(source, r#"("x", "haha", "NIGH")"#);
|
|
}
|
|
|
|
#[test]
|
|
fn basic_lambda_syntax() {
|
|
let source = r#"
|
|
let q = \(x, y) { x * y }
|
|
let x = q(5,2)
|
|
let y = \(m, n, o) { m + n + o }(1,2,3)
|
|
(x, y)
|
|
"#;
|
|
test_in_fresh_env!(source, r"(10, 6)");
|
|
}
|
|
|
|
#[test]
|
|
fn lambda_syntax_2() {
|
|
let source = r#"
|
|
fn milta() {
|
|
\(x) { x + 33 }
|
|
}
|
|
milta()(10)
|
|
"#;
|
|
test_in_fresh_env!(source, "43");
|
|
}
|
|
}
|