Compare commits
7 Commits
last_commi
...
failure_st
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d7baf065fb | ||
|
|
6b42f8b8de | ||
|
|
d9e67a6341 | ||
|
|
7de536ade0 | ||
|
|
f62b4c6906 | ||
|
|
4679a9fc7f | ||
|
|
c25354b2c7 |
31
Grammar
31
Grammar
@@ -1,31 +0,0 @@
|
||||
|
||||
|
||||
<program> := <statements> EOF
|
||||
|
||||
<statements> := <statement>
|
||||
| <statement> SEP <statements>
|
||||
|
||||
<statement> := let <id> = <expr>
|
||||
| <expr>
|
||||
| <fn_block>
|
||||
|
||||
<fn_block> := fn <id> ( <arg_list> ) <statements> end
|
||||
|
||||
<arg_list> := e
|
||||
| <id>
|
||||
| <id> , <arg_list>
|
||||
|
||||
<expr> := if <expr> then <statements> end
|
||||
| if <expr> then <statements> else <statements> end
|
||||
| while <expr> SEP <statements> end
|
||||
| ( <expr> )
|
||||
| <binop>
|
||||
|
||||
<binop> := <simple_expr>
|
||||
| <simple_expr> <id> <binop>
|
||||
|
||||
<simple_expr> := <id>
|
||||
| <number>
|
||||
| <string>
|
||||
|
||||
|
||||
@@ -45,7 +45,7 @@ impl Fold for RecursiveDescentFn {
|
||||
}
|
||||
|
||||
#[proc_macro_attribute]
|
||||
pub fn recursive_descent_method(attr: TokenStream, item: TokenStream) -> TokenStream {
|
||||
pub fn recursive_descent_method(_attr: TokenStream, item: TokenStream) -> TokenStream {
|
||||
|
||||
let input: syn::ItemFn = parse_macro_input!(item as syn::ItemFn);
|
||||
let mut folder = RecursiveDescentFn {};
|
||||
|
||||
@@ -8,6 +8,8 @@ itertools = "0.5.8"
|
||||
take_mut = "0.1.3"
|
||||
maplit = "*"
|
||||
lazy_static = "0.2.8"
|
||||
failure = "0.1.2"
|
||||
|
||||
|
||||
schala-lang-codegen = { path = "../codegen" }
|
||||
schala-repl = { path = "../../schala-repl" }
|
||||
|
||||
@@ -106,7 +106,7 @@ impl Expr {
|
||||
UserDefined { name: Some(name), .. } => format!("<function '{}'>", name),
|
||||
},
|
||||
Expr::Constructor {
|
||||
type_name: _, name, tag, arity,
|
||||
type_name: _, name, arity, ..
|
||||
} => if *arity == 0 {
|
||||
format!("{}", name)
|
||||
} else {
|
||||
@@ -208,7 +208,7 @@ impl<'a> State<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
fn apply_data_constructor(&mut self, type_name: Rc<String>, name: Rc<String>, tag: usize, arity: usize, args: Vec<Expr>) -> EvalResult<Node> {
|
||||
fn apply_data_constructor(&mut self, _type_name: Rc<String>, name: Rc<String>, tag: usize, arity: usize, args: Vec<Expr>) -> EvalResult<Node> {
|
||||
if arity != args.len() {
|
||||
return Err(format!("Data constructor {} requires {} args", name, arity));
|
||||
}
|
||||
@@ -353,7 +353,7 @@ impl<'a> State<'a> {
|
||||
|
||||
fn case_match_expression(&mut self, cond: Expr, alternatives: Vec<Alternative>) -> EvalResult<Node> {
|
||||
match self.expression(Node::Expr(cond))? {
|
||||
Node::PrimObject { name, tag, items } => {
|
||||
Node::PrimObject { tag, items, .. } => {
|
||||
for alt in alternatives {
|
||||
if alt.tag.map(|t| t == tag).unwrap_or(true) {
|
||||
let mut inner_state = State {
|
||||
@@ -378,7 +378,7 @@ fn case_match_expression(&mut self, cond: Expr, alternatives: Vec<Alternative>)
|
||||
return Err(format!("PrimObject failed pattern match"));
|
||||
},
|
||||
Node::PrimTuple { .. } => Err(format!("Tuples not implemented")), //TODO make a distinction between not yet implemented and an actual runtime error
|
||||
Node::Expr(e) => {
|
||||
Node::Expr(_e) => {
|
||||
for alt in alternatives {
|
||||
match (alt.guard, alt.tag) {
|
||||
(Some(ref guard_expr), None) => {
|
||||
@@ -436,17 +436,24 @@ fn case_match_expression(&mut self, cond: Expr, alternatives: Vec<Alternative>)
|
||||
mod eval_tests {
|
