use nom::{ Err, branch::alt, bytes::complete::tag, character::complete::{char, one_of, space0, space1, multispace0, line_ending}, combinator::{peek, not, value, map}, error::{context, VerboseError, ParseError}, multi::{fold_many1, many1, many0, separated_list1}, sequence::{tuple, preceded}, IResult, Parser, }; type ParseResult<'a, O> = IResult<&'a str, O, VerboseError<&'a str>>; use crate::ast::*; /* fn block(input: &str) -> ParseResult { context("block", map( tuple(( char('{'), value((), context("TOP", many0(alt((line_separator, ws))))), block_items, value((), many0(alt((line_separator, ws)))), char('}'), )), |(_, _, items, _, _)| items.into()))(input) } */ fn tok<'a, O>(input_parser: impl Parser<&'a str, O, VerboseError<&'a str>>) -> impl FnMut(&'a str) -> IResult<&'a str, O, VerboseError<&'a str>> { map(tuple((ws0, input_parser)), |(_, output)| output) } // whitespace does consume at least one piece of whitespace - use ws0 for maybe none fn whitespace(input: &str) -> ParseResult<()> { context("whitespace", alt(( value((), space1), line_comment, block_comment, )))(input) } fn ws0(input: &str) -> ParseResult<()> { context("WS0", value((), many0(whitespace)))(input) } fn line_comment(input: &str) -> ParseResult<()> { value((), tuple((tag("//"), many0(not(line_ending)), peek(line_ending))) )(input) } fn block_comment(input: &str) -> ParseResult<()> { value((), tuple(( tag("/*"), many0(alt(( block_comment, not(tag("*/")) ))), tag("*/") )))(input) } fn line_separator(input: &str) -> ParseResult<()> { alt((value((), line_ending), value((), char(';'))))(input) } fn block_items(input: &str) -> ParseResult> { context("Block-item", separated_list1( preceded(context("LLLL", ws0), many1(line_separator)), statement, ))(input) } fn statement(input: &str) -> ParseResult { context("Parsing-statement", map( tuple(( ws0, expression_kind, ws0 )),|(_, kind, _)| Statement { id: Default::default(), location: Default::default(), kind: StatementKind::Expression(Expression::new(Default::default(), kind)), }))(input) } pub fn expression_kind(input: &str) -> ParseResult { context("expression-kind", alt(( number_literal, bool_literal, )))(input) } fn bool_literal(input: &str) -> ParseResult { alt(( map(tok(tag("true")), |_| ExpressionKind::BoolLiteral(true)), map(tok(tag("false")), |_| ExpressionKind::BoolLiteral(false)), ))(input) } fn number_literal(input: &str) -> ParseResult { map(alt((tok(hex_literal), tok(bin_literal), tok(dec_literal))), ExpressionKind::NatLiteral)(input) } fn dec_literal(input: &str) -> ParseResult { map(digits(digit_group_dec), |chars: Vec| { let s: String = chars.into_iter().collect(); s.parse().unwrap() })(input) } fn hex_literal(input: &str) -> ParseResult { map(preceded(alt((tag("0x"), tag("0X"))), digits(digit_group_hex)), |chars: Vec| { let s: String = chars.into_iter().collect(); parse_hex(&s).unwrap() })(input) } fn bin_literal(input: &str) -> ParseResult { map(preceded(alt((tag("0b"), tag("0B"))), digits(digit_group_bin)), |chars: Vec| { let s: String = chars.into_iter().collect(); parse_binary(&s).unwrap() })(input) } fn digits<'a, E: ParseError<&'a str>>( digit_type: impl Parser<&'a str, Vec, E>, ) -> impl FnMut(&'a str) -> IResult<&'a str, Vec, E> { map(separated_list1(many1(char('_')), digit_type), |items: Vec>| { items.into_iter().flatten().collect() }) } fn digit_group_dec(input: &str) -> ParseResult> { many1(one_of("0123456789"))(input) } fn digit_group_hex(input: &str) -> ParseResult> { many1(one_of("0123456789abcdefABCDEF"))(input) } fn digit_group_bin(input: &str) -> ParseResult> { many1(one_of("01"))(input) } fn parse_binary(digits: &str) -> Result { let mut result: u64 = 0; let mut multiplier = 1; for d in digits.chars().rev() { match d { '1' => result += multiplier, '0' => (), '_' => continue, _ => unreachable!(), } multiplier = match multiplier.checked_mul(2) { Some(m) => m, None => return Err("Binary expression will overflow"), } } Ok(result) } fn parse_hex(digits: &str) -> Result { let mut result: u64 = 0; let mut multiplier: u64 = 1; for d in digits.chars().rev() { if d == '_' { continue; } match d.to_digit(16) { Some(n) => result += n as u64 * multiplier, None => return Err("Internal parser error: invalid hex digit"), } multiplier = match multiplier.checked_mul(16) { Some(m) => m, None => return Err("Hexadecimal expression will overflow"), } } Ok(result) } #[cfg(test)] mod test { use pretty_assertions::assert_eq; use super::*; #[test] fn combinator_test1() { assert_eq!(digits(digit_group_dec)("342").unwrap().1, vec!['3', '4', '2']); assert_eq!(bin_literal("0b1111qsdf"), Ok(("qsdf", 15))); } #[test] fn combinator_test2() { for s in ["15", "0b1111", "1_5_", "0XF__", "0Xf"].iter() { assert_eq!(expression_kind(s).unwrap().1, ExpressionKind::NatLiteral(15)); } } /* #[test] fn combinator_test3() { let source = r#"{ 4_5 11; 0xf }"#; let parsed = block(source).map_err(|err| match err { Err::Error(err) | Err::Failure(err) => nom::error::convert_error(source, err), _ => panic!() }); //let parsed = block(source); if let Err(err) = parsed { println!("{}", err); panic!("parse error desu!"); } assert_eq!(parsed.unwrap().1, vec![ Statement { id: Default::default(), location: Default::default(), kind: StatementKind::Expression(Expression::new(Default::default(), ExpressionKind::NatLiteral(45))) }, Statement { id: Default::default(), location: Default::default(), kind: StatementKind::Expression(Expression::new(Default::default(), ExpressionKind::NatLiteral(11))) }, Statement { id: Default::default(), location: Default::default(), kind: StatementKind::Expression(Expression::new(Default::default(), ExpressionKind::NatLiteral(15))) }, ].into()); } */ }