use std::collections::HashMap; use std::collections::hash_map::Entry; use std::rc::Rc; use std::fmt; use std::fmt::Write; use crate::ast; use crate::ast::{ItemId, TypeBody, TypeSingletonName, Signature, Statement, StatementKind}; use crate::typechecking::TypeName; type LineNumber = u32; type SymbolTrackTable = HashMap, LineNumber>; #[derive(PartialEq, Eq, Hash, Debug, Clone)] pub struct FullyQualifiedSymbolName(pub Vec); impl fmt::Display for FullyQualifiedSymbolName { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let FullyQualifiedSymbolName(v) = self; for segment in v { write!(f, "::{}", segment)?; } Ok(()) } } #[derive(Debug, Clone, Eq, PartialEq, Hash)] pub struct ScopeSegment { pub name: Rc, //TODO maybe this could be a &str, for efficiency? pub kind: ScopeSegmentKind, } impl fmt::Display for ScopeSegment { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { use ScopeSegmentKind::*; let kind = match self.kind { Function => "fn", Type => "ty", Terminal => "tr", }; write!(f, "{}({})", self.name, kind) } } impl ScopeSegment { pub fn new(name: Rc, kind: ScopeSegmentKind) -> ScopeSegment { ScopeSegment { name, kind } } } #[derive(Debug, Clone, Eq, PartialEq, Hash)] pub enum ScopeSegmentKind { Function, Type, Terminal, } #[allow(unused_macros)] macro_rules! fqsn { ( $( $name:expr ; $kind:tt),* ) => { { let mut vec = vec![]; $( vec.push(ScopeSegment::new( Rc::new($name.to_string()), sym_path_kind!($kind), )); )* FullyQualifiedSymbolName(vec) } }; } #[allow(unused_macros)] macro_rules! sym_path_kind { (fn) => { ScopeSegmentKind::Function }; (ty) => { ScopeSegmentKind::Type }; (tr) => { ScopeSegmentKind::Terminal }; } //cf. p. 150 or so of Language Implementation Patterns pub struct SymbolTable { symbol_path_to_symbol: HashMap, id_to_fqsn: HashMap, } //TODO add various types of lookups here, maybe multiple hash tables internally? impl SymbolTable { pub fn new() -> SymbolTable { SymbolTable { symbol_path_to_symbol: HashMap::new(), id_to_fqsn: HashMap::new(), } } pub fn map_id_to_fqsn(&mut self, id: &ItemId, fqsn: FullyQualifiedSymbolName) { self.id_to_fqsn.insert(id.clone(), fqsn); } pub fn get_fqsn_from_id(&self, id: &ItemId) -> Option { self.id_to_fqsn.get(&id).cloned() } fn add_new_symbol(&mut self, name: &Rc, scope_path: &Vec, spec: SymbolSpec) { let mut vec: Vec = scope_path.clone(); vec.push(ScopeSegment { name: name.clone(), kind: ScopeSegmentKind::Terminal }); let fully_qualified_name = FullyQualifiedSymbolName(vec); let symbol = Symbol { name: name.clone(), fully_qualified_name: fully_qualified_name.clone(), spec }; self.symbol_path_to_symbol.insert(fully_qualified_name, symbol); } pub fn lookup_by_fqsn(&self, fully_qualified_path: &FullyQualifiedSymbolName) -> Option<&Symbol> { self.symbol_path_to_symbol.get(fully_qualified_path) } } #[derive(Debug)] pub struct Symbol { pub name: Rc, //TODO does this need to be pub? fully_qualified_name: FullyQualifiedSymbolName, pub spec: SymbolSpec, } impl fmt::Display for Symbol { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "", self.name, self.spec) } } #[derive(Debug)] pub enum SymbolSpec { Func(Vec), DataConstructor { index: usize, type_name: TypeName, type_args: Vec>, }, RecordConstructor { index: usize, members: HashMap, TypeName>, type_name: TypeName, }, Binding } impl fmt::Display for SymbolSpec { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { use self::SymbolSpec::*; match self { Func(type_names) => write!(f, "Func({:?})", type_names), DataConstructor { index, type_name, type_args } => write!(f, "DataConstructor(idx: {})({:?} -> {})", index, type_args, type_name), RecordConstructor { type_name, index, ..} => write!(f, "RecordConstructor(idx: {})( -> {})", index, type_name), Binding => write!