$( hol.mm 7-Oct-2014 $) $( ~~ PUBLIC DOMAIN ~~ This work is waived of all rights, including copyright, according to the CC0 Public Domain Dedication. http://creativecommons.org/publicdomain/zero/1.0/ Mario Carneiro - email: di.gama at gmail.com $) $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# Foundations #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# $) $( Declare the primitive constant symbols for lambda calculus. $) $c var $. $( Typecode for variables (syntax) $) $c type $. $( Typecode for types (syntax) $) $c term $. $( Typecode for terms (syntax) $) $c |- $. $( Typecode for theorems (logical) $) $c : $. $( Typehood indicator $) $c . $. $( Separator $) $c |= $. $( Context separator $) $c bool $. $( Boolean type $) $c ind $. $( 'Individual' type $) $c -> $. $( Function type $) $c ( $. $( Open parenthesis $) $c ) $. $( Close parenthesis $) $c , $. $( Context comma $) $c \ $. $( Lambda expression $) $c = $. $( Equality term $) $c T. $. $( Truth term $) $c [ $. $( Infix operator $) $c ] $. $( Infix operator $) $v al $. $( Greek alpha $) $v be $. $( Greek beta $) $v ga $. $( Greek gamma $) $v de $. $( Greek delta $) $v x y z f g p q $. $( Bound variables $) $v A B C F R S T $. $( Term variables $) $( Let variable ` al ` be a type. $) hal $f type al $. $( Let variable ` be ` be a type. $) hbe $f type be $. $( Let variable ` ga ` be a type. $) hga $f type ga $. $( Let variable ` de ` be a type. $) hde $f type de $. $( Let variable ` x ` be a var. $) vx $f var x $. $( Let variable ` y ` be a var. $) vy $f var y $. $( Let variable ` z ` be a var. $) vz $f var z $. $( Let variable ` f ` be a var. $) vf $f var f $. $( Let variable ` g ` be a var. $) vg $f var g $. $( Let variable ` p ` be a var. $) vp $f var p $. $( Let variable ` q ` be a var. $) vq $f var q $. $( Let variable ` A ` be a term. $) ta $f term A $. $( Let variable ` B ` be a term. $) tb $f term B $. $( Let variable ` C ` be a term. $) tc $f term C $. $( Let variable ` F ` be a term. $) tf $f term F $. $( Let variable ` R ` be a term. $) tr $f term R $. $( Let variable ` S ` be a term. $) ts $f term S $. $( Let variable ` T ` be a term. $) tt $f term T $. $( A var is a term. $) tv $a term x : al $. $( The type of all functions from type ` al ` to type ` be ` . $) ht $a type ( al -> be ) $. $( The type of booleans (true and false). $) hb $a type bool $. $( The type of individuals. $) hi $a type ind $. $( A combination (function application). $) kc $a term ( F T ) $. $( A lambda abstraction. $) kl $a term \ x : al . T $. $( The equality term. $) ke $a term = $. $( Truth term. $) kt $a term T. $. $( Infix operator. $) kbr $a term [ A F B ] $. $( Context operator. $) kct $a term ( A , B ) $. $c wff $. $( Not used; for mmj2 compatibility $) $( Internal axiom for mmj2 use. $) wffMMJ2 $a wff A |= B $. $( Internal axiom for mmj2 use. $) wffMMJ2t $a wff A : al $. ${ idi.1 $e |- R |= A $. $( The identity inference. $) idi $p |- R |= A $= ( ) C $. $( [9-Oct-2014] $) $} ${ idt.1 $e |- A : al $. $( The identity inference. $) idt $p |- A : al $= ( ) C $. $( [9-Oct-2014] $) $} ${ ax-syl.1 $e |- R |= S $. ax-syl.2 $e |- S |= T $. $( Syllogism inference. $) ax-syl $a |- R |= T $. $( Syllogism inference. $) syl $p |- R |= T $= ( ax-syl ) ABCDEF $. $( [8-Oct-2014] $) $} ${ ax-jca.1 $e |- R |= S $. ax-jca.2 $e |- R |= T $. $( Join common antecedents. $) ax-jca $a |- R |= ( S , T ) $. $( Syllogism inference. $) jca $p |- R |= ( S , T ) $= ( ax-jca ) ABCDEF $. $( [8-Oct-2014] $) $} ${ syl2anc.1 $e |- R |= S $. syl2anc.2 $e |- R |= T $. syl2anc.3 $e |- ( S , T ) |= A $. $( Syllogism inference. $) syl2anc $p |- R |= A $= ( kct jca syl ) BCDHABCDEFIGJ $. $( [7-Oct-2014] $) $} ${ ax-simpl.1 $e |- R : bool $. ax-simpl.2 $e |- S : bool $. $( Extract an assumption from the context. $) ax-simpl $a |- ( R , S ) |= R $. $( Extract an assumption from the context. $) ax-simpr $a |- ( R , S ) |= S $. $( Extract an assumption from the context. $) simpl $p |- ( R , S ) |= R $= ( ax-simpl ) ABCDE $. $( [8-Oct-2014] $) $( Extract an assumption from the context. $) simpr $p |- ( R , S ) |= S $= ( ax-simpr ) ABCDE $. $( [8-Oct-2014] $) $} ${ ax-id.1 $e |- R : bool $. $( The identity inference. $) ax-id $a |- R |= R $. $( The identity inference. $) id $p |- R |= R $= ( ax-id ) ABC $. $( [7-Oct-2014] $) $} ${ ax-trud.1 $e |- R : bool $. $( Deduction form of ~ tru . $) ax-trud $a |- R |= T. $. $( Deduction form of ~ tru . $) trud $p |- R |= T. $= ( ax-trud ) ABC $. $( [7-Oct-2014] $) ax-a1i.2 $e |- T. |= A $. $( Change an empty context into any context. $) a1i $p |- R |= A $= ( kt ax-trud syl ) BEABCFDG $. $( [7-Oct-2014] $) $} ${ ax-cb.1 $e |- R |= A $. $( A context has type boolean. This and the next few axioms are not strictly necessary, and are conservative on any theorem for which every variable has a specified type, but by adding this axiom we can save some typehood hypotheses in many theorems. The easy way to see that this axiom is conservative is to note that every axiom and inference rule that constructs a theorem of the form ` R |= A ` where ` R ` and ` A ` are type variables, also ensures that ` R : bool ` and ` A : bool ` . Thus it is impossible to prove any theorem ` |- R |= A ` unless both ` |- R : bool ` and ` |- A : bool ` had been previously derived, so it is conservative to deduce ` |- R : bool ` from ` |- R |= A ` . The same remark applies to the construction of the theorem ` ( A , B ) : bool ` - there is only one rule that creates a formula of this type, namely ~ wct , and it requires that ` A : bool ` and ` B : bool ` be previously established, so it is safe to reverse the process in ~ wctl and ~ wctr . $) ax-cb1 $a |- R : bool $. $( A theorem has type boolean. (This axiom is unnecessary; see ~ ax-cb1 .) $) ax-cb2 $a |- A : bool $. $} ${ wctl.1 $e |- ( S , T ) : bool $. $( Reverse closure for the type of a context. (This axiom is unnecessary; see ~ ax-cb1 .) $) wctl $a |- S : bool $. $( Reverse closure for the type of a context. (This axiom is unnecessary; see ~ ax-cb1 .) $) wctr $a |- T : bool $. $} ${ mpdan.1 $e |- R |= S $. mpdan.2 $e |- ( R , S ) |= T $. $( Modus ponens deduction. $) mpdan $p |- R |= T $= ( ax-cb1 id syl2anc ) CAABABADFGDEH $. $( [8-Oct-2014] $) $} ${ syldan.1 $e |- ( R , S ) |= T $. syldan.2 $e |- ( R , T ) |= A $. $( Syllogism inference. $) syldan $p |- ( R , S ) |= A $= ( kct ax-cb1 wctl wctr simpl syl2anc ) ABCGZBDBCBCDMEHZIBCNJKEFL $. $( [8-Oct-2014] $) $} ${ simpld.1 $e |- R |= ( S , T ) $. $( Extract an assumption from the context. $) simpld $p |- R |= S $= ( kct ax-cb2 wctl wctr simpl syl ) ABCEZBDBCBCKADFZGBCLHIJ $. $( [8-Oct-2014] $) $( Extract an assumption from the context. $) simprd $p |- R |= T $= ( kct ax-cb2 wctl wctr simpr syl ) ABCEZCDBCBCKADFZGBCLHIJ $. $( [8-Oct-2014] $) $} ${ trul.1 $e |- ( T. , R ) |= S $. $( Deduction form of ~ tru . $) trul $p |- R |= S $= ( kt kct ax-cb1 wctr trud id syl2anc ) BADAADABDAECFGZHAKICJ $. $( [7-Oct-2014] $) $} $( The equality function has type ` al -> al -> bool ` , i.e. it is polymorphic over all types, but the left and right type must agree. $) weq $a |- = : ( al -> ( al -> bool ) ) $. ${ ax-refl.1 $e |- A : al $. $( Reflexivity of equality. $) ax-refl $a |- T. |= ( ( = A ) A ) $. $} $( Truth type. $) wtru $p |- T. : bool $= ( ke kc kt hb ht weq ax-refl ax-cb1 ) AABABCDDDEEADFGH $. $( [10-Oct-2014] $) $( Tautology is provable. $) tru $p |- T. |= T. $= ( kt wtru id ) ABC $. $( [7-Oct-2014] $) ${ ax-eqmp.1 $e |- R |= A $. ax-eqmp.2 $e |- R |= ( ( = A ) B ) $. $( Modus ponens for equality. $) ax-eqmp $a |- R |= B $. $} ${ ax-ded.1 $e |- ( R , S ) |= T $. ax-ded.2 $e |- ( R , T ) |= S $. $( Deduction theorem for equality. $) ax-ded $a |- R |= ( ( = S ) T ) $. $} ${ wct.1 $e |- S : bool $. wct.2 $e |- T : bool $. $( The type of a context. $) wct $a |- ( S , T ) : bool $. $} ${ wc.1 $e |- F : ( al -> be ) $. wc.2 $e |- T : al $. $( The type of a combination. $) wc $a |- ( F T ) : be $. $} ${ ax-ceq.1 $e |- F : ( al -> be ) $. ax-ceq.2 $e |- T : ( al -> be ) $. ax-ceq.3 $e |- A : al $. ax-ceq.4 $e |- B : al $. $( Equality theorem for combination. $) ax-ceq $a |- ( ( ( = F ) T ) , ( ( = A ) B ) ) |= ( ( = ( F A ) ) ( T B ) ) $. $} ${ eqcomx.1 $e |- A : al $. eqcomx.2 $e |- B : al $. eqcomx.3 $e |- R |= ( ( = A ) B ) $. $( Commutativity of equality. $) eqcomx $p |- R |= ( ( = B ) A ) $= ( ke kc ax-cb1 ax-refl a1i hb ht weq ax-ceq syl2anc wc ax-eqmp ) HBIZBIZH CIZBIZDUADTCIZDGJZABEKLZHUAIUCIDHTIUBIZUAUGDHHIHIZUDUHDUEAAMNZNHAOZKLGAUI BCHHUJUJEFPQUFAMBBTUBAUIHBUJERAUIHCUJFREEPQS $. $( [7-Oct-2014] $) $} ${ mpbirx.1 $e |- B : bool $. mpbirx.2 $e |- R |= A $. mpbirx.3 $e |- R |= ( ( = B ) A ) $. $( Deduction from equality inference. $) mpbirx $p |- R |= B $= ( hb ax-cb2 eqcomx ax-eqmp ) ABCEGBACDACEHFIJ $. $( [7-Oct-2014] $) $} ${ ancoms.1 $e |- ( R , S ) |= T $. $( Swap the two elements of a context. $) ancoms $p |- ( S , R ) |= T $= ( kct ax-cb1 wctr wctl simpr simpl syl2anc ) CBAEABBAABCABEDFZGZABLHZIBAM NJDK $. $( [8-Oct-2014] $) $} ${ adantr.1 $e |- R |= T $. adantr.2 $e |- S : bool $. $( Extract an assumption from the context. $) adantr $p |- ( R , S ) |= T $= ( kct ax-cb1 simpl syl ) ABFACABCADGEHDI $. $( [8-Oct-2014] $) $( Extract an assumption from the context. $) adantl $p |- ( S , R ) |= T $= ( adantr ancoms ) ABCABCDEFG $. $( [8-Oct-2014] $) $} ${ ct1.1 $e |- R |= S $. ct1.2 $e |- T : bool $. $( Introduce a right conjunct. $) ct1 $p |- ( R , T ) |= ( S , T ) $= ( kct adantr ax-cb1 simpr jca ) ACFBCACBDEGACBADHEIJ $. $( Introduce a left conjunct. $) ct2 $p |- ( T , R ) |= ( T , S ) $= ( kct ax-cb1 simpl adantl jca ) CAFCBCAEBADGHACBDEIJ $. $} ${ sylan.1 $e |- R |= S $. sylan.2 $e |- ( S , T ) |= A $. $( Syllogism inference. $) sylan $p |- ( R , T ) |= A $= ( kct ax-cb1 wctr adantr simpr syl2anc ) ABDGCDBDCECDACDGFHIZJBDCBEHMKFL $. $( [8-Oct-2014] $) $} ${ an32s.1 $e |- ( ( R , S ) , T ) |= A $. $( Commutation identity for context. $) an32s $p |- ( ( R , T ) , S ) |= A $= ( kct ax-cb1 wctl wctr simpl ct1 simpr adantr syl2anc ) ABDFZCFBCFZDOBCBD BCPDAPDFEGZHZHZPDQIZJBCRIZKOCDBDSTLUAMEN $. $( [8-Oct-2014] $) $( Associativity for context. $) anasss $p |- ( R , ( S , T ) ) |= A $= ( kct ax-cb1 wctl id ancoms sylan an32s ) CDFBAACBDACBFBCFZDBCMMMDAMDFEGH IJEKLJ $. $( [8-Oct-2014] $) $} ${ anassrs.1 $e |- ( R , ( S , T ) ) |= A $. $( Associativity for context. $) anassrs $p |- ( ( R , S ) , T ) |= A $= ( kct ax-cb1 wctl wctr simpl adantr simpr ct1 syl2anc ) ABCFZDFBCDFZODBBC BPABPFEGZHZCDBPQIZHZJCDSIZKOCDBCRTLUAMEN $. $( [8-Oct-2014] $) $} $( The type of a typed variable. $) wv $a |- x : al : al $. ${ wl.1 $e |- T : be $. $( The type of a lambda abstraction. $) wl $a |- \ x : al . T : ( al -> be ) $. $} ${ ax-beta.1 $e |- A : be $. $( Axiom of beta-substitution. $) ax-beta $a |- T. |= ( ( = ( \ x : al . A x : al ) ) A ) $. ax-distrc.2 $e |- B : al $. ax-distrc.3 $e |- F : ( be -> ga ) $. $( Distribution of combination over substitution. $) ax-distrc $a |- T. |= ( ( = ( \ x : al . ( F A ) B ) ) ( ( \ x : al . F B ) ( \ x : al . A B ) ) ) $. $} ${ $d x R $. ax-leq.1 $e |- A : be $. ax-leq.2 $e |- B : be $. ax-leq.3 $e |- R |= ( ( = A ) B ) $. $( Equality theorem for abstraction. $) ax-leq $a |- R |= ( ( = \ x : al . A ) \ x : al . B ) $. $} ${ $d x y $. $d y B $. ax-distrl.1 $e |- A : ga $. ax-distrl.2 $e |- B : al $. $( Distribution of lambda abstraction over substitution. $) ax-distrl $a |- T. |= ( ( = ( \ x : al . \ y : be . A B ) ) \ y : be . ( \ x : al . A B ) ) $. $} ${ wov.1 $e |- F : ( al -> ( be -> ga ) ) $. wov.2 $e |- A : al $. wov.3 $e |- B : be $. $( Type of an infix operator. $) wov $a |- [ A F B ] : ga $. $( Infix operator. This is a simple metamath way of cleaning up the syntax of all these infix operators to make them a bit more readable than the curried representation. $) df-ov $a |- T. |= ( ( = [ A F B ] ) ( ( F A ) B ) ) $. $} ${ dfov1.1 $e |- F : ( al -> ( be -> bool ) ) $. dfov1.2 $e |- A : al $. dfov1.3 $e |- B : be $. ${ dfov1.4 $e |- R |= [ A F B ] $. $( Forward direction of ~ df-ov . $) dfov1 $p |- R |= ( ( F A ) B ) $= ( kbr kc ke ax-cb1 hb df-ov a1i ax-eqmp ) CDEKZECLDLZFJMSLTLFSFJNABOCDE GHIPQR $. $( [8-Oct-2014] $) $} dfov2.4 $e |- R |= ( ( F A ) B ) $. $( Reverse direction of ~ df-ov . $) dfov2 $p |- R |= [ A F B ] $= ( kc kbr hb wov ke ax-cb1 df-ov a1i mpbirx ) ECKDKZCDELZFABMCDEGHINJOUAKT KFTFJPABMCDEGHIQRS $. $( [8-Oct-2014] $) $} ${ weqi.1 $e |- A : al $. weqi.2 $e |- B : al $. $( Type of an equality. $) weqi $p |- [ A = B ] : bool $= ( hb ke weq wov ) AAFBCGAHDEI $. $( [8-Oct-2014] $) $} ${ eqcomi.1 $e |- A : al $. eqcomi.2 $e |- R |= [ A = B ] $. $( Deduce equality of types from equality of expressions. (This is unnecessary but eliminates a lot of hypotheses.) $) eqtypi $a |- B : al $. $( Commutativity of equality. $) eqcomi $p |- R |= [ B = A ] $= ( ke weq eqtypi dfov1 eqcomx dfov2 ) AACBGDAHZABCDEFIZEABCDENAABCGDMENFJK L $. $( [7-Oct-2014] $) $} ${ eqtypri.1 $e |- A : al $. eqtypri.2 $e |- R |= [ B = A ] $. $( Deduce equality of types from equality of expressions. (This is unnecessary but eliminates a lot of hypotheses.) $) eqtypri $a |- B : al $. $} ${ mpbi.1 $e |- R |= A $. mpbi.2 $e |- R |= [ A = B ] $. $( Deduction from equality inference. $) mpbi $p |- R |= B $= ( hb ke weq ax-cb2 eqtypi dfov1 ax-eqmp ) ABCDFFABGCFHACDIZFABCMEJEKL $. $( [7-Oct-2014] $) $} ${ eqid.1 $e |- R : bool $. eqid.2 $e |- A : al $. $( Reflexivity of equality. $) eqid $p |- R |= [ A = A ] $= ( ke weq kc ax-refl a1i dfov2 ) AABBFCAGEEFBHBHCDABEIJK $. $( [7-Oct-2014] $) $} ${ ded.1 $e |- ( R , S ) |= T $. ded.2 $e |- ( R , T ) |= S $. $( Deduction theorem for equality. $) ded $p |- R |= [ S = T ] $= ( hb ke weq kct ax-cb2 ax-ded dfov2 ) FFBCGAFHBACIEJCABIDJABCDEKL $. $( [7-Oct-2014] $) $} ${ dedi.1 $e |- S |= T $. dedi.2 $e |- T |= S $. $( Deduction theorem for equality. $) dedi $p |- T. |= [ S = T ] $= ( kt wtru adantl ded ) EABAEBCFGBEADFGH $. $( [7-Oct-2014] $) $} ${ eqtru.1 $e |- R |= A $. $( If a statement is provable, then it is equivalent to truth. $) eqtru $p |- R |= [ T. = A ] $= ( kt wtru adantr kct ax-cb1 ax-cb2 wct tru a1i ded ) BDABDACEFDBAGBAABCHA BCIJKLM $. $( [8-Oct-2014] $) $} ${ mpbir.1 $e |- R |= A $. mpbir.2 $e |- R |= [ B = A ] $. $( Deduction from equality inference. $) mpbir $p |- R |= B $= ( hb ax-cb2 eqtypri eqcomi mpbi ) ABCDFBACFABCACDGEHEIJ $. $( [7-Oct-2014] $) $} ${ ceq12.1 $e |- F : ( al -> be ) $. ceq12.2 $e |- A : al $. ${ ceq12.3 $e |- R |= [ F = T ] $. ${ ceq12.4 $e |- R |= [ A = B ] $. $( Equality theorem for combination. $) ceq12 $p |- R |= [ ( F A ) = ( T B ) ] $= ( kc ke weq wc ht eqtypi dfov1 ax-ceq syl2anc dfov2 ) BBECLZGDLZMFBNA BECHIOABGDABPZEGFHJQZACDFIKQZOMUBLUCLFMELGLMCLDLUDUDEGMFUDNHUEJRAACDM FANIUFKRABCDEGHUEIUFSTUA $. $( [7-Oct-2014] $) $} $( Equality theorem for combination. $) ceq1 $p |- R |= [ ( F A ) = ( T A ) ] $= ( ke kbr ax-cb1 eqid ceq12 ) ABCCDEFGHIACEDFJKEILHMN $. $( [7-Oct-2014] $) $} ceq2.3 $e |- R |= [ A = B ] $. $( Equality theorem for combination. $) ceq2 $p |- R |= [ ( F A ) = ( F B ) ] $= ( ht ke kbr ax-cb1 eqid ceq12 ) ABCDEFEGHABJEFCDKLFIMGNIO $. $( [7-Oct-2014] $) $} ${ $d x R $. leq.1 $e |- A : be $. leq.2 $e |- R |= [ A = B ] $. $( Equality theorem for lambda abstraction. $) leq $p |- R |= [ \ x : al . A = \ x : al . B ] $= ( ht kl ke weq wl eqtypi dfov1 ax-leq dfov2 ) ABIZRACDJACEJKFRLABCDGMABCE BDEFGHNZMABCDEFGSBBDEKFBLGSHOPQ $. $( [8-Oct-2014] $) $} ${ beta.1 $e |- A : be $. $( Axiom of beta-substitution. $) beta $p |- T. |= [ ( \ x : al . A x : al ) = A ] $= ( kl tv kc ke kt weq wl wv wc ax-beta dfov2 ) BBACDFZACGZHDIJBKABQRABCDEL ACMNEABCDEOP $. $( [8-Oct-2014] $) $} ${ distrc.1 $e |- F : ( be -> ga ) $. distrc.2 $e |- A : be $. distrc.3 $e |- B : al $. $( Distribution of combination over substitution. $) distrc $p |- T. |= [ ( \ x : al . ( F A ) B ) = ( ( \ x : al . F B ) ( \ x : al . A B ) ) ] $= ( kc kl ke kt weq wc wl ht ax-distrc dfov2 ) CCADGEKZLZFKADGLZFKZADELZFKZ KMNCOACUBFACDUABCGEHIPQJPBCUDUFABCRZUCFAUGDGHQJPABUEFABDEIQJPPABCDEFGIJHS T $. $( [8-Oct-2014] $) $} ${ $d x y $. $d y B $. distrl.1 $e |- A : ga $. distrl.2 $e |- B : al $. $( Distribution of lambda abstraction over substitution. $) distrl $p |- T. |= [ ( \ x : al . \ y : be . A B ) = \ y : be . ( \ x : al . A B ) ] $= ( ht kl kc ke kt weq wl wc ax-distrl dfov2 ) BCJZTADBEFKZKZGLBEADFKZGLZKM NTOATUBGATDUABCEFHPPIQBCEUDACUCGACDFHPIQPABCDEFGHIRS $. $( [8-Oct-2014] $) $} ${ eqtri.1 $e |- A : al $. eqtri.2 $e |- R |= [ A = B ] $. eqtri.3 $e |- R |= [ B = C ] $. $( Transitivity of equality. $) eqtri $p |- R |= [ A = C ] $= ( ke weq eqtypi kc dfov1 hb ht wc ceq2 mpbi dfov2 ) AABDIEAJZFACDEABCEFGK ZHKIBLZCLUBDLEAABCIETFUAGMANCDUBEAANOIBTFPUAHQRS $. $( [7-Oct-2014] $) $} ${ 3eqtr4i.1 $e |- A : al $. 3eqtr4i.2 $e |- R |= [ A = B ] $. ${ 3eqtr4i.3 $e |- R |= [ S = A ] $. 3eqtr4i.4 $e |- R |= [ T = B ] $. $( Transitivity of equality. $) 3eqtr4i $p |- R |= [ S = T ] $= ( eqtypri eqtypi eqcomi eqtri ) AEBFDABEDGIKIABCFDGHAFCDACFDABCDGHLJKJMNN $. $( [7-Oct-2014] $) $} 3eqtr3i.3 $e |- R |= [ A = S ] $. 