||||
use std::cell::RefCell;
|
||||
use std::rc::Rc;
|
||||
|
||||
use tokenizing::{Token, tokenize};
|
||||
use ::parsing::ParseResult;
|
||||
use ::ast::AST;
|
||||
use symbol_table::SymbolTable;
|
||||
use tokenizing::tokenize;
|
||||
use parsing::parse;
|
||||
use eval::State;
|
||||
|
||||
fn parse(tokens: Vec<Token>) -> ParseResult<AST> {
|
||||
let mut parser = ::parsing::Parser::new(tokens);
|
||||
parser.parse()
|
||||
}
|
||||
|
||||
macro_rules! all_output {
|
||||
($string:expr) => {
|
||||
{
|
||||
let symbol_table = Rc::new(RefCell::new(SymbolTable::new()));
|
||||
let mut state = State::new(symbol_table);
|
||||
let ast = parse(tokenize($string)).0.unwrap();
|
||||
let ast = parse(tokenize($string)).unwrap();
|
||||
state.symbol_table_handle.borrow_mut().add_top_level_symbols(&ast).unwrap();
|
||||
let reduced = ast.reduce(&state.symbol_table_handle.borrow());
|
||||
let all_output = state.evaluate(reduced, true);
|
||||
|
||||
@@ -44,7 +44,7 @@ mod eval;
|
||||
pub struct Schala {
|
||||
state: eval::State<'static>,
|
||||
symbol_table: Rc<RefCell<symbol_table::SymbolTable>>,
|
||||
type_context: typechecking::TypeContext<'static>,
|
||||
active_parser: Option<parsing::Parser>,
|
||||
}
|
||||
|
||||
impl Schala {
|
||||
@@ -53,7 +53,7 @@ impl Schala {
|
||||
}
|
||||
|
||||
fn handle_custom_interpreter_directives(&mut self, commands: &Vec<&str>) -> Option<String> {
|
||||
Some(format!("You typed a command but I can't handle it"))
|
||||
Some(format!("Schala-lang command: {:?} not supported", commands.get(0)))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -62,8 +62,8 @@ impl Schala {
|
||||
let symbols = Rc::new(RefCell::new(symbol_table::SymbolTable::new()));
|
||||
Schala {
|
||||
symbol_table: symbols.clone(),
|
||||
type_context: typechecking::TypeContext::new(symbols.clone()),
|
||||
state: eval::State::new(symbols),
|
||||
active_parser: None,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -94,9 +94,17 @@ fn tokenizing(_handle: &mut Schala, input: &str, comp: Option<&mut UnfinishedCom
|
||||
}
|
||||
}
|
||||
|
||||
fn parsing(_handle: &mut Schala, input: Vec<tokenizing::Token>, comp: Option<&mut UnfinishedComputation>) -> Result<ast::AST, String> {
|
||||
fn parsing(handle: &mut Schala, input: Vec<tokenizing::Token>, comp: Option<&mut UnfinishedComputation>) -> Result<ast::AST, String> {
|
||||
use parsing::Parser;
|
||||
|
||||
let mut parser = match handle.active_parser.take() {
|
||||
None => Parser::new(input),
|
||||
Some(parser) => parser
|
||||
};
|
||||
|
||||
let ast = parser.parse();
|
||||
let trace = parser.format_parse_trace();
|
||||
|
||||
let (ast, trace) = parsing::parse(input);
|
||||
comp.map(|comp| {
|
||||
//TODO need to control which of these debug stages get added
|
||||
let opt = comp.cur_debug_options.get(0).map(|s| s.clone());
|
||||
@@ -123,23 +131,8 @@ fn symbol_table(handle: &mut Schala, input: ast::AST, comp: Option<&mut Unfinish
|
||||
}
|
||||
}
|
||||
|
||||
fn typechecking(handle: &mut Schala, input: ast::AST, comp: Option<&mut UnfinishedComputation>) -> Result<ast::AST, String> {
|
||||
match handle.type_context.type_check_ast(&input) {
|
||||
Ok(ty) => {
|
||||
comp.map(|c| {
|
||||
c.add_artifact(TraceArtifact::new("type_table", format!("{}", handle.type_context.debug_types())));
|
||||
c.add_artifact(TraceArtifact::new("type_check", format!("{:?}", ty)));
|
||||
});
|
||||
Ok(input)
|
||||
},
|
||||
Err(msg) => {
|
||||
comp.map(|comp| {
|
||||
comp.add_artifact(TraceArtifact::new("type_table", format!("{}", handle.type_context.debug_types())));
