use std::rc::Rc; use crate::{ ast::*, symbol_table::{Fqsn, ScopeSegment, SymbolSpec, SymbolTable}, util::ScopeStack, }; #[derive(Debug)] enum NameType { //TODO eventually this needs to support closures Param(u8), LocalVariable(ItemId), LocalFunction(ItemId), Import(Fqsn), } type LexScope<'a> = ScopeStack<'a, Rc, NameType, ScopeType>; #[derive(Debug)] enum ScopeType { Function { name: Rc }, Lambda, PatternMatch, ImplBlock, //TODO add some notion of a let-like scope? } pub struct ScopeResolver<'a> { symbol_table: &'a mut super::SymbolTable, //TODO maybe this shouldn't be a scope stack, b/c the recursion behavior comes from multiple //instances of ScopeResolver lexical_scopes: LexScope<'a>, } impl<'a> ScopeResolver<'a> { pub fn new(symbol_table: &'a mut SymbolTable) -> Self { let lexical_scopes = ScopeStack::new(None); Self { symbol_table, lexical_scopes } } pub fn resolve(&mut self, ast: &AST) { walk_ast(self, ast); } /// This method correctly modifies the id_to_def table (ItemId) to have the appropriate /// mappings. fn lookup_name_in_scope(&mut self, name: &QualifiedName) { let QualifiedName { id, components } = name; let local_name = components.first().unwrap().clone(); let name_type = self.lexical_scopes.lookup(&local_name); let fqsn = Fqsn { scopes: components.iter().map(|name| ScopeSegment::Name(name.clone())).collect() }; let def_id = self.symbol_table.symbol_trie.lookup(&fqsn); //TODO handle a "partial" qualified name, and also handle it down in the pattern-matching //section if components.len() == 1 { match name_type { Some(NameType::Import(fqsn)) => { let def_id = self.symbol_table.symbol_trie.lookup(fqsn); if let Some(def_id) = def_id { self.symbol_table.id_to_def.insert(*id, def_id); } } Some(NameType::Param(n)) => { let spec = SymbolSpec::FunctionParam(*n); //TODO need to come up with a better solution for local variable FQSNs let lscope = ScopeSegment::Name(Rc::new("".to_string())); let fqsn = Fqsn { scopes: vec![lscope, ScopeSegment::Name(local_name.clone())] }; self.symbol_table.add_symbol(id, fqsn, spec); } Some(NameType::LocalFunction(item_id)) => { let def_id = self.symbol_table.id_to_def.get(item_id); if let Some(def_id) = def_id { let def_id = *def_id; self.symbol_table.id_to_def.insert(*id, def_id); } } Some(NameType::LocalVariable(item_id)) => { let def_id = self.symbol_table.id_to_def.get(item_id); if let Some(def_id) = def_id { let def_id = *def_id; self.symbol_table.id_to_def.insert(*id, def_id); } } None => if let Some(def_id) = def_id { self.symbol_table.id_to_def.insert(*id, def_id); }, } } else if let Some(def_id) = def_id { self.symbol_table.id_to_def.insert(*id, def_id); } } } impl<'a> ASTVisitor for ScopeResolver<'a> { // Import statements bring in a bunch of local names that all map to a specific FQSN. // FQSNs map to a Symbol (or this is an error), Symbols have a DefId. So for every // name we import, we map a local name (a string) to a NameType::ImportedDefinition(DefId). fn import(&mut self, import_spec: &ImportSpecifier) -> Recursion { let ImportSpecifier { ref path_components, ref imported_names, .. } = &import_spec; match imported_names { ImportedNames::All => { let prefix = Fqsn { scopes: path_components.iter().map(|c| ScopeSegment::Name(c.clone())).collect() }; let members = self.symbol_table.symbol_trie.get_children(&prefix); for fqsn in members.into_iter() { self.lexical_scopes.insert(fqsn.last_elem(), NameType::Import(fqsn)); } } ImportedNames::LastOfPath => { let fqsn = Fqsn { scopes: path_components.iter().map(|c| ScopeSegment::Name(c.clone())).collect() }; self.lexical_scopes.insert(fqsn.last_elem(), NameType::Import(fqsn)); } ImportedNames::List(ref names) => { let fqsn_prefix: Vec = path_components.iter().map(|c| ScopeSegment::Name(c.clone())).collect(); for name in names.iter() { let mut scopes = fqsn_prefix.clone(); scopes.push(ScopeSegment::Name(name.clone())); let fqsn = Fqsn { scopes }; self.lexical_scopes.insert(fqsn.last_elem(), NameType::Import(fqsn)); } } }; Recursion::Continue } fn declaration(&mut