(f, "Binding"), } } } impl SymbolTable { /* note: this adds names for *forward reference* but doesn't actually create any types. solve that problem * later */ pub fn add_top_level_symbols(&mut self, ast: &ast::AST) -> Result<(), String> { let mut scope_name_stack = Vec::new(); self.add_symbols_from_scope(&ast.statements, &mut scope_name_stack) } fn add_symbols_from_scope<'a>(&'a mut self, statements: &Vec, scope_name_stack: &mut Vec) -> Result<(), String> { use self::ast::Declaration::*; fn insert_and_check_duplicate_symbol(table: &mut SymbolTrackTable, name: &Rc) -> Result<(), String> { match table.entry(name.clone()) { Entry::Occupied(o) => { let line_number = o.get(); //TODO make this actually work Err(format!("Duplicate definition: {}. It's already defined at {}", name, line_number)) }, Entry::Vacant(v) => { let line_number = 0; //TODO should work v.insert(line_number); Ok(()) } } } let mut seen_identifiers: SymbolTrackTable = HashMap::new(); for statement in statements.iter() { if let Statement { kind: StatementKind::Declaration(decl), .. } = statement { match decl { FuncSig(ref signature) => { insert_and_check_duplicate_symbol(&mut seen_identifiers, &signature.name)?; self.add_function_signature(signature, scope_name_stack)? } FuncDecl(ref signature, ref body) => { insert_and_check_duplicate_symbol(&mut seen_identifiers, &signature.name)?; self.add_function_signature(signature, scope_name_stack)?; scope_name_stack.push(ScopeSegment{ name: signature.name.clone(), kind: ScopeSegmentKind::Function, }); let output = self.add_symbols_from_scope(body, scope_name_stack); let _ = scope_name_stack.pop(); output? }, TypeDecl { name, body, mutable } => { insert_and_check_duplicate_symbol(&mut seen_identifiers, &name.name)?; //TODO add ScopeSegmentKind::Type here self.add_type_decl(name, body, mutable, scope_name_stack)? }, Binding { name, .. } => { insert_and_check_duplicate_symbol(&mut seen_identifiers, name)?; self.add_new_symbol(name, scope_name_stack, SymbolSpec::Binding); } _ => () } } } Ok(()) } pub fn debug_symbol_table(&self) -> String { let mut output = format!("Symbol table\n"); for (name, sym) in &self.symbol_path_to_symbol { write!(output, "{} -> {}\n", name, sym).unwrap(); } output } fn add_function_signature(&mut self, signature: &Signature, scope_name_stack: &mut Vec) -> Result<(), String> { let mut local_type_context = LocalTypeContext::new(); let types = signature.params.iter().map(|param| match param.anno { Some(ref type_identifier) => Rc::new(format!("{:?}", type_identifier)), None => local_type_context.new_universal_type() }).collect(); self.add_new_symbol(&signature.name, scope_name_stack, SymbolSpec::Func(types)); Ok(()) } //TODO handle type mutability fn add_type_decl(&mut self, type_name: &TypeSingletonName, body: &TypeBody, _mutable: &bool, scope_name_stack: &mut Vec) -> Result<(), String> { use crate::ast::{TypeIdentifier, Variant}; let TypeBody(variants) = body; let ref type_name = type_name.name; scope_name_stack.push(ScopeSegment{ name: type_name.clone(), kind: ScopeSegmentKind::Type, }); //TODO figure out why _params isn't being used here for (index, var) in variants.iter().enumerate() { match var { Variant::UnitStruct(variant_name) => { let spec = SymbolSpec::DataConstructor { index, type_name: type_name.clone(), type_args: vec![], }; self.add_new_symbol(variant_name, scope_name_stack, spec); }, Variant::TupleStruct(variant_name, tuple_members) => { //TODO fix the notion of a tuple type let type_args = tuple_members.iter().map(|type_name| match type_name { TypeIdentifier::Singleton(TypeSingletonName { name, ..}) => name.clone(), TypeIdentifier::Tuple(_) => unimplemented!(), }).collect(); let spec = SymbolSpec::DataConstructor { index, type_name: type_name.clone(), type_args }; self.add_new_symbol(variant_name, scope_name_stack, spec); }, Variant::Record { name, members: defined_members } => { let mut members = HashMap::new(); let mut duplicate_member_definitions = Vec::new(); for (member_name, member_type) in defined_members { match members.entry(member_name.clone()) { Entry::Occupied(_) => duplicate_member_definitions.push(member_name.clone()), Entry::Vacant(v) => { v.insert(match member_type { TypeIdentifier::Singleton(TypeSingletonName { name, ..