use itertools::Itertools; use schala_lib::{ProgrammingLanguageInterface, EvalOptions, ReplOutput}; use std::iter::Peekable; use std::vec::IntoIter; use std::str::Chars; use std::collections::HashMap; pub struct EvaluatorState { vars: HashMap } impl EvaluatorState { fn new() -> EvaluatorState { EvaluatorState { vars: HashMap::new(), } } fn set_var(&mut self, var: String, value: Sexp) { self.vars.insert(var, value); } fn get_var(&self, var: &str) -> Option<&Sexp> { self.vars.get(var) } fn push_env(&mut self) { } fn pop_env(&mut self) { } } pub struct Rukka { state: EvaluatorState } impl Rukka { pub fn new() -> Rukka { Rukka { state: EvaluatorState::new() } } } impl ProgrammingLanguageInterface for Rukka { fn get_language_name(&self) -> String { "Rukka".to_string() } fn get_source_file_suffix(&self) -> String { format!("rukka") } fn evaluate_in_repl(&mut self, input: &str, _eval_options: &EvalOptions) -> ReplOutput { let mut output = ReplOutput::default(); let sexps = match read(input) { Err(err) => { output.add_output(format!("Error: {}", err)); return output; }, Ok(sexps) => sexps }; let output_str: String = sexps.into_iter().enumerate().map(|(i, sexp)| { match self.state.eval(sexp) { Ok(result) => format!("{}: {}", i, result.print()), Err(err) => format!("{} Error: {}", i, err), } }).intersperse(format!("\n")).collect(); output.add_output(output_str); output } } impl EvaluatorState { fn eval(&mut self, expr: Sexp) -> Result { use self::Sexp::*; println!("Evaling {:?}", expr); Ok(match expr { SymbolAtom(ref sym) => match self.get_var(sym) { Some(ref sexp) => { let q: &Sexp = sexp; //WTF? if I delete this line, the copy doesn't work?? q.clone() //TODO make this not involve a clone }, None => return Err(format!("Variable {} not bound", sym)), }, expr @ FnLiteral { .. } => expr, expr @ StringAtom(_) => expr, expr @ NumberAtom(_) => expr, True => True, False => False, Cons(box operator, box operands) => match operator { SymbolAtom(ref sym) if match &sym[..] { "quote" | "eq?" | "cons" | "car" | "cdr" | "atom?" | "define" | "lambda" | "if" | "cond" => true, _ => false } => self.eval_special_form(sym, operands)?, _ => { let evaled = self.eval(operator)?; self.apply(evaled, operands)? } }, Nil => Nil, }) } fn eval_special_form(&mut self, form: &str, operands: Sexp) -> Result { use self::Sexp::*; Ok(match form { "quote" => operands, //TODO Broken "eq?" => match operands { Cons(box lhs, box Cons(box rhs, _)) => { match lhs == rhs { true => True, false => False, } }, _ => True, }, "cons" => match operands { Cons(box cadr, box Cons(box caddr, box Nil)) => { let newl = self.eval(cadr)?; let newr = self.eval(caddr)?; Cons(Box::new(newl), Box::new(newr)) }, _ => return Err(format!("Bad arguments for cons")), }, "car" => match operands { Cons(box car, _) => car, _ => return Err(format!("called car with a non-pair argument")), }, "cdr" => match operands { Cons(_, box cdr) => cdr, _ => return Err(format!("called cdr with a non-pair argument")), }, "atom?" => match operands { Cons(_, _) => False, _ => True, }, "define" => match operands { Cons(box SymbolAtom(sym), box Cons(box expr, box Nil)) => { let evaluated = self.eval(expr)?; self.set_var(sym, evaluated); Nil }, _ => return Err(format!("Bad assignment")), } "lambda" => match operands { Cons(box paramlist, box Cons(box formalexp, box Nil)) => { unimplemented!() //needs to return an abstract object }, _ => return Err(format!("Bad lambda expression")), }, "if" => match operands { Cons(box test, box body) => { let truth_value = test.truthy(); match (truth_value, body) { (true, Cons(box consequent, _)) => consequent, (false, Cons(_, box Cons(box alternative, _))) => alternative, _ => return Err(format!