use std::{convert::From, fmt::Write, rc::Rc}; use crate::{ builtin::Builtin, reduced_ir::{ Alternative, Callable, Expression, FunctionDefinition, Literal, Lookup, Pattern, ReducedIR, Statement, }, symbol_table::DefId, typechecking::TypeId, util::ScopeStack, }; mod test; type EvalResult = Result; #[derive(Debug)] pub struct State<'a> { environments: ScopeStack<'a, Memory, MemoryValue>, } //TODO - eh, I dunno, maybe it doesn't matter exactly how memory works in the tree-walking //evaluator #[derive(Debug, PartialEq, Eq, Hash, Clone)] enum Memory { Index(u32), } // This is for function param lookups, and is a hack impl From for Memory { fn from(n: u8) -> Self { Memory::Index(4_000_000 + (n as u32)) } } impl From<&DefId> for Memory { fn from(id: &DefId) -> Self { Self::Index(id.as_u32()) } } #[derive(Debug)] struct RuntimeError { msg: String, } impl From for RuntimeError { fn from(msg: String) -> Self { Self { msg } } } impl From<&str> for RuntimeError { fn from(msg: &str) -> Self { Self { msg: msg.to_string() } } } impl RuntimeError { #[allow(dead_code)] fn get_msg(&self) -> String { format!("Runtime error: {}", self.msg) } } fn paren_wrapped(terms: impl Iterator) -> String { let mut buf = String::new(); write!(buf, "(").unwrap(); for term in terms.map(Some).intersperse(None) { match term { Some(e) => write!(buf, "{}", e).unwrap(), None => write!(buf, ", ").unwrap(), }; } write!(buf, ")").unwrap(); buf } /// Anything that can be stored in memory; that is, a function definition, or a fully-evaluated /// program value. #[derive(Debug)] enum MemoryValue { Function(FunctionDefinition), Primitive(Primitive), } impl From for MemoryValue { fn from(prim: Primitive) -> Self { Self::Primitive(prim) } } impl MemoryValue { fn to_repl(&self) -> String { match self { MemoryValue::Primitive(ref prim) => prim.to_repl(), MemoryValue::Function(..) => "".to_string(), } } } #[derive(Debug)] enum RuntimeValue { Expression(Expression), Evaluated(Primitive), } impl From for RuntimeValue { fn from(expr: Expression) -> Self { Self::Expression(expr) } } impl From for RuntimeValue { fn from(prim: Primitive) -> Self { Self::Evaluated(prim) } } /// A fully-reduced value #[derive(Debug, Clone)] enum Primitive { Tuple(Vec), Literal(Literal), Callable(Callable), Object { type_id: TypeId, tag: u32, items: Vec }, } impl Primitive { fn to_repl(&self) -> String { match self { Primitive::Object { type_id, items, .. } if items.is_empty() => type_id.local_name().to_string(), Primitive::Object { type_id, items, .. } => { format!("{}{}", type_id.local_name(), paren_wrapped(items.iter().map(|item| item.to_repl()))) } Primitive::Literal(lit) => match lit { Literal::Nat(n) => format!("{}", n), Literal::Int(i) => format!("{}", i), Literal::Float(f) => format!("{}", f), Literal::Bool(b) => format!("{}", b), Literal::StringLit(s) => format!("\"{}\"", s), }, Primitive::Tuple(terms) => paren_wrapped(terms.iter().map(|x| x.to_repl())), Primitive::Callable(..) => "".to_string(), } } fn unit() -> Self { Primitive::Tuple(vec![]) } } impl From for Primitive { fn from(lit: Literal) -> Self { Primitive::Literal(lit) } } impl<'a> State<'a> { pub fn new() -> Self { Self { environments: ScopeStack::new(Some("global".to_string())) } } pub fn evaluate(&mut self, reduced: ReducedIR, repl: bool) -> Vec> { let mut acc = vec![]; for (def_id, function) in