|
||||
comp.add_artifact(TraceArtifact::new("type_check", format!("Type error: {:?}", msg)));
|
||||
});
|
||||
Ok(input)
|
||||
}
|
||||
}
|
||||
fn typechecking(_handle: &mut Schala, input: ast::AST, _comp: Option<&mut UnfinishedComputation>) -> Result<ast::AST, String> {
|
||||
Ok(input)
|
||||
}
|
||||
|
||||
fn ast_reducing(handle: &mut Schala, input: ast::AST, comp: Option<&mut UnfinishedComputation>) -> Result<reduced_ast::ReducedAST, String> {
|
||||
|
||||
@@ -34,7 +34,7 @@ pub struct ParseRecord {
|
||||
level: u32,
|
||||
}
|
||||
|
||||
struct Parser {
|
||||
pub struct Parser {
|
||||
tokens: Peekable<IntoIter<Token>>,
|
||||
parse_record: Vec<ParseRecord>,
|
||||
parse_level: u32,
|
||||
@@ -46,9 +46,9 @@ struct ParserRestrictions {
|
||||
}
|
||||
|
||||
impl Parser {
|
||||
fn new(input: Vec<Token>) -> Parser {
|
||||
pub fn new(initial_input: Vec<Token>) -> Parser {
|
||||
Parser {
|
||||
tokens: input.into_iter().peekable(),
|
||||
tokens: initial_input.into_iter().peekable(),
|
||||
parse_record: vec![],
|
||||
parse_level: 0,
|
||||
restrictions: ParserRestrictions { no_struct_literal: false }
|
||||
@@ -64,6 +64,26 @@ impl Parser {
|
||||
fn next(&mut self) -> TokenType {
|
||||
self.tokens.next().map(|ref t| { t.token_type.clone() }).unwrap_or(TokenType::EOF)
|
||||
}
|
||||
|
||||
pub fn parse(&mut self) -> ParseResult<AST> {
|
||||
self.program()
|
||||
}
|
||||
|
||||
/*
|
||||
pub fn parse_with_new_tokens(&mut self, new_tokens: Vec<Token>) -> ParseResult<AST> {
|
||||
|
||||
}
|
||||
*/
|
||||
|
||||
pub fn format_parse_trace(self) -> Vec<String> {
|
||||
self.parse_record.into_iter().map(|r| {
|
||||
let mut indent = String::new();
|
||||
for _ in 0..r.level {
|
||||
indent.push(' ');
|
||||
}
|
||||
format!("{}Production `{}`, token: {}", indent, r.production_name, r.next_token)
|
||||
}).collect()
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! print_token_pattern {
|
||||
@@ -240,6 +260,7 @@ enumerator := identifier '<-' expression | identifier '=' expression //TODO add
|
||||
*/
|
||||
|
||||
impl Parser {
|
||||
//TODO make this a proper public interface
|
||||
#[recursive_descent_method]
|
||||
fn program(&mut self) -> ParseResult<AST> {
|
||||
let mut statements = Vec::new();
|
||||
@@ -748,7 +769,7 @@ impl Parser {
|
||||
let Expression(expr, _) = self.precedence_expr(precedence)?;
|
||||
Guard::HalfExpr(HalfExpr { op: Some(op), expr })
|
||||
},
|
||||
x => {
|
||||
_ => {
|
||||
//TODO - I think there's a better way to do this involving the precedence of ->
|
||||
let Expression(expr, _) = self.prefix_expr()?;
|
||||
Guard::HalfExpr(HalfExpr { op: None, expr })
|
||||
@@ -1034,24 +1055,11 @@ fn parse_hex(digits: String) -> ParseResult<u64> {
|
||||
Ok(result)
|
||||
}
|
||||
|
||||
pub fn parse(input: Vec<Token>) -> (Result<AST, ParseError>, Vec<String>) {
|
||||
let mut parser = Parser::new(input);
|
||||
let ast = parser.program();
|
||||
|
||||
let trace = parser.parse_record.into_iter().map(|r| {
|
||||
let mut indent = String::new();
|
||||
for _ in 0..r.level {
|
||||
indent.push(' ');
|
||||
}
|
||||
format!("{}Production `{}`, token: {}", indent, r.production_name, r.next_token)
|
||||
}).collect();
|
||||
(ast, trace)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod parse_tests {
|
||||
use ::std::rc::Rc;
|
||||
use super::{parse, tokenize};
|
||||
use super::tokenize;
|
||||
use super::ParseResult;
|
||||
use builtin::{PrefixOp, BinOp};
|
||||
use ast::{AST, Expression, Statement, IfExpressionBody, Discriminator, Pattern, PatternLiteral, TypeBody, Enumerator, ForBody};