3eqtr3i.4 $e |- R |= [ B = T ] $. $( Transitivity of equality. $) 3eqtr3i $p |- R |= [ S = T ] $= ( eqcomi eqtypi 3eqtr4i ) ABCDEFGHABEDGIKACFDABCDGHLJKM $. $( [7-Oct-2014] $) $} ${ oveq.1 $e |- F : ( al -> ( be -> ga ) ) $. oveq.2 $e |- A : al $. oveq.3 $e |- B : be $. ${ oveq123.4 $e |- R |= [ F = S ] $. oveq123.5 $e |- R |= [ A = C ] $. oveq123.6 $e |- R |= [ B = T ] $. $( Equality theorem for binary operation. $) oveq123 $p |- R |= [ [ A F B ] = [ C S T ] ] $= ( kc kbr wc ke ht ceq12 weq wov ax-cb1 df-ov a1i dfov2 eqtypi 3eqtr4i ) CGDQZEQZIFQZJQZHDEGRZFJIRZBCUKEABCUAZGDKLSZMSZBCEJUKHUMURMAUQDFGHIKLNOU BPUBCCUOULTHCUCZABCDEGKLMUDUSTUOQULQHGITRHNUEZABCDEGKLMUFUGUHCCUPUNTHUT ABCFJIAUQUAGIHKNUIZADFHLOUIZBEJHMPUIZUDBCUMJAUQIFVBVCSVDSTUPQUNQHVAABCF JIVBVCVDUFUGUHUJ $. $( [7-Oct-2014] $) $} ${ oveq1.4 $e |- R |= [ A = C ] $. $( Equality theorem for binary operation. $) oveq1 $p |- R |= [ [ A F B ] = [ C F B ] ] $= ( ht ke kbr ax-cb1 eqid oveq123 ) ABCDEFGHGEIJKABCMMGHDFNOHLPZIQLBEHSKQ R $. $( [7-Oct-2014] $) oveq12.5 $e |- R |= [ B = T ] $. $( Equality theorem for binary operation. $) oveq12 $p |- R |= [ [ A F B ] = [ C F T ] ] $= ( ht ke kbr ax-cb1 eqid oveq123 ) ABCDEFGHGIJKLABCOOGHDFPQHMRJSMNT $. $( [7-Oct-2014] $) $} ${ oveq2.4 $e |- R |= [ B = T ] $. $( Equality theorem for binary operation. $) oveq2 $p |- R |= [ [ A F B ] = [ A F T ] ] $= ( ke kbr ax-cb1 eqid oveq12 ) ABCDEDFGHIJKADGEHMNGLOJPLQ $. $( [7-Oct-2014] $) $} ${ oveq.4 $e |- R |= [ F = S ] $. $( Equality theorem for binary operation. $) oveq $p |- R |= [ [ A F B ] = [ A S B ] ] $= ( ke kbr ax-cb1 eqid oveq123 ) ABCDEDFGHEIJKLADGFHMNGLOZJPBEGRKPQ $. $( [7-Oct-2014] $) $} $} ${ ax-hbl1.1 $e |- A : ga $. ax-hbl1.2 $e |- B : al $. $( ` x ` is bound in ` \ x A ` . $) ax-hbl1 $a |- T. |= [ ( \ x : al . \ x : be . A B ) = \ x : be . A ] $. hbl1.3 $e |- R : bool $. $( Inference form of ~ ax-hbl1 . $) hbl1 $p |- R |= [ ( \ x : al . \ x : be . A B ) = \ x : be . A ] $= ( kl kc ke kbr ax-hbl1 a1i ) ADBDEKZKFLQMNGJABCDEFHIOP $. $( [8-Oct-2014] $) $} ${ $d x A $. ax-17.1 $e |- A : be $. ax-17.2 $e |- B : al $. $( If ` x ` does not appear in ` A ` , then any substitution to ` A ` yields ` A ` again, i.e. ` \ x A ` is a constant function. $) ax-17 $a |- T. |= [ ( \ x : al . A B ) = A ] $. a17i.3 $e |- R : bool $. $( Inference form of ~ ax-17 . $) a17i $p |- R |= [ ( \ x : al . A B ) = A ] $= ( kl kc ke kbr ax-17 a1i ) ACDJEKDLMFIABCDEGHNO $. $( [8-Oct-2014] $) $} ${ $d x R $. hbxfr.1 $e |- T : be $. hbxfr.2 $e |- B : al $. ${ hbxfrf.3 $e |- R |= [ T = A ] $. hbxfrf.4 $e |- ( S , R ) |= [ ( \ x : al . A B ) = A ] $. $( Transfer a hypothesis builder to an equivalent expression. $) hbxfrf $p |- ( S , R ) |= [ ( \ x : al . T B ) = T ] $= ( kl kc kct eqtypi wl ke kbr adantl wc leq ceq1 ax-cb1 wctl 3eqtr4i ) B ACDMZENZDGFOZACHMZENZHABUGEABCDBHDFIKPQJUALFGUKUHRSABEUJFUGABCHIQJABCHD FIKUBUCGFUHDRSUILUDUEZTFGHDRSKULTUF $. $( [8-Oct-2014] $) $} hbxfr.3 $e |- R |= [ T = A ] $. hbxfr.4 $e |- R |= [ ( \ x : al . A B ) = A ] $. $( Transfer a hypothesis builder to an equivalent expression. $) hbxfr $p |- R |= [ ( \ x : al . T B ) = T ] $= ( kl kc ke kbr ax-cb1 id adantr hbxfrf syl2anc ) ACGLEMGNOFFFFGDNOFJPZQZU BABCDEFFGHIJFFACDLEMDNOKUARST $. $( [8-Oct-2014] $) $} ${ $d x R $. hbth.1 $e |- B : al $. hbth.2 $e |- R |= A $. $( Hypothesis builder for a theorem. $) hbth $p |- R |= [ ( \ x : al . A B ) = A ] $= ( hb kt ax-cb2 wtru eqtru eqcomi ax-cb1 a17i hbxfr ) AHBIDECCEGJFHICEKCEG LMAHBIDEKFCEGNOP $. $( [8-Oct-2014] $) $} ${ hbc.1 $e |- F : ( be -> ga ) $. hbc.2 $e |- A : be $. hbc.3 $e |- B : al $. hbc.4 $e |- R |= [ ( \ x : al . F B ) = F ] $. hbc.5 $e |- R |= [ ( \ x : al . A B ) = A ] $. $( Hypothesis builder for combination. $) hbc $p |- R |= [ ( \ x : al . ( F A ) B ) = ( F A ) ] $= ( kc kl wc wl ke kbr ax-cb1 distrc a1i ht eqtypri ceq12 eqtri ) CADGENZOZ FNZADGOZFNZADEOFNZNZUGHACUHFACDUGBCGEIJPQKPUIUMRSHUKGRSHLTABCDEFGIJKUAUBB CULEUKHGABCUCZUJFAUNDGIQKPBEULHJMUDLMUEUF $. $( [8-Oct-2014] $) $} ${ hbov.1 $e |- F : ( be -> ( ga -> de ) ) $. hbov.2 $e |- A : be $. hbov.3 $e |- B : al $. hbov.4 $e |- C : ga $. hbov.5 $e |- R |= [ ( \ x : al . F B ) = F ] $. hbov.6 $e |- R |= [ ( \ x : al . A B ) = A ] $. hbov.7 $e |- R |= [ ( \ x : al . C B ) = C ] $. $( Hypothesis builder for binary operation. $) hbov $p |- R |= [ ( \ x : al . [ A F C ] B ) = [ A F C ] ] $= ( kt kbr kc kl ke ax-cb1 trud wov weq ht wc df-ov dfov2 hbc adantr hbxfrf wtru mpdan ) JRAEFHISZUAGTUPUBSJAEIUAGTIUBSJOUCUDADEIFTZHTZGRJUPBCDFHIKLN UEZMDDUPURUBRDUFUSCDUQHBCDUGZIFKLUHZNUHBCDFHIKLNUIUJJRAEURUAGTURUBSACDEHG UQJVANMABUTEFGIJKLMOPUKQUKUNULUMUO $. $( [8-Oct-2014] $) $} ${ $d x y $. $d y B $. $d y R $. hbl.1 $e |- A : ga $. hbl.2 $e |- B : al $. hbl.3 $e |- R |= [ ( \ x : al . A B ) = A ] $. $( Hypothesis builder for lambda abstraction. $) hbl $p |- R |= [ ( \ x : al . \ y : be . A B ) = \ y : be . A ] $= ( ht kl kc wl wc ke kbr ax-cb1 distrl a1i leq eqtri ) BCLZADBEFMZMZGNZBEA DFMZGNZMZUEHAUDUFGAUDDUEBCEFIOOJPUGUJQRHUIFQRHKSABCDEFGIJTUABCEUIFHACUHGA CDFIOJPKUBUC $. $( [8-Oct-2014] $) $} ${ $d x y $. $d y B $. $d y S $. ax-inst.1 $e |- R |= A $. ax-inst.2 $e |- T. |= [ ( \ x : al . B y : al ) = B ] $. ax-inst.3 $e |- T. |= [ ( \ x : al . S y : al ) = S ] $. ax-inst.4 $e |- [ x : al = C ] |= [ A = B ] $. ax-inst.5 $e |- [ x : al = C ] |= [ R = S ] $. $( Instantiate a theorem with a new term. The second and third hypotheses are the HOL equivalent of set.mm "effectively not free in" predicate (see set.mm's ax-17, or ~ ax17 ). $) ax-inst $a |- S |= B $. $} ${ $d x y R $. $d y B $. insti.1 $e |- C : al $. insti.2 $e |- B : bool $. insti.3 $e |- R |= A $. insti.4 $e |- T. |= [ ( \ x : al . B y : al ) = B ] $. insti.5 $e |- [ x : al = C ] |= [ A = B ] $. $( Instantiate a theorem with a new term. $) insti $p |- R |= B $= ( hb tv ax-cb1 wv ax-17 ke kbr eqid ax-inst ) ABCDEFGGJKAMBGACNDGJOZACPQL MGABNFRSZDERSUCLOUBTUA $. $( [8-Oct-2014] $) $} ${ $d y A $. $d y B $. $d y C $. $d x y al $. clf.1 $e |- A : be $. clf.2 $e |- C : al $. clf.3 $e |- [ x : al = C ] |= [ A = B ] $. clf.4 $e |- T. |= [ ( \ x : al . B y : al ) = B ] $. clf.5 $e |- T. |= [ ( \ x : al . C y : al ) = C ] $. $( Evaluate a lambda expression. $) clf $p |- T. |= [ ( \ x : al . A C ) = B ] $= ( kl tv kc ke kbr kt wc hb wl eqtypi weqi ax-cb1 beta a1i wv ht a17i hbl1 weq hbc hbov id ceq2 oveq12 insti ) ACDACEMZACNZOZEPQZURGOZFPQGRIBVBFABUR GABCEHUAZISZBEFUSGPQZHJUBZUCVARACFMADNZOFPQRKUDZABCEHUEUFABBTCVBVGFPRBUKZ VDADUGZVFABBTUHUHCPVGRVIVJVHUIAABCGVGURRVCIVJAABCEVGRHVJVHUJLULKUMBBTUTEV BPVEFVIABURUSVCACUGZSHABUSGURVEVCVKVEAUSGVKIUCUNUOJUPUQ $. $( [8-Oct-2014] $) $} ${ $d y A $. $d x y B $. $d x y C $. $d x y al $. cl.1 $e |- A : be $. cl.2 $e |- C : al $. cl.3 $e |- [ x : al = C ] |= [ A = B ] $. $( Evaluate a lambda expression. $) cl $p |- T. |= [ ( \ x : al . A C ) = B ] $= ( vy tv ke kbr eqtypi wv ax-17 clf ) ABCJDEFGHIABCEAJKZBDEACKFLMGINAJOZPA ACFRHSPQ $. $( [8-Oct-2014] $) $} ${ $d x B $. $d y C $. $d x y S $. $d y T $. $d x al $. $d y be $. ovl.1 $e |- A : ga $. ovl.2 $e |- S : al $. ovl.3 $e |- T : be $. ovl.4 $e |- [ x : al = S ] |= [ A = B ] $. ovl.5 $e |- [ y : be = T ] |= [ B = C ] $. $( Evaluate a lambda expression in a binary operation. $) ovl $p |- T. |= [ [ S \ x : al . \ y : be . A T ] = C ] $= ( kl kbr kc kt ke ht wl wov weq wc wtru df-ov a1i dfov2 distrl ceq1 eqtri tv wv weqi cl ) CIJADBEFPZPZQZBEADFPZIRZPZJRZHSABCIJURABCUAZDUQBCEFKUBUBZ LMUCZCUSURIRZJRZVCSVFCCUSVHTSCUDVFBCVGJAVDURIVELUEZMUETUSRVHRSUFABCIJURVE LMUGUHUIBCJVGSVBVIMVGVBTQSUFABCDEFIKLUJUHUKULBCEVAHJACUTIACDFKUBLUEZMCVAG HBEUMZJTQZVJVAGTQVLBVKJBEUNMUOACDFGIKLNUPUHOULUPUL $. $( [8-Oct-2014] $) $} $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# Add propositional calculus definitions #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# $) $c F. $. $( Contradiction term $) $c /\ $. $( Conjunction term $) $c ~ $. $( Negation term $) $c ==> $. $( Implication term $) $c ! $. $( For all term $) $c ? $. $( There exists term $) $c \/ $. $( Disjunction term $) $c ?! $. $( There exists unique term $) $( Contradiction term. $) tfal $a term F. $. $( Conjunction term. $) tan $a term /\ $. $( Negation term. $) tne $a term ~ $. $( Implication term. $) tim $a term ==> $. $( For all term. $) tal $a term ! $. $( There exists term. $) tex $a term ? $. $( Disjunction term. $) tor $a term \/ $. $( There exists unique term. $) teu $a term ?! $. ${ $d f p q x y $. $( Define the for all operator. $) df-al $a |- T. |= [ ! = \ p : ( al -> bool ) . [ p : ( al -> bool ) = \ x : al . T. ] ] $. $( Define the constant false. $) df-fal $a |- T. |= [ F. = ( ! \ p : bool . p : bool ) ] $. $( Define the 'and' operator. $) df-an $a |- T. |= [ /\ = \ p : bool . \ q : bool . [ \ f : ( bool -> ( bool -> bool ) ) . [ p : bool f : ( bool -> ( bool -> bool ) ) q : bool ] = \ f : ( bool -> ( bool -> bool ) ) . [ T. f : ( bool -> ( bool -> bool ) ) T. ] ] ] $. $( Define the implication operator. $) df-im $a |- T. |= [ ==> = \ p : bool . \ q : bool . [ [ p : bool /\ q : bool ] = p : bool ] ] $. $( Define the negation operator. $) df-not $a |- T. |= [ ~ = \ p : bool . [ p : bool ==> F. ] ] $. $( Define the existence operator. $) df-ex $a |- T. |= [ ? = \ p : ( al -> bool ) . ( ! \ q : bool . [ ( ! \ x : al . [ ( p : ( al -> bool ) x : al ) ==> q : bool ] ) ==> q : bool ] ) ] $. $( Define the 'or' operator. $) df-or $a |- T. |= [ \/ = \ p : bool . \ q : bool . ( ! \ x : bool . [ [ p : bool ==> x : bool ] ==> [ [ q : bool ==> x : bool ] ==> x : bool ] ] ) ] $. $( Define the 'exists unique' operator. $) df-eu $a |- T. |= [ ?! = \ p : ( al -> bool ) . ( ? \ y : al . ( ! \ x : al . [ ( p : ( al -> bool ) x : al ) = [ x : al = y : al ] ] ) ) ] $. $} ${ $d f p q x y $. $( For all type. $) wal $p |- ! : ( ( al -> bool ) -> bool ) $= ( vp vx hb ht tv kt kl ke kbr tal wv wtru wl weqi df-al eqtypri ) ADEZDER BRBFZACGHZIJZHKGRDBUARSTRBLADCGMNONACBPQ $. $( [8-Oct-2014] $) $( Contradiction type. $) wfal $p |- F. : bool $= ( vp hb tal tv kl kc tfal kt ht wal wv wl wc df-fal eqtypri ) BCBABADZEZF GHBBIBCQBJBBAPBAKLMANO $. $( [8-Oct-2014] $) $( Conjunction type. $) wan $p |- /\ : ( bool -> ( bool -> bool ) ) $= ( vp vq vf hb ht tv kbr kl kt ke tan wv wov wl wtru weqi df-an eqtypri ) DDDEZEZDADBTCDAFZDBFZTCFZGZHZTCIIUCGZHZJGZHZHKIDSAUIDDBUHTDEUEUGTDCUDDDDU AUBUCTCLZDALDBLMNTDCUFDDDIIUCUJOOMNPNNCABQR $. $( [8-Oct-2014] $) $( Implication type. $) wim $p |- ==> : ( bool -> ( bool -> bool ) ) $= ( vp vq hb ht tv tan kbr ke kl tim kt wan wv wov weqi wl df-im eqtypri ) CCCDZDCACBCAEZCBEZFGZTHGZIZIJKCSAUDCCBUCCUBTCCCTUAFLCAMZCBMNUEOPPABQR $. $( [8-Oct-2014] $) $( Negation type. $) wnot $p |- ~ : ( bool -> bool ) $= ( vp hb ht tv tfal tim kbr kl tne kt wim wv wfal wov wl df-not eqtypri ) BBCBABADZEFGZHIJBBASBBBREFKBALMNOAPQ $. $( [8-Oct-2014] $) $( There exists type. $) wex $p |- ? : ( ( al -> bool ) -> bool ) $= ( vp vq vx hb ht tal tv kc tim kbr kl tex kt wal wim wv wc wov wl eqtypri df-ex ) AEFZEFUCBGECGADUCBHZADHZIZECHZJKZLZIZUGJKZLZIZLMNUCEBUMEEFEGULEOE ECUKEEEUJUGJPUCEGUIAOAEDUHEEEUFUGJPAEUDUEUCBQADQRECQZSTRUNSTRTADBCUBUA $. $( [8-Oct-2014] $) $( Disjunction type. $) wor $p |- \/ : ( bool -> ( bool -> bool ) ) $= ( vp vq vx hb ht tal tv tim kbr kl kc tor kt wal wim wv wov wl wc df-or eqtypri ) DDDEZEDADBFDCDAGZDCGZHIZDBGZUDHIZUDHIZHIZJZKZJZJLMDUBAULDDBUKUB DFUJDNDDCUIDDDUEUHHODDDUCUDHODAPDCPZQDDDUGUDHODDDUFUDHODBPUMQUMQQRSRRCABT UA $. $( [8-Oct-2014] $) $( There exists unique type. $) weu $p |- ?! : ( ( al -> bool ) -> bool ) $= ( vp vy vx hb ht tex tal tv kc ke kbr kl teu kt wex wv wc weqi wl eqtypri wal df-eu ) AEFZEFUDBGACHADUDBIZADIZJZUFACIZKLZKLZMZJZMZJZMNOUDEBUNUDEGUM APAECULUDEHUKAUBAEDUJEUGUIAEUEUFUDBQADQZRAUFUHUOACQSSTRTRTADCBUCUA $. $( [8-Oct-2014] $) $} ${ $d p q x y al $. $d p q y F $. alval.1 $e |- F : ( al -> bool ) $. $( Value of the for all predicate. $) alval $p |- T. |= [ ( ! F ) = [ F = \ x : al . T. ] ] $= ( vp hb tal kc ht tv kt kl ke kbr wal wc df-al ceq1 wv weqi wtru wl oveq1 weq id cl eqtri ) FGCHAFIZEUHEJZABKLZMNZLZCHCUJMNZKUHFGCAOZDPUHFCGKULUNDA BEQRUHFEUKUMCUHUIUJUHESZAFBKUAUBZTDUHUHFUIUJCMUICMNZUHUDUOUPUQUHUICUODTUE UCUFUG $. $( [8-Oct-2014] $) $d x F $. $( Value of the 'there exists' predicate. $) exval $p |- T. |= [ ( ? F ) = ( ! \ q : bool . [ ( ! \ x : al . [ ( F x : al ) ==> q : bool ] ) ==> q : bool ] ) ] $= ( vp hb tex kc ht tal tv tim kbr kl kt wc ceq1 wim wv wex df-ex wal wl ke wov weqi id oveq1 leq ceq2 cl eqtri ) GHDIAGJZFKGCKABUNFLZABLZIZGCLZMNZOZ IZURMNZOZIZOZDIKGCKABDUPIZURMNZOZIZURMNZOZIZPUNGHDAUAZEQUNGDHPVEVMEABFCUB RUNGFVDVLDGGJZGKVCGUCZGGCVBGGGVAURMSUNGKUTAUCZAGBUSGGGUQURMSAGUOUPUNFTZAB TZQZGCTZUFZUDZQZVTUFZUDZQEVNGVCVKKUODUENZVOWEGGCVBVJWFWDGGGVAURVIMWFSWCVT UNGUTVHKWFVPWBAGBUSVGWFWAGGGUQURVFMWFSVSVTAGUPUOWFDVQVRWFUNUODVQEUGUHRUIU JUKUIUJUKULUM $. $( [8-Oct-2014] $) $( Value of the 'exists unique' predicate. $) euval $p |- T. |= [ ( ?! F ) = ( ? \ y : al . ( ! \ x : al . [ ( F x : al ) = [ x : al = y : al ] ] ) ) ] $= ( vp hb teu kc tex tal tv ke kbr kl kt wc ceq1 wv weqi ht weu wex wal weq df-eu wl id oveq1 leq ceq2 cl eqtri ) GHDIAGUAZFJACKABUNFLZABLZIZUPACLZMN ZMNZOZIZOZIZOZDIJACKABDUPIZUSMNZOZIZOZIZPUNGHDAUBZEQUNGDHPVEVLEABCFUFRUNG FVDVKDUNGJVCAUCZAGCVBUNGKVAAUDZAGBUTGUQUSAGUOUPUNFSZABSZQZAUPURVPACSTZTZU GZQZUGZQEUNGVCVJJUODMNZVMWBAGCVBVIWCWAUNGVAVHKWCVNVTAGBUTVGWCVSGGGUQUSVFM WCGUEVQVRAGUPUOWCDVOVPWCUNUODVOETUHRUIUJUKUJUKULUM $. $( [8-Oct-2014] $) $} ${ $d f p q x A $. $d f q x B $. imval.1 $e |- A : bool $. $( Value of negation. $) notval $p |- T. |= [ ( ~ A ) = [ A ==> F. ] ] $= ( vp hb tne kc tv tfal tim kbr kl kt wnot wc df-not ceq1 wim wv wfal wov ke weqi id oveq1 cl eqtri ) DEAFDCDCGZHIJZKZAFAHIJZLDDEAMBNDDAELUIMBCOPDD CUHUJADDDUGHIQDCRZSTBDDDUGHAIUGAUAJZQUKSULDUGAUKBUBUCUDUEUF $. $( [8-Oct-2014] $) imval.2 $e |- B : bool $. $( Value of the implication. $) imval $p |- T. |= [ [ A ==> B ] = [ [ A /\ B ] = A ] ] $= ( vp vq hb tim kbr tv tan ke kl kt wim wov wan wv weqi id df-im weq oveq1 oveq oveq12 oveq2 ovl eqtri ) GABHIABGEGFGEJZGFJZKIZUILIZMMZIABKIZALIZNGG GABHOCDPGGGABHNUMOCDEFUAUDGGGEFULAUJKIZALIUOABGUKUIGGGUIUJKQGERZGFRZPZUQS CDGGGUKUIUPLUIALIZAGUBZUSUQGGGUIUJAKUTQUQURUTGUIAUQCSTZUCVBUEGGGUPAUNLUJB LIZVAGGGAUJKQCURPCGGGAUJKVCBQCURVCGUJBURDSTUFUCUGUH $. $( [9-Oct-2014] $) $( Value of the disjunction. $) orval $p |- T. |= [ [ A \/ B ] = ( ! \ x : bool . [ [ A ==> x : bool ] ==> [ [ B ==> x : bool ] ==> x : bool ] ] ) ] $= ( vp vq hb tor kbr tal tv tim kl kc kt wov wim wv oveq1 wor df-or oveq ht wal wl wc ke weqi id leq ceq2 oveq2 ovl eqtri ) HBCIJBCHFHGKHAHFLZHALZMJZ HGLZUQMJZUQMJZMJZNZOZNNZJKHABUQMJZCUQMJZUQMJZMJZNZOZPHHHBCIUADEQHHHBCIPVE UADEAFGUBUCHHHFGVDKHAVFVAMJZNZOVKBCHHUDZHKVCHUEZHHAVBHHHURVAMRHHHUPUQMRHF SZHASZQZHHHUTUQMRHHHUSUQMRHGSZVQQZVQQZQZUFZUGDEVNHVCVMKUPBUHJZVOWCHHAVBVL WDWBHHHURVAVFMWDRVRWAHHHUPUQBMWDRVPVQWDHUPBVPDUIUJTTUKULVNHVMVJKUSCUHJZVO HHAVLHHHVFVAMRHHHBUQMRDVQQZWAQZUFHHAVLVIWEWGHHHVFVAMWEVHRWFWAHHHUTUQVGMWE RVTVQHHHUSUQCMWERVSVQWEHUSCVSEUIUJTTUMUKULUNUO $. $( [9-Oct-2014] $) $( Value of the conjunction. $) anval $p |- T. |= [ [ A /\ B ] = [ \ f : ( bool -> ( bool -> bool ) ) . [ A f : ( bool -> ( bool -> bool ) ) B ] = \ f : ( bool -> ( bool -> bool ) ) . [ T. f : ( bool -> ( bool -> bool ) ) T. ] ] ] $= ( vp vq hb tan kbr ht tv kl kt ke wov wv wl weqi oveq1 wan df-an oveq weq wtru id leq oveq2 ovl eqtri ) HBCIJBCHFHGHHHKKZAHFLZHGLZUKALZJZMZUKANNUNJ ZMZOJZMMZJUKABCUNJZMZUROJZNHHHBCIUADEPHHHBCINUTUADEAFGUBUCHHHFGUSUKABUMUN JZMZUROJVCBCUKHKZUPURUKHAUOHHHULUMUNUKAQZHFQZHGQZPZRZUKHAUQHHHNNUNVGUEUEP RZSDEVFVFHUPURVEOULBOJZVFUDZVKVLUKHAUOVDVMVJHHHULUMBUNVMVGVHVIVMHULBVHDSU FTUGTVFVFHVEURVBOUMCOJZVNUKHAVDHHHBUMUNVGDVIPZRVLUKHAVDVAVOVPHHHBUMUNVOCV GDVIVOHUMCVIESUFUHUGTUIUJ $. $( [9-Oct-2014] $) $} ${ $d p F $. $d p al $. ax4g.1 $e |- F : ( al -> bool ) $. ax4g.2 $e |- A : al $. $( If ` F ` is true for all ` x : al ` , then it is true for ` A ` . $) ax4g $p |- ( ! F ) |= ( F A ) $= ( vp kt kc tal hb ht wal wc trud kl ke kbr ax-cb1 id alval mpbi ceq1 hbth a1i eqtri mpbir ) GCBHZICHZUHAJKJICALDMNZJUGAFGOZBHGUHAJCBDEMAJBCUHUJDEUH CUJPQZUHUHGUHUIRZSUHUKPQUHULAFCDTUDUAUBAFGBUHEUIUCUEUF $. $( [9-Oct-2014] $) $} ${ ax4.1 $e |- A : bool $. $( If ` A ` is true for all ` x : al ` , then it is true for ` A ` . $) ax4 $p |- ( ! \ x : al . A ) |= A $= ( kl tv kc tal hb wl wv ax4g ke kbr ax-cb1 beta a1i mpbi ) ABCEZABFZGZCHS GZATSAIBCDJABKLZUACMNUBUAUBUCOAIBCDPQR $. $( [9-Oct-2014] $) $} ${ $d x R $. $d x al $. alrimiv.1 $e |- R |= A $. $( If one can prove ` R |= A ` where ` R ` does not contain ` x ` , then ` A ` is true for all ` x ` . $) alrimiv $p |- R |= ( ! \ x : al . A ) $= ( kl kt ke kbr tal kc hb ax-cb2 wtru eqtru eqcomi leq ax-cb1 wl alval a1i mpbir ) ABCFZABGFHIZJUCKZDALBCGDCDEMZLGCDNCDEOPQUEUDHIDCDERABUCALBCUFSTUA UB $. $( [9-Oct-2014] $) $} ${ $d x B $. $d x C $. $d x al $. cla4v.1 $e |- A : bool $. cla4v.2 $e |- B : al $. cla4v.3 $e |- [ x : al = B ] |= [ A = C ] $. $( If ` A ( x ) ` is true for all ` x : al ` , then it is true for ` C = A ( B ) ` . $) cla4v $p |- ( ! \ x : al . A ) |= C $= ( kl kc tal hb wl ax4g ke kbr ax-cb1 cl a1i mpbi ) ABCIZDJZEKUAJZADUAALBC FMGNZUBEOPUCUBUCUDQALBCEDFGHRST $. $( [9-Oct-2014] $) $} ${ $d p A $. pm2.21.1 $e |- A : bool $. $( A falsehood implies anything. $) pm2.21 $p |- F. |= A $= ( vp tfal tal hb tv kl kc wfal id ke kbr df-fal a1i mpbi weqi cla4v syl wv ) DEFCFCGZHIZADUBDDJKDUBLMDJCNOPFCUAAAFCTZBUAALMFUAAUCBQKRS $. $( [9-Oct-2014] $) $} ${ $d f x y A $. $d f x y B $. dfan2.1 $e |- A : bool $. dfan2.2 $e |- B : bool $. $( An alternative defintion of the "and" term in terms of the context conjunction. $) dfan2 $p |- T. |= [ [ A /\ B ] = ( A , B ) ] $= ( vf vx vy kbr kt hb kl kc wl ke id a1i weqi oveq eqid wtru tan kct ht tv wan wov trud wv wc anval mpbi ceq1 ovl eqtri cl 3eqtr3i mpbir simpl eqtru jca simpr oveq12 eqcomi leq ax-cb1 dedi ) ABUAHZABUBZVGABIAVGVGJJJABUAUEC DUFZUGZJJJJUCZUCZEABVLEUDZHZKZJFJGJFUDZKZKZLZVLEIIVMHZKZVRLZVGAIVLJVOVRVL JEVNJJJABVMVLEUHZCDUFZMZJVKFVQJJGVPJFUHZMMZUIVLJVRVOVGWAWEWGVGVOWANHZVGVG VIOVGWHNHZVGVIEABCDUJZPUKZULVSANHVGVIVLJEVNAVRWDWGJVNABVRHZAVMVRNHZWDJJJA BVMWMVRWCCDWMVLVMVRWCWGQZOZRWLANHWMWNJJJFGVPAAABWFCDVPANHZJVPAWFCQZOJAJGU DZBNHZJWRBJGUHZDQZCSUMPUNUOPWBINHVGVIVLJEVTIVRJJJIIVMWCTTUFZWGJVTIIVRHZIW