reduced.functions.into_iter() { let mem = (&def_id).into(); self.environments.insert(mem, MemoryValue::Function(function)); } for statement in reduced.entrypoint.into_iter() { match self.statement(statement) { Ok(Some(output)) if repl => acc.push(Ok(output.to_repl())), Ok(_) => (), Err(error) => { acc.push(Err(error.msg)); return acc; } } } acc } fn block(&mut self, statements: Vec) -> EvalResult { //TODO need to handle breaks, returns, etc. let mut ret = None; for stmt in statements.into_iter() { if let Some(MemoryValue::Primitive(prim)) = self.statement(stmt)? { ret = Some(prim); } } Ok(if let Some(ret) = ret { ret } else { self.expression(Expression::unit())? }) } fn statement(&mut self, stmt: Statement) -> EvalResult> { match stmt { Statement::Binding { ref id, expr, constant: _ } => { println!("eval() binding id: {}", id); let evaluated = self.expression(expr)?; self.environments.insert(id.into(), evaluated.into()); Ok(None) } Statement::Expression(expr) => { let evaluated = self.expression(expr)?; Ok(Some(evaluated.into())) } } } fn expression(&mut self, expression: Expression) -> EvalResult { Ok(match expression { Expression::Literal(lit) => Primitive::Literal(lit), Expression::Tuple(items) => Primitive::Tuple( items .into_iter() .map(|expr| self.expression(expr)) .collect::>>()?, ), Expression::Lookup(kind) => match kind { Lookup::Function(ref id) => { let mem = id.into(); match self.environments.lookup(&mem) { // This just checks that the function exists in "memory" by ID, we don't // actually retrieve it until `apply_function()` Some(MemoryValue::Function(_)) => { Primitive::Callable(Callable::UserDefined(id.clone())) } x => return Err(format!("Function not found for id: {} : {:?}", id, x).into()), } } Lookup::Param(n) => { let mem = n.into(); match self.environments.lookup(&mem) { Some(MemoryValue::Primitive(prim)) => prim.clone(), e => return Err(format!("Param lookup error, got {:?}", e).into()), } } Lookup::LocalVar(ref id) | Lookup::GlobalVar(ref id) => { let mem = id.into(); match self.environments.lookup(&mem) { Some(MemoryValue::Primitive(expr)) => expr.clone(), _ => { return Err( format!("Nothing found for local/gloval variable lookup {}", id).into() ) } } } }, Expression::Assign { ref lval, box rval } => { let mem = lval.into(); let evaluated = self.expression(rval)?; self.environments.insert(mem, MemoryValue::Primitive(evaluated)); Primitive::unit() } Expression::Call { box f, args } => self.call_expression(f, args)?, Expression::Callable(Callable::DataConstructor { type_id, arity, tag }) if arity == 0 => { Primitive::Object { type_id, tag, items: vec![] } } Expression::Callable(func) => Primitive::Callable(func), Expression::Conditional { box cond, then_clause, else_clause } => { let cond = self.expression(cond)?; match cond { Primitive::Literal(Literal::Bool(true)) => self.block(then_clause)?, Primitive::Literal(Literal::Bool(false)) => self.block(else_clause)?, v => return Err(format!("Non-boolean value {:?