|
||||
use super::Statement::*;
|
||||
@@ -1063,14 +1071,19 @@ mod parse_tests {
|
||||
use super::Variant::*;
|
||||
use super::ForBody::*;
|
||||
|
||||
fn parse(tokens: Vec<::tokenizing::Token>) -> ParseResult<AST> {
|
||||
let mut parser = super::Parser::new(tokens);
|
||||
parser.parse()
|
||||
}
|
||||
|
||||
macro_rules! rc {
|
||||
($string:tt) => { Rc::new(stringify!($string).to_string()) }
|
||||
}
|
||||
macro_rules! parse_test {
|
||||
($string:expr, $correct:expr) => { assert_eq!(parse(tokenize($string)).0.unwrap(), $correct) }
|
||||
($string:expr, $correct:expr) => { assert_eq!(parse(tokenize($string)).unwrap(), $correct) }
|
||||
}
|
||||
macro_rules! parse_error {
|
||||
($string:expr) => { assert!(parse(tokenize($string)).0.is_err()) }
|
||||
($string:expr) => { assert!(parse(tokenize($string)).is_err()) }
|
||||
}
|
||||
macro_rules! val {
|
||||
($var:expr) => { Value(Rc::new($var.to_string())) }
|
||||
|
||||
@@ -143,7 +143,7 @@ impl Expression {
|
||||
fn reduce_if_expression(discriminator: &Discriminator, body: &IfExpressionBody, symbol_table: &SymbolTable) -> Expr {
|
||||
let cond = Box::new(match *discriminator {
|
||||
Discriminator::Simple(ref expr) => expr.reduce(symbol_table),
|
||||
Discriminator::BinOp(ref expr, ref binop) => panic!("Can't yet handle binop discriminators")
|
||||
Discriminator::BinOp(ref _expr, ref _binop) => panic!("Can't yet handle binop discriminators")
|
||||
});
|
||||
match *body {
|
||||
IfExpressionBody::SimpleConditional(ref then_clause, ref else_clause) => {
|
||||
@@ -234,7 +234,7 @@ impl Pattern {
|
||||
let symbol = symbol_table.lookup_by_name(name).expect(&format!("Symbol {} not found", name));
|
||||
handle_symbol(symbol, subpatterns, item)
|
||||
},
|
||||
TuplePattern(items) => {
|
||||
TuplePattern(_items) => {
|
||||
unimplemented!()
|
||||
},
|
||||
Record(_name, _pairs) => {
|
||||
|
||||
@@ -1,493 +1,3 @@
|
||||
use std::cell::RefCell;
|
||||
use std::rc::Rc;
|
||||
use std::collections::HashMap;
|
||||
use std::fmt;
|
||||
use std::fmt::Write;
|
||||
/*
|
||||
use std::collections::hash_set::Union;
|
||||
use std::iter::Iterator;
|
||||
use itertools::Itertools;
|
||||
*/
|
||||
|
||||
use ast;
|
||||
use util::ScopeStack;
|
||||
use symbol_table::{SymbolSpec, SymbolTable};
|
||||
|
||||
pub type TypeName = Rc<String>;
|
||||
type TypeResult<T> = Result<T, String>;
|
||||
|
||||
#[derive(Debug, PartialEq, Clone)]
|
||||
enum Type {
|
||||
Const(TConst),
|
||||
Var(TypeName),
|
||||
Func(Vec<Type>),
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Clone)]
|
||||
enum TConst {
|
||||
Unit,
|
||||
Nat,
|
||||
StringT,
|
||||
//Custom(String)
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Clone)]
|
||||
struct Scheme {
|
||||
names: Vec<TypeName>,
|
||||
ty: Type,
|
||||
}
|
||||
|
||||
impl fmt::Display for Scheme {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "∀{:?} . {:?}", self.names, self.ty)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Clone)]
|
||||
struct Substitution(HashMap<TypeName, Type>);
|
||||
impl Substitution {
|
||||
fn empty() -> Substitution {
|
||||
Substitution(HashMap::new())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Clone)]
|
||||
struct TypeEnv(HashMap<TypeName, Scheme>);
|
||||
|
||||
impl TypeEnv {
|
||||
fn default() -> TypeEnv {
|
||||
TypeEnv(HashMap::new())
|
||||
}
|
||||
|
||||
fn populate_from_symbols(&mut self, symbol_table: &SymbolTable) {
|
||||
for (name, symbol) in symbol_table.values.iter() {
|
||||
if let SymbolSpec::Func(ref type_names) = symbol.spec {