MXBJJJIIVMWMVRWCTTWORXCINHWMWNJJJFGVPIIIIWFTTVPINHZJVPIWFTQZOJIWRINHZJWRI WTTQZTSUMPUNUOPUPUQIBVGVJJVOJFJGWRKZKZLZWAXILZVGBIVLJVOXIWEJVKFXHJJGWRWTM MZUIZVLJXIVOVGWAWEXLWKULXJBNHVGVIJXJABXIHZBIXMVLJEVNXNXIWDXLJJJABVMVMXINH ZXIWCCDXOVLVMXIWCXLQZOZRUOXNBNHITJJJFGWRWRBABWTCDJWRWPWQWTSWSXAOUMPUNPXKI NHVGVIVLJEVTIXIXBXLJVTIIXIHZIXOXBJJJIIVMXOXIWCTTXQRXRINHXOXPJJJFGWRWRIIIW TTTJWRXDXEWTSXFXGOUMPUNUOPUPUQUTWHVGVHVLJEVNVTVHWDJVTVNVHXBJJJIIAVMVHBWCT TAVHABCDURZUSBVHABCDVAUSVBVCVDWIVHAVHXSVEWJPUQVF $. $( [9-Oct-2014] $) $} ${ hbct.1 $e |- A : bool $. hbct.2 $e |- B : al $. hbct.3 $e |- C : bool $. hbct.4 $e |- R |= [ ( \ x : al . A B ) = A ] $. hbct.5 $e |- R |= [ ( \ x : al . C B ) = C ] $. $( Hypothesis builder for context conjunction. $) hbct $p |- R |= [ ( \ x : al . ( A , C ) B ) = ( A , C ) ] $= ( kt kl kc ke kbr hb tan wan ht kct ax-cb1 trud wct wov dfan2 eqcomi a17i hbov wtru adantr hbxfrf mpdan ) FLABCEUAZMDNUNOPFABCMDNCOPFJUBZUCAQBCERPZ DLFUNCEGIUDHQUPUNLQQQCERSGIUECEGIUFUGFLABUPMDNUPOPAQQQBCDERFSGHIAQQQTTBRD FSHUOUHJKUIUJUKULUM $. $( [8-Oct-2014] $) $} ${ mp.1 $e |- T : bool $. mp.2 $e |- R |= S $. mp.3 $e |- R |= [ S ==> T ] $. $( Modus ponens. $) mpd $p |- R |= T $= ( tan kbr kct tim ke ax-cb1 ax-cb2 imval a1i mpbi mpbir dfan2 simprd ) AB CBCGHZBCIZABTAEBCJHZTBKHZAFUBUCKHABAELZBCBAEMZDNOPQTUAKHAUDBCUEDROPS $. $( [9-Oct-2014] $) $} ${ imp.1 $e |- S : bool $. imp.2 $e |- T : bool $. imp.3 $e |- R |= [ S ==> T ] $. $( Importation deduction. $) imp $p |- ( R , S ) |= T $= ( kct tim kbr ax-cb1 simpr adantr mpd ) ABGBCEABBCHIZAFJDKABNFDLM $. $( [9-Oct-2014] $) $} ${ ex.1 $e |- ( R , S ) |= T $. $( Exportation deduction. $) ex $p |- R |= [ S ==> T ] $= ( tan kbr ke tim kct wan ax-cb1 wctr ax-cb2 wov wctl dfan2 a1i wct simpr hb simpld jca ded eqtri imval mpbir ) BCEFZBGFZBCHFZATUGBCIZBATTTBCEJABCA BIZDKZLZCUKDMZNUGUJGFAABULOZBCUMUNPQAUJBAUJIBCAUJUOBCUMUNRSUAUKBCABUOUMSD UBUCUDZUIUHGFAUHAUPKBCUMUNUEQUF $. $( [9-Oct-2014] $) $} ${ notval2.1 $e |- A : bool $. $( Another way two write ` ~ A ` , the negation of ` A ` . $) notval2 $p |- T. |= [ ( ~ A ) = [ A = F. ] ] $= ( hb tne kc tfal tim kbr ke kt wnot wc notval kct wim wov simpr simpl mpd wfal pm2.21 adantl ded ax-cb2 mpbi ex dedi eqtri ) CDAEAFGHZAFIHZJCCDAKBL ABMUIUJUIAFUIANAFTUIACCCAFGOBTPZBQUIAUKBRSFUIAABUAUKUBUCZUJAFAFUJANUJAUJU IULUDZBQUJAUMBRUEUFUGUH $. $( [9-Oct-2014] $) $( One side of ~ notnot . $) notnot1 $p |- A |= ( ~ ( ~ A ) ) $= ( tne kc tfal tim kbr kct wfal hb wnot simpl simpr ax-cb1 notval a1i mpbi wc ke mpd ex mpbir ) CADZEFGZCUCDZAAUCEAUCHZAEIAUCBJJCAKBRZLZUCAEFGZUFAUCB UGMUCUISGUFAUFUHNABOPQTUAUEUDSGABUCUGOPUB $. $( [10-Oct-2014] $) $} ${ con2d.1 $e |- T : bool $. con2d.2 $e |- ( R , S ) |= ( ~ T ) $. $( A contraposition deduction. $) con2d $p |- ( R , T ) |= ( ~ S ) $= ( tfal tim kbr tne kc kct wfal ke ax-cb1 notval a1i mpbi imp an32s ex wct wctl wctr mpbir ) BFGHZIBJZACKZUGBFFABCABKZCFDLICJZCFGHZUHEUIUJMHUHUIUHEN ZCDOPQRSTUFUEMHUGACABUKUBDUABABUKUCOPUD $. $( [10-Oct-2014] $) $} ${ con3d.1 $e |- ( R , S ) |= T $. $( A contraposition deduction. $) con3d $p |- ( R , ( ~ T ) ) |= ( ~ S ) $= ( tne kc hb wnot kct ax-cb2 wc notnot1 syl con2d ) ABECFZGGECHCABIZDJZKPC EOFDCQLMN $. $( [10-Oct-2014] $) $} ${ $d x A $. $d x B $. $d x T $. ecase.1 $e |- A : bool $. ecase.2 $e |- B : bool $. ecase.3 $e |- T : bool $. ecase.4 $e |- R |= [ A \/ B ] $. ecase.5 $e |- ( R , A ) |= T $. ecase.6 $e |- ( R , B ) |= T $. $( Elimination by cases. $) ecase $p |- R |= T $= ( vx tim kbr ex hb wim wov ke oveq2 oveq12 tal tv kl tor ax-cb1 orval a1i kc mpbi wv weqi id cla4v syl mpd ) CBDLMZDGCBDJNCADLMZUPDLMZOOOUPDLPOOOBD LPFGQGQCADINCUAOKAOKUBZLMZBUSLMZUSLMZLMZUCUHZUQURLMZABUDMZVDCHVFVDRMCVFCH UEKABEFUFUGUIOKVCDVEOOOUTVBLPOOOAUSLPEOKUJZQZOOOVAUSLPOOOBUSLPFVGQZVGQZQG OOOUTVBUQLUSDRMZURPVHVJOOOAUSLVKDPEVGVKOUSDVGGUKULZSOOOVAUSUPLVKDPVIVGOOO BUSLVKDPFVGVLSVLTTUMUNUOUO $. $( [9-Oct-2014] $) $} ${ $d x A $. $d x B $. olc.1 $e |- A : bool $. olc.2 $e |- B : bool $. $( Or introduction. $) olc $p |- B |= [ A \/ B ] $= ( vx hb tv tim kbr kl kt ke tor wim wv wov wtru kct simpl ex simpr adantr mpd eqtru eqcomi leq tal kc wor orval wl alval eqtri a1i mpbir ) FEAFEGZH IZBUPHIZUPHIZHIZJZFEKJLIZABMIZBFFEUTKBFFFUQUSHNFFFAUPHNCFEOZPZFFFURUPHNFF FBUPHNDVDPZVDPPZFKUTBQUTBBUQUSBUQUSBURUPBURRBUPVDBURDVFSBURDVFUAUCTVEUBTU DUEUFVCVBLIBDFVCUGVAUHVBKFFFABMUICDPEABCDUJFEVAFFEUTVGUKULUMUNUO $. $( [9-Oct-2014] $) $( Or introduction. $) orc $p |- A |= [ A \/ B ] $= ( vx hb tv tim kbr kl kt ke tor wim wv wov wtru kct simpl ex simpr adantr mpd eqtru eqcomi leq tal kc wor orval wl alval eqtri a1i mpbir ) FEAFEGZHI ZBUPHIZUPHIZHIZJZFEKJLIZABMIZAFFEUTKAFFFUQUSHNFFFAUPHNCFEOZPZFFFURUPHNFFF BUPHNDVDPZVDPPZFKUTAQUTAAUQUSAUQRZURUPVHURUPVHAUPVDAUQCVESAUQCVEUAUCVFUBT TUDUEUFVCVBLIACFVCUGVAUHVBKFFFABMUICDPEABCDUJFEVAFFEUTVGUKULUMUNUO $. $( [9-Oct-2014] $) $} ${ $d p x F $. $d x R $. $d p x T $. $d p x al $. exlimdv2.1 $e |- F : ( al -> bool ) $. exlimdv2.2 $e |- ( R , ( F x : al ) ) |= T $. $( Existential elimination. $) exlimdv2 $p |- ( R , ( ? F ) ) |= T $= ( vp tex kc kct tal tv tim kbr kl hb wc ke wim ax-cb2 ex ht adantr ax-cb1 alrimiv wex wctl simpr wct exval a1i mpbi wal wv wov wl weqi id oveq2 leq ceq2 oveq12 cla4v syl mpd ) DICJZKZLABCABMZJZENOZPZJZEEDVJKZGUAZDVGVMABVKD DVJEGUBUFAQUCZQICAUGFRZUDVHLQHLABVJQHMZNOZPZJZVRNOZPJZVMENOZVGWCVHDVGDVJE VNGUEUHZVQUIVGWCSOVHDVGWEVQUJABHCFUKULUMQHWBEWDQQQWAVRNTVPQLVTAUNZAQBVSQQ QVJVRNTAQCVIFABUORZQHUOZUPZUQZRZWHUPVOQQQWAVRVMNVRESOZETWKWHVPQVTVLLWLWFW JAQBVSVKWLWIQQQVJVRNWLETWGWHWLQVREWHVOURUSZUTVAVBWMVCVDVEVF $. $( [9-Oct-2014] $) $} ${ $d y z A $. $d x y z R $. $d x y z T $. $d x y z al $. exlimdv.1 $e |- ( R , A ) |= T $. $( Existential elimination. $) exlimdv $p |- ( R , ( ? \ x : al . A ) ) |= T $= ( vy vz hb tv kc wv wc tim kbr wim kt ht ax-17 ke kl kct ax-cb1 wl ax-cb2 wctr wov ex ax-hbl1 hbc hbov weqi beta eqcomi a1i id ceq2 eqtri oveq1 imp insti exlimdv2 ) AGABCUAZDEAIBCDCEDCUBZFUCUFZUDZDVCAGJZKZEAIVCVGVFAGLZMZE VDFUEZABHCENOVHENOVGDVIIIIVHENPVJVKUGDCEFUHAIIIBVHAHJZENQPVJAHLZVKAIIIRRB NVLPVMSAAIBVGVLVCQVFVIVMAAIBCVLVEVMUIAABVGVLVIVMSUJAIBEVLVKVMSUKIIICEVHNA BJZVGTOZPVEVKICVCVNKZVHVOVECVPTOVOAVNVGABLZVIULZIVPCQAIVCVNVFVQMAIBCVEUMU NUOAIVNVGVCVOVFVQVOVRUPUQURUSVAUTVB $. $( [9-Oct-2014] $) $} ${ $d p x A $. $d p x F $. $d p x al $. ax4e.1 $e |- F : ( al -> bool ) $. ax4e.2 $e |- A : al $. $( Existential introduction. $) ax4e $p |- ( F A ) |= ( ? F ) $= ( vp vx tal hb tv kc tim kbr kl tex kct wv wc wim ke ht wal wl simpl weqi wov id ceq2 oveq1 cla4v adantl mpd ex alrimiv exval a1i mpbir ) HIFHAGCAG JZKZIFJZLMZNZKZUTLMZNKZOCKZCBKZIFVDVGVGVCUTVGVCPVGUTIFQZVGVCAICBDERZAIUAI HVBAUBAIGVAIIIUSUTLSAICURDAGQZRZVHUFZUCRUDVCVGVGUTLMZAGVABVMVLEIIIUSUTVGL URBTMZSVKVHAIURBCVNDVJVNAURBVJEUEUGUHUIUJVIUKULUMUNVFVETMVGVIAGFCDUOUPUQ $. $( [9-Oct-2014] $) $} ${ $d x B $. $d x C $. $d x al $. cla4ev.1 $e |- A : bool $. cla4ev.2 $e |- B : al $. cla4ev.3 $e |- [ x : al = B ] |= [ A = C ] $. $( Existential introduction. $) cla4ev $p |- C |= ( ? \ x : al . A ) $= ( kl kc tex hb tv ke kbr eqtypi id cl a1i mpbir wl ax4e syl ) EABCIZDJZKU DJEUEEELCEABMDNOFHPZQUEENOEUFALBCEDFGHRSTADUDALBCFUAGUBUC $. $( [9-Oct-2014] $) $} ${ 19.8a.1 $e |- A : bool $. $( Existential introduction. $) 19.8a $p |- A |= ( ? \ x : al . A ) $= ( kl tv kc tex ax-id ke kbr hb beta a1i mpbir wl wv ax4e syl ) CABCEZABFZ GZHTGCUBCCDIUBCJKCDALBCDMNOAUATALBCDPABQRS $. $( [9-Oct-2014] $) $} $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# Type definition mechanism #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# $) $c typedef $. $( Internal axiom for mmj2 use. $) wffMMJ2d $a wff typedef al ( A , B ) C $. ${ $d x A $. $d x R $. $d x F $. ax-tdef.1 $e |- B : al $. ax-tdef.2 $e |- F : ( al -> bool ) $. ax-tdef.3 $e |- T. |= ( F B ) $. ax-tdef.4 $e |- typedef be ( A , R ) F $. $( Type of the abstraction function. $) wabs $a |- A : ( al -> be ) $. $( Type of the representation function. $) wrep $a |- R : ( be -> al ) $. $( The type definition axiom. The last hypothesis corresponds to the actual definition one wants to make; here we are defining a new type ` be ` and the definition will provide us with pair of bijections ` A , R ` mapping the new type ` be ` to the subset of the old type ` al ` such that ` F x ` is true. In order for this to be a valid (conservative) extension, we must ensure that the new type is non-empty, and for that purpose we need a witness ` B ` that ` F ` is not always false. $) ax-tdef $a |- T. |= ( ( ! \ x : be . [ ( A ( R x : be ) ) = x : be ] ) , ( ! \ x : al . [ ( F x : al ) = [ ( R ( A x : al ) ) = x : al ] ] ) ) $. $} $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# Extensionality #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# $) ${ $d f x $. $( The eta-axiom: a function is determined by its values. $) ax-eta $a |- T. |= ( ! \ f : ( al -> be ) . [ \ x : al . ( f : ( al -> be ) x : al ) = f : ( al -> be ) ] ) $. $} ${ $d f x F $. $d f x al $. $d f x be $. eta.1 $e |- F : ( al -> be ) $. $( The eta-axiom: a function is determined by its values. $) eta $p |- T. |= [ \ x : al . ( F x : al ) = F ] $= ( vf kt tal ht tv kc kl ke kbr ax-eta hb weq wv wc wl weqi id ceq1 oveq12 wov leq cla4v syl ) GHABIZFACUIFJZACJZKZLZUJMNZLKACDUKKZLZDMNZABCFOUIFUND UQUIUIPUMUJMUIQZABCULABUJUKUIFRZACRZSZTZUSUEEUIUIPUMUJUPMUJDMNZDURVBUSABC ULUOVCVAABUKUJVCDUSUTVCUIUJDUSEUAUBZUCUFVDUDUGUH $. $( [8-Oct-2014] $) $} ${ $d p z A $. $d p z B $. $d p x y z al $. $d p be $. cbvf.1 $e |- A : be $. cbvf.2 $e |- T. |= [ ( \ y : al . A z : al ) = A ] $. cbvf.3 $e |- T. |= [ ( \ x : al . B z : al ) = B ] $. cbvf.4 $e |- [ x : al = y : al ] |= [ A = B ] $. $( Change bound variables in a lambda abstraction. $) cbvf $p |- T. |= [ \ x : al . A = \ y : al . B ] $= ( vp ht kl tv kc kt wc ke kbr wl eqtypi weqi ax-17 clf weq hbl hbc ax-cb1 wv hb hbl1 hbov ceq2 beta eqcomi a1i eqtri oveq12 insti leq eta 3eqtr3i id ) ABMALACFNZALOZPZNALADGNZVFPZNQVEVHABLVGABVEVFABCFHUAZALUJZRZUAABLVGV IQVLADEVEADOZPZGSTVGVISTVFQVKBVGVIVLABVHVFABDGBFGACOVMSTHKUBZUAZVKRZUCABC EFGVMHADUJZKJAACVMAEOZVRAEUJZUDUEABBUKDVGVSVISQBUFZVLVTVQABBUKMMDSVSWAVTU DAABDVFVSVEQVJVKVTAABDCFVSQHVTIUGAADVFVSVKVTUDZUHAABDVFVSVHQVPVKVTAABDGVS QVOVTADFNVSPFSTQIUIULWBUHUMBBUKVNGVGSVMVFSTZVIWAABVEVMVJVRRVOABVMVFVEWCVJ VRWCAVMVFVRVKUCVDZUNZBGVHVMPZVIWCVOGWFSTWCVNVGSTWCWEUIBWFGQABVHVMVPVRRABD GVOUOUPUQABVMVFVHWCVPVRWDUNURUSUTVAABLVEVJVBABLVHVPVBVC $. $( [8-Oct-2014] $) $} ${ $d y z A $. $d x z B $. $d x y z al $. $d y be $. cbv.1 $e |- A : be $. cbv.2 $e |- [ x : al = y : al ] |= [ A = B ] $. $( Change bound variables in a lambda abstraction. $) cbv $p |- T. |= [ \ x : al . A = \ y : al . B ] $= ( vz tv wv ax-17 ke kbr eqtypi cbvf ) ABCDIEFGABDEAIJZGAIKZLABCFQBEFACJAD JMNGHORLHP $. $( [8-Oct-2014] $) $} ${ $d y z A $. $d y z B $. $d y z R $. $d x y z al $. $d z be $. leqf.1 $e |- A : be $. leqf.2 $e |- R |= [ A = B ] $. leqf.3 $e |- T. |= [ ( \ x : al . R y : al ) = R ] $. $( Equality theorem for lambda abstraction, using bound variable instead of distinct variables. $) leqf $p |- R |= [ \ x : al . A = \ x : al . B ] $= ( vz ht kl tv kc wc ke kbr a1i hb wl wv ax-cb1 beta eqtypi 3eqtr4i kt weq ax-17 ax-hbl1 hbc hbov weqi id ceq2 oveq12 eqid ax-inst leq eta 3eqtr3i ) ABLAKACEMZAKNZOZMZAKACFMZVCOZMZGVBVFABKVDABVBVCABCEHUAZAKUBZPZUAABKVDVGGV KACDVBACNZOZVFVLOZQRVDVGQRVCGGBEFGVMVNHIVMEQRGEFQRGIUCZABCEHUDSVNFQRGVOAB CFBEFGHIUEZUDSUFABBTCVDADNZVGQUGBUHZVKADUBZABVFVCABCFVPUAZVJPABBTLLCQVQVR VSUIAABCVCVQVBUGVIVJVSAABCEVQHVSUJAACVCVQVJVSUIZUKAABCVCVQVFUGVTVJVSAABCF VQVPVSUJWAUKULJBBTVMVNVDQVLVCQRZVGVRABVBVLVIACUBZPABVFVLVTWCPABVLVCVBWBVI WCWBAVLVCWCVJUMZUNZUOABVLVCVFWBVTWCWEUOUPTGWBWDVOUQURUSVEVBQRGVOABKVBVIUT SVHVFQRGVOABKVFVTUTSVA $. $( [8-Oct-2014] $) $} ${ $d y A $. $d y R $. $d x y al $. alrimi.1 $e |- R |= A $. alrimi.2 $e |- T. |= [ ( \ x : al . R y : al ) = R ] $. $( If one can prove ` R |= A ` where ` R ` does not contain ` x ` , then ` A ` is true for all ` x ` . $) alrimi $p |- R |= ( ! \ x : al . A ) $= ( kl kt ke kbr tal kc hb ax-cb2 wtru eqtru eqcomi leqf ax-cb1 alval mpbir wl a1i ) ABDHZABIHJKZLUEMZEANBCDIEDEFOZNIDEPDEFQRGSUGUFJKEDEFTABUEANBDUHU CUAUDUB $. $( [9-Oct-2014] $) $} ${ $d y z A $. $d y z R $. $d y z T $. $d x y z al $. exlimd.1 $e |- ( R , A ) |= T $. exlimd.2 $e |- T. |= [ ( \ x : al . R y : al ) = R ] $. exlimd.3 $e |- T. |= [ ( \ x : al . T y : al ) = T ] $. $( Existential elimination. $) exlimd $p |- ( R , ( ? \ x : al . A ) ) |= T $= ( vz kl kc tal tv tim kbr hb wim wov kt tex ax-cb2 ax-cb1 wctr wl wv wctl kct wc id ex wtru adantl ax-17 ax-hbl1 hbc hbov weqi beta eqcomi a1i ceq2 ht ke eqtri oveq1 oveq2 insti mpd alrimiv wex adantr simpr exval mpbi wal leq oveq12 cla4v syl ) EUAABDKZLZUHZMAJWAAJNZLZFOPZKZLZFFEDUHZGUBZEWBWHAJ WFEEEWFQQQWEFORAQWAWDAQBDEDFWIGUCZUDZUEZAJUFZUIZWJSZEEDWKUGZUJEWFOPZEWQAB CEDFOPZOPWRWDTWNQQQEWFORWQWPSTEWSETWSEDFGUKULUMUKAQQQBEACNZWFOTRWQACUFZWP AQQQVCVCBOWTRXAUNZHAQQQBWEWTFOTRWOXAWJXBAAQBWDWTWATWMWNXAAAQBDWTWLXAUOAAB WDWTWNXAUNUPIUQUQQQQEWSOABNZWDVDPZWFRWQQQQDFORWLWJSQQQDFWEOXDRWLWJQDWAXCL ZWEXDWLDXEVDPXDAXCWDABUFZWNURZQXEDTAQWAXCWMXFUIAQBDWLUSUTVAAQXCWDWAXDWMXF XDXGUJVBVEVFVGVHVAVIVJAQVCZQUAWAAVKWMUIZVLZWCMQCMAJWEQCNZOPZKZLZXKOPZKLZW HFOPZWBXPWCEWBWQXIVMWBXPVDPWCWHWCXJUCAJCWAWMVNVAVOQCXOFXQQQQXNXKORXHQMXMA VPZAQJXLQQQWEXKORWOQCUFZSZUEZUIZXSSWJQQQXNXKWHOXKFVDPZFRYBXSXHQXMWGMYCXRY AAQJXLWFYCXTQQQWEXKOYCFRWOXSYCQXKFXSWJURUJZVGVQVBYDVRVSVTVI $. $( [9-Oct-2014] $) $} ${ $d y A $. $d y B $. $d x y R $. $d x y al $. alimdv.1 $e |- ( R , A ) |= B $. $( Deduction from Theorem 19.20 of [Margaris] p. 90. $) alimdv $p |- ( R , ( ! \ x : al . A ) ) |= ( ! \ x : al . B ) $= ( vy tal kl kc kct ax-cb1 wctr ax4 wctl adantl kt hb ht ax-17 tv wv wl wc syldan wal ax-hbl1 hbc hbct alrimi ) ABGDEHABCIZJZKDEULCULECABCECDECKFLZM ZNECUMOZPFUEABEAGUAZULQUOAGUBZARSZRHUKAUFZARBCUNUCZUDARBEUPUOUQTAURRBUKUP HQUSUTUQAURRSBHUPUSUQTAARBCUPUNUQUGUHUIUJ $. $( [9-Oct-2014] $) $( Deduction from Theorem 19.22 of [Margaris] p. 90. $) eximdv $p |- ( R , ( ? \ x : al . A ) ) |= ( ? \ x : al . B ) $= ( vy tex kl kc kct ax-cb2 19.8a syl hb tv ax-cb1 wctl ax-17 ht wv ax-hbl1 kt wex wl hbc exlimd ) ABGCEHABDIZJZECKZDUIFABDDUJFLZMNAOBEAGPZECDUJFQRAG UAZSAAOTZOBUHULHUCAUDZAOBDUKUEUMAUNOTBHULUOUMSAAOBDULUKUMUBUFUG $. $( [9-Oct-2014] $) $} ${ $d y A $. $d x y al $. alnex1.1 $e |- A : bool $. $( Theorem 19.7 of [Margaris] p. 89. $) alnex $p |- T. |= [ ( ! \ x : al . ( ~ A ) ) = ( ~ ( ? \ x : al . A ) ) ] $= ( vy tal tne kc kl tex tfal tim kbr wfal hb wnot ht kt ax-17 hbc ax4 mpbi wc ke ax-cb1 notval a1i imp tv wal wl wv ax-hbl1 exlimd ex wex mpbir wtru 19.8a adantl con3d trul alrimi dedi ) FABGCHZIZHZGJABCIZHZHZVIKLMZVJVGVGV IKABECVGKVGCKDNVECKLMZVGABVEOOGCPDUCZUAZVEVLUDMVGVEVGVNUEZCDUFUGUBUHAAOQZ OBVFAEUIZFRAUJZAOBVEVMUKAEULZAVPOQZBFVQVRVSSAAOBVEVQVMVSUMTAOBKVQNVSSUNUO VJVKUDMVGVOVIVPOJVHAUPZAOBCDUKZUCZUFUGUQABEVEVJVJVERCVICRVIABCDUSURUTVAVB AOOBVIVQGRPWCVSAOOQBGVQPVSSAVPOBVHVQJRWAWBVSAVTBJVQWAVSSAAOBCVQDVSUMTTVCV D $. $( [10-Oct-2014] $) $( Forward direction of ~ exnal . $) exnal1 $p |- ( ? \ x : al . ( ~ A ) ) |= ( ~ ( ! \ x : al . A ) ) $= ( tex tne kc kl tal kt hb ht wex wnot wc wl kct notnot1 wtru adantl id ke alimdv wal kbr alnex a1i mpbi syl con2d trul ) EABFCGZHZGZFIABCHGZGJUOUNA KLZKEUMAMAKBULKKFCNDOZPOJUOQIABFULGZHZGZFUNGZABCURJCJURCDRSTUCUTVAUTUTUPK IUSAUDAKBURKKFULNUQOPOZUAUTVAUBUEUTVBABULUQUFUGUHUIUJUK $. $( [10-Oct-2014] $) isfree.2 $e |- T. |= [ ( \ x : al . A y : al ) = A ] $. $( Derive the metamath "is free" predicate in terms of the HOL "is free" predicate. $) isfree $p |- T. |= [ A ==> ( ! \ x : al . A ) ] $= ( kt tal kl kc id alrimi tv ke kbr ax-cb1 adantl ex ) GDHABDIZJZDGTABCDDD EKFLSACMJDNOGFPQR $. $( [9-Oct-2014] $) $} $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# Axioms of infinity and choice #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# $) $c 1-1 $. $( One-to-one function $) $c onto $. $( Onto function $) $c @ $. $( Indefinite descriptor $) $( One-to-one function. $) tf11 $a term 1-1 $. $( Onto function. $) tfo $a term onto $. $( Indefinite descriptor. $) tat $a term @ $. $( The type of the indefinite descriptor. $) wat $a |- @ : ( ( al -> bool ) -> al ) $. ${ $d f p x y $. $( Define a one-to-one function. $) df-f11 $a |- T. |= [ 1-1 = \ f : ( al -> be ) . ( ! \ x : al . ( ! \ y : al . [ [ ( f : ( al -> be ) x : al ) = ( f : ( al -> be ) y : al ) ] ==> [ x : al = y : al ] ] ) ) ] $. $( Define an onto function. $) df-fo $a |- T. |= [ onto = \ f : ( al -> be ) . ( ! \ y : be . ( ? \ x : al . [ y : be = ( f : ( al -> be ) x : al ) ] ) ) ] $. $( Defining property of the indefinite descriptor: it selects an element from any type. This is equivalent to global choice in ZF. $) ax-ac $a |- T. |= ( ! \ p : ( al -> bool ) . ( ! \ x : al . [ ( p : ( al -> bool ) x : al ) ==> ( p : ( al -> bool ) ( @ p : ( al -> bool ) ) ) ] ) ) $. $} ${ $d x A $. $d p x F $. $d p x al $. ac.1 $e |- F : ( al -> bool ) $. ac.2 $e |- A : al $. $( Defining property of the indefinite descriptor: it selects an element from any type. This is equivalent to global choice in ZF. $) ac $p |- ( F A ) |= ( F ( @ F ) ) $= ( vx vp kc tat hb wc id tim kbr kt tal tv kl wim ceq2 ht wat ax-cb1 ax-ac wal wv wov wl weqi ceq1 ceq12 oveq12 leq cla4v syl eqtypi oveq1 a1i mpd ke ) CBHZVACICHZHZAJCVBDAJUAZAICAUBZDKKZVAAJCBDEKLZVAVCMNZVAVAVAVGUCOPAFC AFQZHZVCMNZRZHZVHOPVDGPAFVDGQZVIHZVNIVNHZHZMNZRZHZRHVMAFGUDVDGVTCVMVDJPVS AUEZAJFVRJJJVOVQMSAJVNVIVDGUFZAFUFZKZAJVNVPWBVDAIVNVEWBKZKZUGZUHZKDVDJVSV LPVNCUTNZWAWHAJFVRVKWIWGJJJVOVQVJMWIVCSWDWFAJVIVNWICWBWCWIVDVNCWBDUILZUJA JVPVBVNWICWBWEWJVDAVNCIWIVEWBWJTUKULZUMTUNUOAFVKBVHJVRVKWIWGWKUPEJJJVJVCV AMVIBUTNZSAJCVIDWCKVFAJVIBCWLDWCWLAVIBWCEUILTUQUNUOURUS $. $( [10-Oct-2014] $) $} ${ $d x F $. $d x al $. dfex2.1 $e |- F : ( al -> bool ) $. $( Alternative definition of the "there exists" quantifier. $) dfex2 $p |- T. |= [ ( ? F ) = ( F ( @ F ) ) ] $= ( vx kt tex kc tat tv wv ac wtru adantl exlimdv2 hb ht wat wc ax4e ded ) EFBGZBHBGZGZADBEUCCBADIZGEUCAUDBCADJKLMNUCEUAAUBBCAOPAHBAQCRSLMT $. $( [10-Oct-2014] $) $} ${ $d x y A $. $d x al $. exmid.1 $e |- A : bool $. $( Diaconescu's theorem, which derives the law of the excluded middle from the axiom of choice. $) exmid $p |- T. |= [ A \/ ( ~ A ) ] $= ( vx vy tat hb tor kbr kc kt tne wor wc wnot wtru ke weqi id tfal wfal tv kl ht wat wv wov wl orc oveq1 cl mpbir ac syl ax-17 ax-hbl1 hbc hbov mpbi clf ceq2 tim simpr notval eqtru eqcomi a1i eqtri kct wct simpl simpld olc ex leq adantl simprd ax-cb1 mpd ecase ) EFCFCUAZAGHZUBZIZAJAKAIZGHZFFUCZF EWBFUDZFFCWAFFFVTAGLFCUEZBUFZUGZMZBFFFAWDGLBFFKANBMZUFZWBWCIZWCAGHZJJWBJI ZWNJAGHZWPJJAOBUHZFFCWAWQJWIOFFFVTAJGVTJPHZLWHBWSFVTJWHOQRUIUJUKFJWBWJOUL UMFFCDWAWOWCWIWKFFFVTAWCGVTWCPHZLWHBWTFVTWCWHWKQRUIFFFFCWCFDUAZAGJLWKFDUE ZBFFWFUCCGXALXBUNZFWFFCWBXAEJWGWJXBFWFFUCCEXAWGXBUNZFFFCWAXAWIXBUOUPZFFCA XABXBUNZUQXEUSURWCJWEKEFCKVTIZAGHZUBZIZIZAWCWEFFKXJNWFFEXIWGFFCXHFFFXGAGL FFKVTNWHMZBUFZUGZMZMZBWMXKAGHZWCWKXIXJIZXQJJXISIZXRWQXSJWRFFCXHWQSXMTFFFX GAJGVTSPHZLXLBFXGKSIZJXTXLFFVTSKXTNWHXTFVTSWHTQZRUTYAJPHXTYBFJYAJOYAJSSVA HYAJJSSJSOTVBVMSTVCUKVDVEVFVGUIUJUKFSXIXNTULUMFFCDXHXQXJXMXOFFFXGAXKGVTXJ PHZLXLBFFVTXJKYCNWHYCFVTXJWHXOQRUTUIFFFFCXKXAAGJLXPXBBXCFFFCXJXAKJNXOXBFW FCKXANXBUNFWFFCXIXAEJWGXNXBXDFFFCXHXAXMXBUOUPZUPXFUQYDUSURVFWCXKVHZWDWEAS VAHZWDYEYEASYEAVHZXJSTWCXJYGYGWCXKYEAWCXKWKXPVIZBVJZVKAYEWCXJPHWFFWBXIEAW GWJFFCWAXHAWIFWAJXHAWIFJWAAOWAAVTAWHBVLVDVEXHAXGAXLBVLVDVGVNUTYHVOURXKXJS VAHZYGYGWCXKYIVPXKYJPHYGYEYGYIVQXJXOVCVFURVRVMWDYFPHYEYHABVCVFUKAWDBWLVLU MAWCWEAWDBWLUHZWKVOVSOVOAJWEYKOVOVS $. $( [10-Oct-2014] $) $( Rule of double negation. $) notnot $p |- T. |= [ A = ( ~ ( ~ A ) ) ] $= ( tne kc notnot1 hb wnot tor kbr ax-cb2 exmid a1i simpr kct tfal wfal tim wc id ke notval mpbi imp pm2.21 syl ecase dedi ) ACCADZDZABEZAUHUIABFFCAG BRZBAUHHIUIUIAUJJZABKLUIAULBMUIUHNOAUIUHOUKPUIUHOQIZUIUIULSUIUMTIUIULUHUK UALUBUCABUDUEUFUG $. $( [10-Oct-2014] $) $( Theorem 19.14 of [Margaris] p. 90. $) exnal $p |- T. |= [ ( ? \ x : al . ( ~ A ) ) = ( ~ ( ! \ x : al . A ) ) ] $= ( hb tne tex kc kl tal kt wnot ht wex wc wl wal alnex ceq2 notnot 3eqtr4i eqcomi leq ) EFFGABFCHZIZHZHZHFJABFUDHZIZHZHKUFFJABCIZHZHEEFUGLEEFUFLAEMZ EGUEANAEBUDEEFCLDOZPOZOZOEEUGUJFKLUPEUJUGKUMEJUIAQZAEBUHEEFUDLUNOPOABUDUN RUBSUFUOTEEULUJFKLUMEJUKUQAEBCDPZOUMEUKUIJKUQURAEBCUHKDCDTUCSSUA $. $( [10-Oct-2014] $) $} $( The axiom of infinity: the set of "individuals" is not Dedekind-finite. Using the axiom of choice, we can show that this is equivalent to an embedding of the natural numbers in ` ind ` . $) ax-inf $a |- T. |= ( ? \ f : ( ind -> ind ) . [ ( 1-1 f : ( ind -> ind ) ) /\ ( ~ ( onto f : ( ind -> ind ) ) ) ] ) $. $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# Rederive the Metamath axioms #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# $) ${ ax1.1 $e |- R : bool $. ax1.2 $e |- S : bool $. $( Axiom _Simp_. Axiom A1 of [Margaris] p. 49. $) ax1 $p |- T. |= [ R ==> [ S ==> R ] ] $= ( kt tim kbr kct wtru simpr adantr ex ) EABAFGEAHZBAMBAEAICJDKLL $. $( [9-Oct-2014] $) ax2.3 $e |- T : bool $. $( Axiom _Frege_. Axiom A2 of [Margaris] p. 49. $) ax2 $p |- T. |= [ [ R ==> [ S ==> T ] ] ==> [ [ R ==> S ] ==> [ R ==> T ] ] ] $= ( kt tim kbr kct hb wim wov wct simpr simpl simprd mpd simpld ex adantl wtru ) GABCHIZHIZABHIZACHIZHIZUDGUGUDUEUFUDUEJZACUHAJZBCFUIABEUHAUDUEKKKA UCHLDKKKBCHLEFMZMKKKABHLDEMNZDOZUIUDUEUHAUKDPZQRUIAUCUJULUIUDUEUMSRRTTUBU AT $. $( [9-Oct-2014] $) $} ${ ax3.1 $e |- R : bool $. ax3.2 $e |- S : bool $. $( Axiom _Transp_. Axiom A3 of [Margaris] p. 49. $) ax3 $p |- T. |= [ [ ( ~ R ) ==> ( ~ S ) ] ==> [ S ==> R ] ] $= ( kt tne kc tim kbr kct hb wnot wc tor wim a1i ax-cb1 tfal imp ex wov wct exmid simpr wfal id ke notval mpbi an32s pm2.21 syl ecase wtru adantl ) E FAGZFBGZHIZBAHIZUREUSURBAAUPURBJZACKKFALCMZCAUPNIZUTURBKKKUPUQHOVAKKFBLDM ZUAZDUBACUCPZUTAVBUTVEQCUDUTUPJRARURUPBURUPJZBRDUEUQBRHIZVFURUPUQVAVCURVD UFSZUQVGUGIVFUQVFVHQBDUHPUISUJACUKULUMTUNUOT $. $( [10-Oct-2014] $) $} ${ axmp.1 $e |- S : bool $. axmp.2 $e |- T. |= R $. axmp.3 $e |- T. |= [ R ==> S ] $. $( Rule of Modus Ponens. The postulated inference rule of propositional calculus. See e.g. Rule 1 of [Hamilton] p. 73. $) axmp $p |- T. |= S $= ( kt mpd ) FABCDEG $. $( [10-Oct-2014] $) $} ${ $d y R $. $d y S $. $d x y al $. ax5.1 $e |- R : bool $. ax5.2 $e |- S : bool $. $( Axiom of Quantified Implication. Axiom C4 of [Monk2] p. 105. $) ax5 $p |- T. |= [ ( ! \ x : al . [ R ==> S ] ) ==> [ ( ! \ x : al . R ) ==> ( ! \ x : al . S ) ] ] $= ( vy kt tal tim kbr kl kc ax4 hb ht wl adantl ax-hbl1 hbc kct wal wim wov wc ax-cb1 adantr mpd tv wv ax-17 hbct alrimi ex wtru ) HIABCDJKZLZMZIABCL ZMZIABDLMZJKZURHVBURUTVAABGDURUTUAZVCCDFUTURCABCENZAOPZOIUQAUBZAOBUPOOOCD JUCEFUDZQZUEZRURUTUPABUPVGNCUTVDUFZUGUHABURAGUIZUTHVIAGUJZVJAVEOBUQVKIHVF VHVLAVEOPBIVKVFVLUKZAAOBUPVKVGVLSTAVEOBUSVKIHVFAOBCEQVLVMAAOBCVKEVLSTULUM UNUORUN $. $( [10-Oct-2014] $) $} ${ $d y R $. $d x y al $. ax6.1 $e |- R : bool $. $( Axiom of Quantified Negation. Axiom C5-2 of [Monk2] p. 113. $) ax6 $p |- T. |= [ ( ~ ( ! \ x : al . R ) ) ==> ( ! \ x : al . ( ~ ( ! \ x : al . R ) ) ) ] $= ( vy tne tal kl kc hb wnot ht wal wl wc tv kt wv ax-17 hbc ax-hbl1 isfree ) ABEFGABCHZIZIJJFUDKAJLZJGUCAMZAJBCDNZOZOAJJBUDAEPZFQKUHAERZAJJLBFUIKUJS AUEJBUCUIGQUFUGUJAUEJLBGUIUFUJSAAJBCUIDUJUATTUB $. $( [10-Oct-2014] $) $} ${ $d z R $. $d x y z al $. ax7.1 $e |- R : bool $. $( Axiom of Quantifier Commutation. Axiom scheme C6' in [Megill] p. 448 (p. 16 of the preprint). $) ax7 $p |- T. |= [ ( ! \ x : al . ( ! \ y : al . R ) ) ==> ( ! \ y : al . ( ! \ x : al . R ) ) ] $= ( vz kt tal kl kc hb ht wal wl wc ax4 ax-17 ax-hbl1 hbc alrimi syl tv hbl wv wtru adantl ex ) GHABHACDIZJZIZJZHACHABDIJZIJZUKGUMACFULUKABFDUKUKUIDA BUIAKLZKHUHAMZAKCDENZOZPACDEPUAAUNKBUJAFUBZHGUOAKBUIUQNZAFUDZAUNKLZBHURUO UTQAAKBUIURUQUTRSTAUNKCUJURHGUOUSUTAVACHURUOUTQZAAKCBUIURGUQUTAUNKCUHURHG UOUPUTVBAAKCDUREUTRSUCSTUEUFUG $. $( [10-Oct-2014] $) $} ${ $d x al $. axgen.1 $e |- T. |= R $. $( Rule of Generalization. See e.g. Rule 2 of [Hamilton] p. 74. $) axgen $p |- T. |= ( ! \ x : al . R ) $= ( kt alrimiv ) ABCEDF $. $( [10-Oct-2014] $) $} ${ ax8.1 $e |- A : al $. ax8.2 $e |- B : al $. ax8.3 $e |- C : al $. $( Axiom of Equality. Axiom scheme C8' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Axiom C7 of [Monk2] p. 105. $) ax8 $p |- T. |= [ [ A = B ] ==> [ [ A = C ] ==> [ B = C ] ] ] $= ( kt ke kbr tim kct weqi simpl eqcomi simpr eqtri ex wtru adantl ) HBCIJZ BDIJZCDIJZKJZUAHUDUAUBUCACBDUAUBLZFABCUEEUAUBABCEFMZABDEGMZNOUAUBUFUGPQRS TR $. $( [10-Oct-2014] $) $} ${ $d y A $. $d x y al $. ax9.1 $e |- A : al $. $( Axiom of Equality. Axiom scheme C8' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Axiom C7 of [Monk2] p. 105. $) ax9 $p |- T. |= ( ~ ( ! \ x : al . ( ~ [ x : al = A ] ) ) ) $= ( vy tne tex tv kl kc tal kt wv hb ht wl ax-17 wtru wc wnot ke weqi 19.8a kbr wex ax-hbl1 hbc eqid eqtru eqcomi ax-inst notnot1 syl wal alnex mpbir id ceq2 ) FFGABABHZCUAUDZIZJZJZJZFKABFUTJZIZJZJLLVBVDABEVBVBCUTLABUTAUSCA BMDUBZUCAANOZNBVAAEHZGLAUEZANBUTVHPZAEMZAVINOBGVJVKVMQAANBUTVJVHVMUFUGANB LVJRVMQNVBUTVHVINGVAVKVLSZUHNLUTUTRUTUTUTVHUQUIUJUKVBVNULUMNNVGVCFLTVINKV FAUNANBVENNFUTTVHSPSABUTVHUOURUP $. $( [10-Oct-2014] $) $} ${ $d x y z al $. $( Axiom of Quantifier Substitution. Appears as Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). $) ax10 $p |- T. |= [ ( ! \ x : al . [ x : al = y : al ] ) ==> ( ! \ y : al . [ y : al = x : al ] ) ] $= ( vz kt tal tv ke kbr kl kc wv weqi hb weq wov id oveq1 cla4v wl eqtri ht ax4 eqcomi alrimiv wal wc cbv ceq2 a1i mpbir wtru adantl ex ) EFABABGZACG ZHIZJZKZFACUPUOHIZJZKZUSEVBFADADGZUOHIZJZKZVBUSADVDUSAVCUPUOUSADLZABUQVCV CUPHIAUOUPABLZACLZMZVGAANUOUPVCHUOVCHIZAOZVHVIVKAANUOVCHVLVHVGPQRSAUOUPUS VHABUQVJUCUDUAUEVBVFHIUSANUBZNFURAUFZANBUQVJTUGVMNVAVEFEVNANCUTAUPUOVIVHM ZTANCDUTVDVOAANUPUOVCHUPVCHIZVLVIVHVPAUPVCVIVGMQRUHUIUJUKULUMUN $. $( [10-Oct-2014] $) $} ${ $d x A $. $d x y al $. ax11.1 $e |- A : bool $. $( Axiom of Variable Substitution. It is based on Lemma 16 of [Tarski] p. 70 and Axiom C8 of [Monk2] p. 105, from which it can be proved by cases. $) ax11 $p |- T. |= [ [ x : al = y : al ] ==> [ ( ! \ y : al . A ) ==> ( ! \ x : al . [ [ x : al = y : al ] ==> A ] ) ] ] $= ( kt tv ke kbr tal kl kc tim kct hb wl wc id a1i ex ht wal eta ceq2 mpbir wv wim weqi wov simpr ax-cb1 ax-cb2 simpl wct beta eqtri mpbi wtru adantl alrimiv ax5 mpd syl ) FABGZACGZHIZJACDKZLZJABVFDMIZKZLZMIFVFNZVHVKVHVLVKVH JABVGVDLZKZLZVKVHVOVHVHAOUAZOJVGAUBZAOCDEPZQZRVOVHHIZVHVSVPOVNVGJFVQAOBVM