use schala_lang::parsing::{AST, Statement, Declaration, Expression, ExpressionType, Operation, TypeAnno}; pub struct ReplState { } type EvalResult = Result; enum FullyEvaluatedExpr { UnsignedInt(u64), SignedInt(i64), Float(f64), Str(String), Bool(bool), } impl ReplState { pub fn new() -> ReplState { ReplState { } } pub fn evaluate(&mut self, ast: AST) -> Vec { let mut acc = vec![]; for statement in ast.0 { match self.eval_statement(statement) { Ok(output) => { if let Some(s) = output { acc.push(s); } }, Err(error) => { acc.push(format!("Error: {}", error)); return acc; }, } } acc } } impl ReplState { fn eval_statement(&mut self, statement: Statement) -> EvalResult> { use self::FullyEvaluatedExpr::*; match statement { Statement::ExpressionStatement(expr) => { self.eval_expr(expr).map( |eval| { match eval { UnsignedInt(n) => Some(format!("{}", n)), SignedInt(n) => Some(format!("{}", n)), Float(f) => Some(format!("{}", f)), Str(s) => Some(format!("\"{}\"", s)), Bool(b) => Some(format!("{}", b)), } }) }, Statement::Declaration(decl) => { self.eval_decl(decl).map(|_| None) } } } fn eval_decl(&mut self, _decl: Declaration) -> EvalResult<()> { Err("Not implmemented".to_string()) } fn eval_expr(&mut self, expr: Expression) -> EvalResult { use self::ExpressionType::*; use self::FullyEvaluatedExpr::*; let expr_type = expr.0; match expr_type { IntLiteral(n) => Ok(UnsignedInt(n)), FloatLiteral(f) => Ok(Float(f)), StringLiteral(s) => Ok(Str(s.to_string())), BoolLiteral(b) => Ok(Bool(b)), PrefixExp(op, expr) => self.eval_prefix_exp(op, expr), BinExp(op, lhs, rhs) => self.eval_binexp(op, lhs, rhs), _ => Err(format!("Unimplemented")), } } fn eval_binexp(&mut self, op: Operation, lhs: Box, rhs: Box) -> EvalResult { use self::FullyEvaluatedExpr::*; let evaled_lhs = self.eval_expr(*lhs)?; let evaled_rhs = self.eval_expr(*rhs)?; let opstr: &str = &op.0; Ok(match (opstr, evaled_lhs, evaled_rhs) { ("+", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l + r), ("-", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l - r), ("*", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l * r), ("/", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l / r), ("%", UnsignedInt(l), UnsignedInt(r)) => UnsignedInt(l % r), _ => return Err(format!("Runtime error: not yet implemented")), }) } fn eval_prefix_exp(&mut self, op: Operation, expr: Box) -> EvalResult { use self::FullyEvaluatedExpr::*; let evaled_expr = self.eval_expr(*expr)?; let opstr: &str = &op.0; Ok(match (opstr, evaled_expr) { ("!", Bool(true)) => Bool(false), ("!", Bool(false)) => Bool(true), ("-", UnsignedInt(n)) => SignedInt(-1*(n as i64)), ("-", SignedInt(n)) => SignedInt(-1*(n as i64)), _ => return Err(format!("Runtime error: not yet implemented")), }) } } // from Niko's talk /* fn type_check(expression, expected_ty) -> Ty { let ty = bare_type_check(expression, expected_type); if ty icompatible with expected_ty { try_coerce(expression, ty, expected_ty) } else { ty } } fn bare_type_check(exprssion, expected_type) -> Ty { ... } */ pub enum TypeCheck { OK, Error(String) } impl TypeCheck { fn new(msg: &str) -> TypeCheck { TypeCheck::Error(msg.to_string()) } } impl ReplState { pub fn type_check(&mut self, ast: &AST) -> TypeCheck { use self::ExpressionType::*; for statement in ast.0.iter() { match statement { &Statement::Declaration(ref _decl) => { return TypeCheck::new("Declarations not supported"); }, &Statement::ExpressionStatement(ref expr) => { match (&expr.0, &expr.1) { (&IntLiteral(_), &Some(ref t)) => { match t { &TypeAnno::Singleton { ref name, ref params } if **name == "Int" && params.len() == 0 => (), t => return TypeCheck::new(&format!("Bad type {:?} for int literal", t)), } }, _ => (), } } } } TypeCheck::OK } }