|
||||
let mut ch: char = 'a';
|
||||
let mut names = vec![];
|
||||
for _ in type_names.iter() {
|
||||
names.push(Rc::new(format!("{}", ch)));
|
||||
ch = ((ch as u8) + 1) as char;
|
||||
}
|
||||
|
||||
let sigma = Scheme {
|
||||
names: names.clone(),
|
||||
ty: Type::Func(names.into_iter().map(|n| Type::Var(n)).collect())
|
||||
};
|
||||
self.0.insert(name.clone(), sigma);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct TypeContext<'a> {
|
||||
values: ScopeStack<'a, TypeName, Type>,
|
||||
symbol_table_handle: Rc<RefCell<SymbolTable>>,
|
||||
global_env: TypeEnv
|
||||
}
|
||||
|
||||
impl<'a> TypeContext<'a> {
|
||||
pub fn new(symbol_table_handle: Rc<RefCell<SymbolTable>>) -> TypeContext<'static> {
|
||||
TypeContext { values: ScopeStack::new(None), global_env: TypeEnv::default(), symbol_table_handle }
|
||||
}
|
||||
|
||||
pub fn debug_types(&self) -> String {
|
||||
let mut output = format!("Type environment\n");
|
||||
for (name, scheme) in &self.global_env.0 {
|
||||
write!(output, "{} -> {}\n", name, scheme).unwrap();
|
||||
}
|
||||
output
|
||||
}
|
||||
|
||||
pub fn type_check_ast(&mut self, input: &ast::AST) -> Result<String, String> {
|
||||
let ref symbol_table = self.symbol_table_handle.borrow();
|
||||
self.global_env.populate_from_symbols(symbol_table);
|
||||
let output = self.global_env.infer_block(&input.0)?;
|
||||
Ok(format!("{:?}", output))
|
||||
}
|
||||
}
|
||||
|
||||
impl TypeEnv {
|
||||
fn instantiate(&mut self, sigma: Scheme) -> Type {
|
||||
match sigma {
|
||||
Scheme { ty, .. } => ty,
|
||||
}
|
||||
}
|
||||
fn generate(&mut self, ty: Type) -> Scheme {
|
||||
Scheme {
|
||||
names: vec![], //TODO incomplete
|
||||
ty
|
||||
}
|
||||
}
|
||||
fn infer_block(&mut self, block: &Vec<ast::Statement>) -> TypeResult<Type> {
|
||||
let mut output = Type::Const(TConst::Unit);
|
||||
for statement in block {
|
||||
output = self.infer_statement(statement)?;
|
||||
}
|
||||
Ok(output)
|
||||
}
|
||||
fn infer_statement(&mut self, statement: &ast::Statement) -> TypeResult<Type> {
|
||||
match statement {
|
||||
ast::Statement::ExpressionStatement(expr) => self.infer_expr(expr),
|
||||
ast::Statement::Declaration(decl) => self.infer_decl(decl)
|
||||
}
|
||||
}
|
||||
fn infer_decl(&mut self, decl: &ast::Declaration) -> TypeResult<Type> {
|
||||
use ast::Declaration::*;
|
||||
match decl {
|
||||
Binding { name, expr, .. } => {
|
||||
let ty = self.infer_expr(expr)?;
|
||||
let sigma = self.generate(ty);
|
||||
self.0.insert(name.clone(), sigma);
|
||||
},
|
||||
_ => (),
|
||||
}
|
||||
Ok(Type::Const(TConst::Unit))
|
||||
}
|
||||
fn infer_expr(&mut self, expr: &ast::Expression) -> TypeResult<Type> {
|
||||
match expr {
|
||||
ast::Expression(expr, Some(anno)) => {
|
||||
self.infer_exprtype(expr)
|
||||
},
|
||||
ast::Expression(expr, None) => {
|
||||
self.infer_exprtype(expr)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn infer_exprtype(&mut self, expr: &ast::ExpressionType) -> TypeResult<Type> {
|
||||
use self::TConst::*;
|
||||
use ast::ExpressionType::*;
|
||||
Ok(match expr {
|
||||
NatLiteral(_) => Type::Const(Nat),
|
||||
StringLiteral(_) => Type::Const(StringT),
|
||||
BinExp(op, lhs, rhs) => {
|
||||
|
||||
return Err(format!("NOTDONE"))
|
||||
},
|
||||
Call { f, arguments } => {
|
||||
|
||||
return Err(format!("NOTDONE"))
|
||||
},
|
||||
Value(name) => {
|
||||
let s = match self.0.get(name) {
|
||||
Some(sigma) => sigma.clone(),
|
||||
None => return Err(format!("Unknown variable: {}", name))
|
||||
};
|
||||
self.instantiate(s)