} in if-statement", v).into()), } } Expression::CaseMatch { box cond, alternatives } => { self.case_match_expression(cond, alternatives)? } Expression::ReductionError(e) => return Err(e.into()), }) } fn case_match_expression( &mut self, cond: Expression, alternatives: Vec, ) -> EvalResult { fn matches(scrut: &Primitive, pat: &Pattern, scope: &mut ScopeStack) -> bool { match pat { Pattern::Ignored => true, Pattern::Binding(ref def_id) => { let mem = def_id.into(); scope.insert(mem, MemoryValue::Primitive(scrut.clone())); //TODO make sure this doesn't cause problems with nesting true } Pattern::Literal(pat_literal) => { if let Primitive::Literal(scrut_literal) = scrut { pat_literal == scrut_literal } else { false } } Pattern::Tuple { subpatterns, tag } => match tag { None => match scrut { Primitive::Tuple(items) if items.len() == subpatterns.len() => items .iter() .zip(subpatterns.iter()) .all(|(item, subpat)| matches(item, subpat, scope)), _ => false, //TODO should be a type error }, Some(pattern_tag) => match scrut { //TODO should test type_ids for runtime type checking, once those work Primitive::Object { tag, items, .. } if tag == pattern_tag && items.len() == subpatterns.len() => { items .iter() .zip(subpatterns.iter()) .all(|(item, subpat)| matches(item, subpat, scope)) } _ => false, }, }, } } let cond = self.expression(cond)?; for alt in alternatives.into_iter() { let mut new_scope = self.environments.new_scope(None); if matches(&cond, &alt.pattern, &mut new_scope) { let mut new_state = State { environments: new_scope }; return new_state.block(alt.item); } } Err("No valid match in match expression".into()) } fn call_expression(&mut self, f: Expression, args: Vec) -> EvalResult { let func = match self.expression(f)? { Primitive::Callable(func) => func, other => return Err(format!("Trying to call non-function value: {:?}", other).into()), }; match func { Callable::Builtin(builtin) => self.apply_builtin(builtin, args), Callable::UserDefined(def_id) => { let mem = (&def_id).into(); match self.environments.lookup(&mem) { Some(MemoryValue::Function(FunctionDefinition { body })) => { let body = body.clone(); //TODO ideally this clone would not happen self.apply_function(body, args) } e => Err(format!("Error looking up function with id {}: {:?}", def_id, e).into()), } } Callable::Lambda { arity, body } => { if arity as usize != args.len() { return Err(format!( "Lambda expression requries {} arguments, only {} provided", arity, args.len() ) .into()); } self.apply_function(body, args) } Callable::DataConstructor { type_id, arity, tag } => { if arity as usize != args.len() { return Err(format!( "Constructor expression requries {} arguments, only {} provided", arity, args.len() ) .into()); } let mut evaluated_args: Vec = vec![]; for arg in args.into_iter() { evaluated_args.push(self.expression(arg)?); } Ok(Primitive::Object { type_id, tag, items: evaluated_args }) } Callable::RecordConstructor { type_id: _, tag: _ } => { unimplemented!() } } } fn apply_builtin(&mut self, builtin: Builtin, args: Vec) -> EvalResult { use Builtin::*; use Literal::*; use Primitive::Literal as Lit; let evaled_args: EvalResult> = args.into_iter().map(|arg| self.expression(arg)).collect(); let evaled_args = evaled_args?; Ok(match (builtin, evaled_args.as_slice()) { (FieldAccess, /*&[Node::PrimObject { .. }]*/ _) => { return Err("Field access unimplemented".into()); } /* builtin functions */ (IOPrint, &[ref anything]) => { print!("{}", anything.to_repl()); Primitive::Tuple(vec![]) } (IOPrintLn, &[ref anything]) => { print!