("Bad if expression")) } }, _ => return Err(format!("Bad if expression")) }, s => return Err(format!("Non-existent special form {}; this should never happen", s)), }) } fn apply(&mut self, function: Sexp, operands: Sexp) -> Result { Err(format!("Not implemented")) } } fn read(input: &str) -> Result, String> { let mut chars: Peekable = input.chars().peekable(); let mut tokens = tokenize(&mut chars).into_iter().peekable(); let mut sexps = Vec::new(); while let Some(_) = tokens.peek() { sexps.push(parse(&mut tokens)?); } Ok(sexps) } #[derive(Debug)] enum Token { LParen, RParen, Quote, Word(String), StringLiteral(String), NumLiteral(u64), } //TODO make this notion of Eq more sophisticated #[derive(Debug, PartialEq, Clone)] enum Sexp { SymbolAtom(String), StringAtom(String), NumberAtom(u64), True, False, Cons(Box, Box), Nil, FnLiteral { formal_params: Vec, body: Box } } impl Sexp { fn print(&self) -> String { use self::Sexp::*; match self { &True => format!("#t"), &False => format!("#f"), &SymbolAtom(ref sym) => format!("{}", sym), &StringAtom(ref s) => format!("\"{}\"", s), &NumberAtom(ref n) => format!("{}", n), &Cons(ref car, ref cdr) => format!("({} . {})", car.print(), cdr.print()), &Nil => format!("()"), &FnLiteral { ref formal_params, .. } => format!("", formal_params), } } fn truthy(&self) -> bool { use self::Sexp::*; match self { &False => false, _ => true } } } fn tokenize(input: &mut Peekable) -> Vec { use self::Token::*; let mut tokens = Vec::new(); loop { match input.next() { None => break, Some('(') => tokens.push(LParen), Some(')') => tokens.push(RParen), Some('\'') => tokens.push(Quote), Some(c) if c.is_whitespace() => continue, Some(c) if c.is_numeric() => { let tok: String = input.peeking_take_while(|next| next.is_numeric()).collect(); let n: u64 = format!("{}{}", c, tok).parse().unwrap(); tokens.push(NumLiteral(n)); }, Some('"') => { let string: String = input.scan(false, |escape, cur_char| { let seen_escape = *escape; *escape = cur_char == '\\' && !seen_escape; match (cur_char, seen_escape) { ('"', false) => None, ('\\', false) => Some(None), (c, _) => Some(Some(c)) } }).filter_map(|x| x).collect(); tokens.push(StringLiteral(string)); } Some(c) => { let sym: String = input.peeking_take_while(|next| { match *next { '(' | ')' => false, c if c.is_whitespace() => false, _ => true } }).collect(); tokens.push(Word(format!("{}{}", c, sym))); } } } tokens } fn parse(tokens: &mut Peekable>) -> Result { use self::Token::*; use self::Sexp::*; match tokens.next() { Some(Word(ref s)) if s == "#f" => Ok(False), Some(Word(ref s)) if s == "#t" => Ok(True), Some(Word(s)) => Ok(SymbolAtom(s)), Some(StringLiteral(s)) => Ok(StringAtom(s)), Some(LParen) => parse_sexp(tokens), Some(RParen) => Err(format!("Unexpected ')'")), Some(Quote) => { let quoted = parse(tokens)?; Ok(Cons(Box::new(SymbolAtom(format!("quote"))), Box::new(quoted))) }, Some(NumLiteral(n)) => Ok(NumberAtom(n)), None => Err(format!("Unexpected end of input")), } } fn parse_sexp(tokens: &mut Peekable>) -> Result { use self::Token::*; use self::Sexp::*; let mut cell = Nil; { let mut cell_ptr = &mut cell; loop { match tokens.peek() { None => return Err(format!("Unexpected end of input")), Some(&RParen) => { tokens.next(); break; }, _ => { let current = parse(tokens)?; let new_cdr = Cons(Box::new(current), Box::new(Nil)); match cell_ptr { &mut Cons(_, ref mut cdr) => **cdr = new_cdr, &mut Nil => *cell_ptr = new_cdr, _ => unreachable!() }; let old_ptr = cell_ptr; let new_ptr: &mut Sexp = match old_ptr { &mut Cons(_, ref mut cdr) => cdr, _ => unreachable!() } as &mut Sexp; cell_ptr = new_ptr; } } } } Ok(cell) }