|
||||
},
|
||||
_ => Type::Const(Unit)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* GIANT TODO - use the rust im crate, unless I make this code way less haskell-ish after it's done
|
||||
*/
|
||||
|
||||
/*
|
||||
|
||||
|
||||
pub type TypeResult<T> = Result<T, String>;
|
||||
*/
|
||||
|
||||
/* TODO this should just check the name against a map, and that map should be pre-populated with
|
||||
* types */
|
||||
/*
|
||||
impl parsing::TypeName {
|
||||
fn to_type(&self) -> TypeResult<Type> {
|
||||
use self::parsing::TypeSingletonName;
|
||||
use self::parsing::TypeName::*;
|
||||
use self::Type::*; use self::TConstOld::*;
|
||||
Ok(match self {
|
||||
Tuple(_) => return Err(format!("Tuples not yet implemented")),
|
||||
Singleton(name) => match name {
|
||||
TypeSingletonName { name, .. } => match &name[..] {
|
||||
/*
|
||||
"Nat" => Const(Nat),
|
||||
"Int" => Const(Int),
|
||||
"Float" => Const(Float),
|
||||
"Bool" => Const(Bool),
|
||||
"String" => Const(StringT),
|
||||
*/
|
||||
n => Const(Custom(n.to_string()))
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/*
|
||||
impl TypeContext {
|
||||
pub fn type_check_ast(&mut self, ast: &parsing::AST) -> TypeResult<String> {
|
||||
let ref block = ast.0;
|
||||
let mut infer = Infer::default();
|
||||
let env = TypeEnvironment::default();
|
||||
let output = infer.infer_block(block, &env);
|
||||
match output {
|
||||
Ok(s) => Ok(format!("{:?}", s)),
|
||||
Err(s) => Err(format!("Error: {:?}", s))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// this is the equivalent of the Haskell Infer monad
|
||||
#[derive(Debug, Default)]
|
||||
struct Infer {
|
||||
_idents: u32,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
enum InferError {
|
||||
CannotUnify(MonoType, MonoType),
|
||||
OccursCheckFailed(Rc<String>, MonoType),
|
||||
UnknownIdentifier(Rc<String>),
|
||||
Custom(String),
|
||||
}
|
||||
|
||||
type InferResult<T> = Result<T, InferError>;
|
||||
|
||||
|
||||
impl Infer {
|
||||
fn fresh(&mut self) -> MonoType {
|
||||
let i = self._idents;
|
||||
self._idents += 1;
|
||||
let name = Rc::new(format!("{}", ('a' as u8 + 1) as char));
|
||||
MonoType::Var(name)
|
||||
}
|
||||
|
||||
fn unify(&mut self, a: MonoType, b: MonoType) -> InferResult<Substitution> {
|
||||
use self::InferError::*; use self::MonoType::*;
|
||||
Ok(match (a, b) {
|
||||
(Const(ref a), Const(ref b)) if a == b => Substitution::new(),
|
||||
(Var(ref name), ref var) => Substitution::bind_variable(name, var),
|
||||
(ref var, Var(ref name)) => Substitution::bind_variable(name, var),
|
||||
(Function(box a1, box b1), Function(box a2, box b2)) => {
|
||||
let s1 = self.unify(a1, a2)?;
|
||||
let s2 = self.unify(b1.apply_substitution(&s1), b2.apply_substitution(&s1))?;
|
||||
s1.merge(s2)
|
||||
},
|
||||
(a, b) => return Err(CannotUnify(a, b))
|
||||
})
|
||||
}
|
||||
|
||||
fn infer_block(&mut self, block: &Vec<parsing::Statement>, env: &TypeEnvironment) -> InferResult<MonoType> {
|
||||
use self::parsing::Statement;
|
||||
let mut ret = MonoType::Const(TypeConst::Unit);
|
||||
for statement in block.iter() {
|
||||
ret = match statement {
|
||||
Statement::ExpressionStatement(expr) => {
|
||||
let (sub, ty) = self.infer_expr(expr, env)?;
|
||||
//TODO handle substitution monadically
|
||||
|
||||
ty
|
||||
}
|
||||
Statement::Declaration(decl) => MonoType::Const(TypeConst::Unit),
|
||||
}
|
||||
}
|
||||
Ok(ret)
|
||||
}
|
||||
|
||||
fn infer_expr(&mut self, expr: &parsing::Expression, env: &TypeEnvironment) -> InferResult<(Substitution, MonoType)> {