("{}", anything.to_repl()); Primitive::Tuple(vec![]) } (IOGetLine, &[]) => { let mut buf = String::new(); std::io::stdin().read_line(&mut buf).expect("Error readling line in 'getline'"); StringLit(Rc::new(buf.trim().to_string())).into() } /* Binops */ (binop, &[ref lhs, ref rhs]) => match (binop, lhs, rhs) { // TODO need a better way of handling these literals (Add, Lit(Nat(l)), Lit(Nat(r))) => Nat(l + r).into(), (Add, Lit(Int(l)), Lit(Int(r))) => Int(l + r).into(), (Add, Lit(Nat(l)), Lit(Int(r))) => Int((*l as i64) + (*r as i64)).into(), (Add, Lit(Int(l)), Lit(Nat(r))) => Int((*l as i64) + (*r as i64)).into(), (Concatenate, Lit(StringLit(ref s1)), Lit(StringLit(ref s2))) => { StringLit(Rc::new(format!("{}{}", s1, s2))).into() } (Subtract, Lit(Nat(l)), Lit(Nat(r))) => Nat(l - r).into(), (Multiply, Lit(Nat(l)), Lit(Nat(r))) => Nat(l * r).into(), (Divide, Lit(Nat(l)), Lit(Nat(r))) => Float((*l as f64) / (*r as f64)).into(), (Quotient, Lit(Nat(l)), Lit(Nat(r))) => { if *r == 0 { return Err("Divide-by-zero error".into()); } else { Nat(l / r).into() } } (Modulo, Lit(Nat(l)), Lit(Nat(r))) => Nat(l % r).into(), (Exponentiation, Lit(Nat(l)), Lit(Nat(r))) => Nat(l ^ r).into(), (BitwiseAnd, Lit(Nat(l)), Lit(Nat(r))) => Nat(l & r).into(), (BitwiseOr, Lit(Nat(l)), Lit(Nat(r))) => Nat(l | r).into(), /* comparisons */ (Equality, Lit(Nat(l)), Lit(Nat(r))) => Bool(l == r).into(), (Equality, Lit(Int(l)), Lit(Int(r))) => Bool(l == r).into(), (Equality, Lit(Float(l)), Lit(Float(r))) => Bool(l == r).into(), (Equality, Lit(Bool(l)), Lit(Bool(r))) => Bool(l == r).into(), (Equality, Lit(StringLit(ref l)), Lit(StringLit(ref r))) => Bool(l == r).into(), (LessThan, Lit(Nat(l)), Lit(Nat(r))) => Bool(l < r).into(), (LessThan, Lit(Int(l)), Lit(Int(r))) => Bool(l < r).into(), (LessThan, Lit(Float(l)), Lit(Float(r))) => Bool(l < r).into(), (LessThanOrEqual, Lit(Nat(l)), Lit(Nat(r))) => Bool(l <= r).into(), (LessThanOrEqual, Lit(Int(l)), Lit(Int(r))) => Bool(l <= r).into(), (LessThanOrEqual, Lit(Float(l)), Lit(Float(r))) => Bool(l <= r).into(), (GreaterThan, Lit(Nat(l)), Lit(Nat(r))) => Bool(l > r).into(), (GreaterThan, Lit(Int(l)), Lit(Int(r))) => Bool(l > r).into(), (GreaterThan, Lit(Float(l)), Lit(Float(r))) => Bool(l > r).into(), (GreaterThanOrEqual, Lit(Nat(l)), Lit(Nat(r))) => Bool(l >= r).into(), (GreaterThanOrEqual, Lit(Int(l)), Lit(Int(r))) => Bool(l >= r).into(), (GreaterThanOrEqual, Lit(Float(l)), Lit(Float(r))) => Bool(l >= r).into(), (binop, lhs, rhs) => { return Err(format!("Invalid binop expression {:?} {:?} {:?}", lhs, binop, rhs).into()) } }, (prefix, &[ref arg]) => match (prefix, arg) { (BooleanNot, Lit(Bool(true))) => Bool(false), (BooleanNot, Lit(Bool(false))) => Bool(true), (Negate, Lit(Nat(n))) => Int(-(*n as i64)), (Negate, Lit(Int(n))) => Int(-(*n as i64)), (Negate, Lit(Float(f))) => Float(-(*f as f64)), (Increment, Lit(Int(n))) => Int(*n), (Increment, Lit(Nat(n))) => Nat(*n), _ => return Err("No valid prefix op".into()), } .into(), (x, args) => return Err(format!("bad or unimplemented builtin {:?} | {:?}", x, args).into()), }) } fn apply_function(&mut self, body: Vec, args: Vec) -> EvalResult { let mut evaluated_args: Vec = vec![]; for arg in args.into_iter() { evaluated_args.push(self.expression(arg)?); } let mut frame_state = State { environments: self.environments.new_scope(None) }; for (n, evaled) in evaluated_args.into_iter().enumerate() { let n = n as u8; let mem = n.into(); frame_state.environments.insert(mem, MemoryValue::Primitive(evaled)); } frame_state.block(body) } }