}) => name.clone(), TypeIdentifier::Tuple(_) => unimplemented!(), }); } } } if duplicate_member_definitions.len() != 0 { return Err(format!("Duplicate member(s) in definition of type {}: {:?}", type_name, duplicate_member_definitions)); } let spec = SymbolSpec::RecordConstructor { index, type_name: type_name.clone(), members }; self.add_new_symbol(name, scope_name_stack, spec); }, } } scope_name_stack.pop(); Ok(()) } } struct LocalTypeContext { state: u8 } impl LocalTypeContext { fn new() -> LocalTypeContext { LocalTypeContext { state: 0 } } fn new_universal_type(&mut self) -> TypeName { let n = self.state; self.state += 1; Rc::new(format!("{}", (('a' as u8) + n) as char)) } } #[cfg(test)] mod symbol_table_tests { use super::*; use crate::util::quick_ast; macro_rules! values_in_table { //TODO multiple values ($source:expr, $single_value:expr) => { { let mut symbol_table = SymbolTable::new(); let ast = quick_ast($source); symbol_table.add_top_level_symbols(&ast).unwrap(); match symbol_table.lookup_by_fqsn($single_value) { Some(_spec) => (), None => panic!(), }; } } } #[test] fn basic_symbol_table() { values_in_table! { "let a = 10; fn b() { 20 }", &fqsn!("b"; tr) } } #[test] fn no_duplicates() { let source = r#" fn a() { 1 } fn b() { 2 } fn a() { 3 } "#; let mut symbol_table = SymbolTable::new(); let ast = quick_ast(source); let output = symbol_table.add_top_level_symbols(&ast).unwrap_err(); assert!(output.contains("Duplicate")) } #[test] fn no_duplicates_2() { let source = r#" let a = 20; let q = 39; let a = 30; "#; let mut symbol_table = SymbolTable::new(); let ast = quick_ast(source); let output = symbol_table.add_top_level_symbols(&ast).unwrap_err(); assert!(output.contains("Duplicate")) } #[test] fn no_duplicates_3() { let source = r#" fn a() { let a = 20 let b = 40 a + b } fn q() { let x = 30 let x = 33 } "#; let mut symbol_table = SymbolTable::new(); let ast = quick_ast(source); let output = symbol_table.add_top_level_symbols(&ast).unwrap_err(); assert!(output.contains("Duplicate")) } #[test] fn dont_falsely_detect_duplicates() { let source = r#" let a = 20; fn some_func() { let a = 40; 77 } let q = 39; "#; let mut symbol_table = SymbolTable::new(); let ast = quick_ast(source); symbol_table.add_top_level_symbols(&ast).unwrap(); assert!(symbol_table.lookup_by_fqsn(&fqsn!["a"; tr]).is_some()); assert!(symbol_table.lookup_by_fqsn(&fqsn!["some_func"; fn, "a";tr]).is_some()); } #[test] fn enclosing_scopes() { let source = r#" fn outer_func(x) { fn inner_func(arg) { arg } x + inner_func(x) }"#; let mut symbol_table = SymbolTable::new(); let ast = quick_ast(source); symbol_table.add_top_level_symbols(&ast).unwrap(); assert!(symbol_table.lookup_by_fqsn(&fqsn!("outer_func"; tr)).is_some()); assert!(symbol_table.lookup_by_fqsn(&fqsn!("outer_func"; fn, "inner_func"; tr)).is_some()); } #[test] fn enclosing_scopes_2() { let source = r#" fn outer_func(x) { fn inner_func(arg) { arg } fn second_inner_func() { fn another_inner_func() { } } inner_func(x) }"#; let mut symbol_table = SymbolTable::new(); let ast = quick_ast(source); symbol_table.add_top_level_symbols(&ast).unwrap(); assert!(symbol_table.lookup_by_fqsn(&fqsn!("outer_func"; tr)).is_some()); assert!(symbol_table.lookup_by_fqsn(&fqsn!("outer_func"; fn, "inner_func"; tr)).is_some()); assert!(symbol_table.lookup_by_fqsn(&fqsn!("outer_func"; fn, "second_inner_func"; tr)).is_some()); assert!(symbol_table.lookup_by_fqsn(&fqsn!("outer_func"; fn, "second_inner_func"; fn, "another_inner_func"; tr)).is_some()); } #[test] fn enclosing_scopes_3() { let source = r#" fn outer_func(x) { fn inner_func(arg) { arg } fn second_inner_func() { fn another_inner_func() { } fn another_inner_func() { } } inner_func(x) }"#; let mut symbol_table = SymbolTable::new(); let ast = quick_ast(source); let output = symbol_table.add_top_level_symbols(&ast).unwrap_err(); assert!(output.contains("Duplicate")) } }