|
||||
use self::parsing::Expression;
|
||||
match expr {
|
||||
Expression(e, Some(anno)) => self.infer_annotated_expr(e, anno, env),
|
||||
/*
|
||||
let anno_ty = anno.to_type()?;
|
||||
let ty = self.infer_exprtype(&e)?;
|
||||
self.unify(ty, anno_ty)
|
||||
},
|
||||
*/
|
||||
Expression(e, None) => self.infer_exprtype(e, env)
|
||||
}
|
||||
}
|
||||
|
||||
fn infer_annotated_expr(&mut self, expr: &parsing::ExpressionType, anno: &parsing::TypeName, env: &TypeEnvironment) -> InferResult<(Substitution, MonoType)> {
|
||||
Err(InferError::Custom(format!("exprtype not done: {:?}", expr)))
|
||||
}
|
||||
fn infer_exprtype(&mut self, expr: &parsing::ExpressionType, env: &TypeEnvironment) -> InferResult<(Substitution, MonoType)> {
|
||||
use self::parsing::ExpressionType::*;
|
||||
use self::TypeConst::*;
|
||||
Ok(match expr {
|
||||
NatLiteral(_) => (Substitution::new(), MonoType::Const(Nat)),
|
||||
FloatLiteral(_) => (Substitution::new(), MonoType::Const(Float)),
|
||||
StringLiteral(_) => (Substitution::new(), MonoType::Const(StringT)),
|
||||
BoolLiteral(_) => (Substitution::new(), MonoType::Const(Bool)),
|
||||
Value(name) => match env.lookup(name) {
|
||||
Some(sigma) => {
|
||||
let tau = self.instantiate(&sigma);
|
||||
(Substitution::new(), tau)
|
||||
},
|
||||
None => return Err(InferError::UnknownIdentifier(name.clone())),
|
||||
},
|
||||
e => return Err(InferError::Custom(format!("Type inference for {:?} not done", e)))
|
||||
})
|
||||
}
|
||||
fn instantiate(&mut self, sigma: &PolyType) -> MonoType {
|
||||
let ref ty: MonoType = sigma.1;
|
||||
let mut subst = Substitution::new();
|
||||
|
||||
for name in sigma.0.iter() {
|
||||
let fresh_mvar = self.fresh();
|
||||
let new = Substitution::bind_variable(name, &fresh_mvar);
|
||||
subst = subst.merge(new);
|
||||
}
|
||||
ty.apply_substitution(&subst)
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/* OLD STUFF DOWN HERE */
|
||||
|
||||
|
||||
|
||||
/*
|
||||
impl TypeContext {
|
||||
fn infer_block(&mut self, statements: &Vec<parsing::Statement>) -> TypeResult<Type> {
|
||||
let mut ret_type = Type::Const(TConst::Unit);
|
||||
for statement in statements {
|
||||
ret_type = self.infer_statement(statement)?;
|
||||
}
|
||||
Ok(ret_type)
|
||||
}
|
||||
|
||||
fn infer_statement(&mut self, statement: &parsing::Statement) -> TypeResult<Type> {
|
||||
use self::parsing::Statement::*;
|
||||
match statement {
|
||||
ExpressionStatement(expr) => self.infer(expr),
|
||||
Declaration(decl) => self.add_declaration(decl),
|
||||
}
|
||||
}
|
||||
fn add_declaration(&mut self, decl: &parsing::Declaration) -> TypeResult<Type> {
|
||||
use self::parsing::Declaration::*;
|
||||
use self::Type::*;
|
||||
match decl {
|
||||
Binding { name, expr, .. } => {
|
||||
let ty = self.infer(expr)?;
|
||||
self.bindings.insert(name.clone(), ty);
|
||||
},
|
||||
_ => return Err(format!("other formats not done"))
|
||||
}
|
||||
Ok(Void)
|
||||
}
|
||||
fn infer(&mut self, expr: &parsing::Expression) -> TypeResult<Type> {
|
||||
use self::parsing::Expression;
|
||||
match expr {
|
||||
Expression(e, Some(anno)) => {
|
||||
let anno_ty = anno.to_type()?;
|
||||
let ty = self.infer_exprtype(&e)?;
|
||||
self.unify(ty, anno_ty)
|
||||
},
|
||||
Expression(e, None) => self.infer_exprtype(e)
|
||||
}
|
||||
}
|
||||
fn infer_exprtype(&mut self, expr: &parsing::ExpressionType) -> TypeResult<Type> {
|
||||
use self::parsing::ExpressionType::*;
|
||||
use self::Type::*; use self::TConst::*;
|
||||
match expr {
|
||||
NatLiteral(_) => Ok(Const(Nat)),