self, declaration: &Declaration, id: &ItemId) -> Recursion { let cur_function_name = match self.lexical_scopes.get_name() { //TODO this needs to be a fqsn Some(ScopeType::Function { name }) => Some(name.clone()), _ => None, }; match declaration { Declaration::FuncDecl(signature, block) => { let param_names = signature.params.iter().map(|param| param.name.clone()); //TODO I'm 90% sure this is right, until I get to closures //let mut new_scope = self.lexical_scopes.new_scope(Some(ScopeType::Function { name: signature.name.clone() })); //TODO this will recurse unwantedly into scopes; need to pop an outer function //scope off first before going into a non-closure scope let mut new_scope = ScopeStack::new(Some(ScopeType::Function { name: signature.name.clone() })); for (n, param) in param_names.enumerate() { new_scope.insert(param, NameType::Param(n as u8)); } self.lexical_scopes.insert(signature.name.clone(), NameType::LocalFunction(*id)); let mut new_resolver = ScopeResolver { symbol_table: self.symbol_table, lexical_scopes: new_scope }; walk_block(&mut new_resolver, block); Recursion::Stop } Declaration::Binding { name, .. } => { if let Some(fn_name) = cur_function_name { // We are within a function scope let fqsn = Fqsn { scopes: vec![ScopeSegment::Name(fn_name), ScopeSegment::Name(name.clone())] }; self.symbol_table.add_symbol(id, fqsn, SymbolSpec::LocalVariable); self.lexical_scopes.insert(name.clone(), NameType::LocalVariable(*id)); } Recursion::Continue } Declaration::Impl { block, .. } => { let mut new_scope = ScopeStack::new(Some(ScopeType::ImplBlock)); let mut new_resolver = ScopeResolver { symbol_table: self.symbol_table, lexical_scopes: new_scope }; for stmt in block.iter() { walk_declaration(&mut new_resolver, &stmt.kind, &stmt.id); } Recursion::Stop } _ => Recursion::Continue, } } fn expression(&mut self, expression: &Expression) -> Recursion { use ExpressionKind::*; match &expression.kind { Value(name) => { self.lookup_name_in_scope(name); } NamedStruct { name, fields: _ } => { self.lookup_name_in_scope(name); } Lambda { params, body, .. } => { let param_names = params.iter().map(|param| param.name.clone()); //TODO need to properly handle closure scope, this is currently broken //let mut new_scope = self.lexical_scopes.new_scope(Some(ScopeType::Function { name: signature.name.clone() })); let mut new_scope = ScopeStack::new(Some(ScopeType::Lambda)); for (n, param) in param_names.enumerate() { new_scope.insert(param, NameType::Param(n as u8)); } let mut new_resolver = ScopeResolver { symbol_table: self.symbol_table, lexical_scopes: new_scope }; walk_block(&mut new_resolver, body); return Recursion::Stop; } IfExpression { discriminator, body } => { if let Some(d) = discriminator.as_ref() { walk_expression(self, d); } let mut resolver = ScopeResolver { lexical_scopes: self.lexical_scopes.new_scope(Some(ScopeType::PatternMatch)), symbol_table: self.symbol_table, }; walk_if_expr_body(&mut resolver, body); return Recursion::Stop; } _ => (), } Recursion::Continue } fn pattern(&mut self, pat: &Pattern) -> Recursion { use Pattern::*; match pat { Literal(..) | Ignored | TuplePattern(..) => (), TupleStruct(name, _) | Record(name, _) => { self.lookup_name_in_scope(name); } //TODO this isn't really the right syntax for a VarOrName VarOrName(QualifiedName { id, components }) => { if components.len() == 1 { //TODO need a better way to construct a FQSN from a QualifiedName let local_name: Rc = components[0].clone(); let lscope = ScopeSegment::Name(Rc::new("".to_string())); let fqsn = Fqsn { scopes: vec![lscope, ScopeSegment::Name(local_name.clone())] }; self.symbol_table.add_symbol(id, fqsn, SymbolSpec::LocalVariable); self.lexical_scopes.insert(local_name, NameType::LocalVariable(*id)); } else { let fqsn = Fqsn { scopes: components.iter().map(|name| ScopeSegment::Name(name.clone())).collect(), }; let def_id = self.symbol_table.symbol_trie.lookup(&fqsn); if let Some(def_id) = def_id { self.symbol_table.id_to_def.insert(*id, def_id); } } } }; Recursion::Continue } }