|
||||
FloatLiteral(_) => Ok(Const(Float)),
|
||||
StringLiteral(_) => Ok(Const(StringT)),
|
||||
BoolLiteral(_) => Ok(Const(Bool)),
|
||||
BinExp(op, lhs, rhs) => { /* remember there are both the haskell convention talk and the write you a haskell ways to do this! */
|
||||
match op.get_type()? {
|
||||
Func(box t1, box Func(box t2, box t3)) => {
|
||||
let lhs_ty = self.infer(lhs)?;
|
||||
let rhs_ty = self.infer(rhs)?;
|
||||
self.unify(t1, lhs_ty)?;
|
||||
self.unify(t2, rhs_ty)?;
|
||||
Ok(t3)
|
||||
},
|
||||
other => Err(format!("{:?} is not a binary function type", other))
|
||||
}
|
||||
},
|
||||
PrefixExp(op, expr) => match op.get_type()? {
|
||||
Func(box t1, box t2) => {
|
||||
let expr_ty = self.infer(expr)?;
|
||||
self.unify(t1, expr_ty)?;
|
||||
Ok(t2)
|
||||
},
|
||||
other => Err(format!("{:?} is not a prefix op function type", other))
|
||||
},
|
||||
Value(name) => {
|
||||
match self.bindings.get(name) {
|
||||
Some(ty) => Ok(ty.clone()),
|
||||
None => Err(format!("No binding found for variable: {}", name)),
|
||||
}
|
||||
},
|
||||
Call { f, arguments } => {
|
||||
let mut tf = self.infer(f)?;
|
||||
for arg in arguments.iter() {
|
||||
match tf {
|
||||
Func(box t, box rest) => {
|
||||
let t_arg = self.infer(arg)?;
|
||||
self.unify(t, t_arg)?;
|
||||
tf = rest;
|
||||
},
|
||||
other => return Err(format!("Function call failed to unify; last type: {:?}", other)),
|
||||
}
|
||||
}
|
||||
Ok(tf)
|
||||
},
|
||||
TupleLiteral(expressions) => {
|
||||
let mut types = vec![];
|
||||
for expr in expressions {
|
||||
types.push(self.infer(expr)?);
|
||||
}
|
||||
Ok(Sum(types))
|
||||
},
|
||||
_ => Err(format!("Type not yet implemented"))
|
||||
}
|
||||
}
|
||||
fn unify(&mut self, t1: Type, t2: Type) -> TypeResult<Type> {
|
||||
use self::Type::*;// use self::TConst::*;
|
||||
match (t1, t2) {
|
||||
(Const(ref a), Const(ref b)) if a == b => Ok(Const(a.clone())),
|
||||
(a, b) => Err(format!("Types {:?} and {:?} don't unify", a, b))
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
/*
|
||||
use super::{Type, TConst, TypeContext};
|
||||
use super::Type::*;
|
||||
use super::TConst::*;
|
||||
use std::rc::Rc;
|
||||
use std::cell::RefCell;
|
||||
|
||||
macro_rules! type_test {
|
||||
($input:expr, $correct:expr) => {
|
||||
{
|
||||
let symbol_table = Rc::new(RefCell::new(SymbolTable::new()));
|
||||
let mut tc = TypeContext::new(symbol_table);
|
||||
let ast = ::ast::parse(::tokenizing::tokenize($input)).0.unwrap() ;
|
||||
//tc.add_symbols(&ast);
|
||||
assert_eq!($correct, tc.infer_block(&ast.0).unwrap())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn basic_inference() {
|
||||
type_test!("30", Const(Nat));
|
||||
//type_test!("fn x(a: Int): Bool {}; x(1)", TConst(Boolean));
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
@@ -35,6 +35,7 @@ impl<'a, T, V> ScopeStack<'a, T, V> where T: Hash + Eq {
|
||||
scope_name: name,
|
||||
}
|
||||
}
|
||||
#[allow(dead_code)]
|
||||
pub fn get_name(&self) -> Option<&String> {
|
||||
self.scope_name.as_ref()
|
||||
}
|
||||
|
||||
@@ -217,8 +217,8 @@ macro_rules! pass_chain_helper {
|
||||
}
|
||||
match output {
|
||||
Ok(result) => pass_chain_helper! { ($state, $comp, $eval_options); result $(, $rest)* },
|
||||
Err(err) => {
|
||||
$comp.output(Err(format!("Pass {} failed with {:?}", pass_name, err)))
|
||||
Err(err) => { //TODO this error type needs to be guaranteed to provide a useable string
|
||||
$comp.output(Err(format!("Pass {} failed:\n{}", pass_name, err)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user