AOVGVDVRABUFZQZPZAOBVGVRUCUDZSUEVOVOVKVPOJVJVQAOBVIOOOVFDMUGAVDVEWAACUFUH ZEUIZPQZVOVPOJVNVQWCQZRVOVKMIZVOWHFJABVMVIMIZKLWIOOOVOVKMUGVOVFVHNZVHVOWK VFVHWEVSUJZVTWKVHWKWLUKWDSUEULWGUIABWJFFVMVIVMFVIVMVFDVMDVMVFNZVMVFWBWEUM OVMVGVELZDWMWBAOVDVEVGWMVRWAVMVFWBWEUJUDWNDHIWMVMVFWBWEUNAOCDEUOSUPUQTURU STUTABVMVIWBWFVAVBSVBVCFVFURWEUNUSTT $. $( [10-Oct-2014] $) $} ${ $d p x z $. $d p y z $. $d p z al $. $( Axiom of Quantifier Introduction. Axiom scheme C9' in [Megill] p. 448 (p. 16 of the preprint). $) ax12 $p |- T. |= [ ( ~ ( ! \ z : al . [ z : al = x : al ] ) ) ==> [ ( ~ ( ! \ z : al . [ z : al = y : al ] ) ) ==> [ [ x : al = y : al ] ==> ( ! \ z : al . [ x : al = y : al ] ) ] ] ] $= ( vp kt tne tal tv ke kbr kl kc tim wv weqi hb wnot wl wc ax-17 isfree ht wal adantr ex ) FGHADADIZABIZJKZLZMZMZGHADUGACIZJKZLZMZMZUHUMJKZHADURLMNK ZNKZFULUTFUQUSFUQUSADEURAUHUMABOZACOZPZAQDURAEIVCAEOUAUBQQGUPRAQUCZQHUOAU DZAQDUNAUGUMADOZVBPSTTUEUFQQGUKRVDQHUJVEAQDUIAUGUHVFVAPSTTUEUF $. $( [10-Oct-2014] $) $} ${ ax13.1 $e |- A : al $. ax13.2 $e |- B : al $. ax13.3 $e |- C : ( al -> bool ) $. $( Axiom of Equality. Axiom scheme C12' in [Megill] p. 448 (p. 16 of the preprint). It is a special case of Axiom B8 (p. 75) of system S2 of [Tarski] p. 77. $) ax13 $p |- T. |= [ [ A = B ] ==> [ ( C A ) ==> ( C B ) ] ] $= ( kt ke kbr kc tim kct wtru weqi wct hb wc simpr ex ceq2 adantr mpbi ) HB CIJZDBKZDCKZLJHUDMZUEUFUEUFUGUEMUGUEHUDNABCEFOZPAQDBGERZSUGUEUEUFIJAQBCDU GGEHUDNUHSUAUIUBUCTT $. $( [10-Oct-2014] $) $} ${ ax14.1 $e |- A : ( al -> bool ) $. ax14.2 $e |- B : ( al -> bool ) $. ax14.3 $e |- C : al $. $( Axiom of Equality. Axiom scheme C12' in [Megill] p. 448 (p. 16 of the preprint). It is a special case of Axiom B8 (p. 75) of system S2 of [Tarski] p. 77. $) ax14 $p |- T. |= [ [ A = B ] ==> [ ( A C ) ==> ( B C ) ] ] $= ( kt ke kbr kc tim kct wtru hb ht weqi wct simpr ex wc ceq1 adantr mpbi ) HBCIJZBDKZCDKZLJHUEMZUFUGUFUGUHUFMUHUFHUENAOPBCEFQZRAOBDEGUAZSUHUFUFUGIJA ODBUHCEGHUENUISUBUJUCUDTT $. $( [10-Oct-2014] $) $} ${ $d x y A $. $d x y al $. ax17.1 $e |- A : bool $. $( Axiom to quantify a variable over a formula in which it does not occur. Axiom C5 in [Megill] p. 444 (p. 11 of the preprint). Also appears as Axiom B6 (p. 75) of system S2 of [Tarski] p. 77 and Axiom C5-1 of [Monk2] p. 113. $) ax17 $p |- T. |= [ A ==> ( ! \ x : al . A ) ] $= ( vy hb tv wv ax-17 isfree ) ABECDAFBCAEGDAEHIJ $. $( [10-Oct-2014] $) $} ${ $d x y A $. $d x y B $. $d x y al $. axext.1 $e |- A : ( al -> bool ) $. axext.2 $e |- B : ( al -> bool ) $. $( Axiom of Extensionality. An axiom of Zermelo-Fraenkel set theory. It states that two sets are identical if they contain the same elements. Axiom Ext of [BellMachover] p. 461. $) axext $p |- T. |= [ ( ! \ x : al . [ ( A x : al ) = ( B x : al ) ] ) ==> [ A = B ] ] $= ( vy kt tal tv kc ke kbr kl hb ht wv wc wl eta weqi ax4 wal ax-17 ax-hbl1 hbc leqf ax-cb1 a1i 3eqtr3i wtru adantl ex ) HIABCABJZKZDUNKZLMZNZKZCDLMZ USHUTAOPZABUONZABUPNZUSCDAOBUOAOCUNEABQZRZSAOBGUOUPUSVEABUQOUOUPVEAODUNFV DRUAZUBAVAOBURAGJZIHAUCZAOBUQVFSAGQZAVAOPBIVGVHVIUDAAOBUQVGVFVIUEUFUGZVBC LMUSVBVCLMUSVJUHZAOBCETUIVCDLMUSVKAOBDFTUIUJUKULUM $. $( [10-Oct-2014] $) $} ${ $d f A $. $d f y B $. $d f y al $. $d f x y be $. $d f y z be $. axrep.1 $e |- A : bool $. axrep.2 $e |- B : ( al -> bool ) $. $( Axiom of Replacement. An axiom scheme of Zermelo-Fraenkel set theory. Axiom 5 of [TakeutiZaring] p. 19. $) axrep $p |- T. |= [ ( ! \ x : al . ( ? \ y : be . ( ! \ z : be . [ ( ! \ y : be . A ) ==> [ z : be = y : be ] ] ) ) ) ==> ( ? \ y : ( be -> bool ) . ( ! \ z : be . [ ( y : ( be -> bool ) z : be ) = ( ? \ x : al . [ ( B x : al ) /\ ( ! \ y : be . A ) ] ) ] ) ) ] $= ( kt tal tex kl kc ke kbr hb ht wl wc vf hga tim tan wal wex wim weqi wov tv wv wtru wan eqid alrimiv a1i ax-cb1 weq id ceq1 beta eqtri oveq1 ax-17 ax-hbl1 hbov leqf ceq2 hbl1 hbc hbl clf mpbir ax4e syl adantl ex ) JKACLB DKBEKBDFMZNZBEUJZBDUJZOPZUCPZMZNZMZNZMZNZLBQRZDKBEWJDUJZVTNZLACGACUJZNZVS UDPZMZNZOPZMZNZMZNZWIJXBWIXABEWQMZNZXBKBEWQWQOPZMZNZXDWIXGWIAQRZQKWHAUEAQ CWGWJQLWFBUFZBQDWEWJQKWDBUEZBQEWCQQQVSWBUCUGWJQKVRXJBQDFHSZTZBVTWABEUKZBD UKUHUISTSTSTBEXEJQWQJULXHQLWPAUFZAQCWOQQQWNVSUDUMAQGWMIACUKTZXLUIZSZTZUNU OUPZXDXGOPWIXGWIXSUQWJQDUAWTXGXCWJQKWSXJBQEWRQWLWQBQWKVTWJDUKZXMTZXRUHZSZ TZBQEWQXRSZWJQWSXFKWKXCOPZXJYCBQEUAWRXEYFYBQQQWLWQWQOYFQURZYAXRQWLXCVTNZW QYFYABQVTWKYFXCXTXMYFWJWKXCXTYEUHZUSUTYHWQOPYFYIBQEWQXRVAUPVBVCBWJWJQEWKB UAUJZXCOJWJURXTBUAUKZYEBQQQRRZEOYJYGYKVDBWJEWKYJXTYKVDBBQEWQYJXRYKVEVFVGV HWJWJQDXFWJUAUJZKJXJBQEXEQWQWQXRXRUHZSWJUAUKZWJWJQRZDKYMXJYOVDZWJBQDEXEYM JYNYOWJQQQDWQYMWQOJYGXRYOXRWJUBUBQRRDOYMUBURYOVDWJXHQDWPYMLJXNXQYOWJYPDLY MXIYOVDWJAQDCWOYMJXPYOWJQQQDWNYMVSUDJUMXOYOXLWJYLDUDYMUMYOVDWJQDWNYMXOYOV DWJWJQDVRYMKJXJXKYOYQWJBQDFYMJHYOULVIVJVFVKVJZYRVFVKVJWJBQDEWQYMJXRYOYRVK VLUPVMWJXCXAWJQDWTYDSYEVNVOULVPVQ $. $( [10-Oct-2014] $) $} ${ $d x y $. $d y A $. $d p y z al $. axpow.1 $e |- A : ( al -> bool ) $. $( Axiom of Power Sets. An axiom of Zermelo-Fraenkel set theory. $) axpow $p |- T. |= ( ? \ y : ( ( al -> bool ) -> bool ) . ( ! \ z : ( al -> bool ) . [ ( ! \ x : al . [ ( z : ( al -> bool ) x : al ) ==> ( A x : al ) ] ) ==> ( y : ( ( al -> bool ) -> bool ) z : ( al -> bool ) ) ] ) ) $= ( vp kt tal hb tv kc tim kbr kl wtru wim wv wc wl ht tex wal wov simpl ex alrimiv ke weqi id ceq1 eqid cl a1i eqtri oveq2 leq ceq2 cla4ev syl ) HIA JUAZDIABVADKZABKZLZEVCLZMNZOZLZHMNZOZLZUBVAJUAZCIVADVHVLCKZVBLZMNZOZLZOLV ADVIHHVHHHVHPVAJIVGAUCAJBVFJJJVDVEMQAJVBVCVADRZABRZSAJEVCFVSSUDTSZUEUFUGV LCVQVAGHOZVKVLJIVPVAUCZVAJDVOJJJVHVNMQVTVAJVMVBVLCRZVRSZUDZTZSVAJGHPTZVLJ VPVJIVMWAUHNZWBWFVAJDVOVIWHWEJJJVHVNMWHHQVTWDJVNWAVBLZHWHWDVAJVBVMWHWAWCV RWHVLVMWAWCWGUIZUJUKWIHUHNWHWJVAJGHHVBPVRJHVAGKZVBUHNVAWKVBVAGRVRUIPULUMU NUOUPUQURUSUT $. $( [10-Oct-2014] $) $} ${ $d x y $. $d p y z $. $d y A $. $d y z al $. $d p y z al $. axun.1 $e |- A : ( ( al -> bool ) -> bool ) $. $( Axiom of Union. An axiom of Zermelo-Fraenkel set theory. $) axun $p |- T. |= ( ? \ y : ( al -> bool ) . ( ! \ z : al . [ ( ? \ x : ( al -> bool ) . [ ( x : ( al -> bool ) z : al ) /\ ( A x : ( al -> bool ) ) ] ) ==> ( y : ( al -> bool ) z : al ) ] ) ) $= ( vp kt tal tex hb tv kc kbr kl tim wtru wv wc wl tan kct wex wan wov wct ht trud ex alrimiv wal wim ke weqi id ceq1 a17i eqtri leq ceq2 cla4ev syl oveq2 ) HIADJAKUGZBVDBLZADLZMZEVEMZUANZOZMZHPNZOZMZJVDCIADVKVDCLZVFMZPNZO ZMZOMADVLHHVKHHVKUBHVKQVDKUGKJVJVDUCVDKBVIKKKVGVHUAUDAKVEVFVDBRZADRZSVDKE VEFVTSUETSZUFUHUIUJVDCVSAGHOZVNVDKIVRAUKZAKDVQKKKVKVPPULWBAKVOVFVDCRZWASZ UEZTZSAKGHQTZVDKVRVMIVOWCUMNZWDWHAKDVQVLWJWGKKKVKVPPWJHULWBWFKVPWCVFMHWJW FAKVFVOWJWCWEWAWJVDVOWCWEWIUNZUOUPAKGHVFWJQWAWKUQURVCUSUTVAVB $. $( [10-Oct-2014] $) $} $( ax-reg, ax-inf, and ax-ac are "true" in the broad strokes in HOL, but the set.mm versions of these axioms are not well-typed and so cannot be expressed. $) $( $t /* The '$ t' (no space between '$' and 't') token indicates the beginning of the typesetting definition section, embedded in a Metamath comment. There may only be one per source file, and the typesetting section ends with the end of the Metamath comment. The typesetting section uses C-style comment delimiters. Todo: Allow multiple typesetting comments */ /* These are the LaTeX and HTML definitions in the order the tokens are introduced in $c or $v statements. See HELP TEX or HELP HTML in the Metamath program. */ /******* Web page format settings *******/ /* Page title, home page link */ htmltitle "Higher-Order Logic Explorer"; htmlhome '' + ' +
    ' + 'Home'; /* Optional file where bibliographic references are kept */ /* If specified, e.g. "mmset.html", Metamath will hyperlink all strings of the form "[rrr]" (where "rrr" has no whitespace) to "mmset.html#rrr" */ /* A warning will be given if the file "mmset.html" with the bibliographical references is not present. It is read in order to check correctness of the references. */ htmlbibliography "mmhol.html"; /* Variable color key at the bottom of each proof table */ htmlvarcolor 'type ' + 'var ' + 'term'; /* GIF and Unicode HTML directories - these are used for the GIF version to crosslink to the Unicode version and vice-versa */ htmldir "../holgif/"; althtmldir "../holuni/"; /******* Symbol definitions *******/ htmldef "wff" as 'wff '; althtmldef "wff" as 'wff '; latexdef "wff" as "{\rm wff}"; htmldef "var" as 'var '; althtmldef "var" as 'var '; latexdef "var" as "{\rm var}"; htmldef "type" as 'type '; althtmldef "type" as 'type '; latexdef "type" as "{\rm type}"; htmldef "term" as 'term '; althtmldef "term" as 'term '; latexdef "term" as "{\rm term}"; htmldef "|-" as "|- "; althtmldef "|-" as ''; /* ⊢ */ /* Without sans-serif, way too big in FF3 */ latexdef "|-" as "\vdash"; htmldef ":" as ":"; althtmldef ":" as ':'; latexdef ":" as ":"; htmldef "." as " "; althtmldef "." as ' '; latexdef "." as "\,"; htmldef "|=" as " |= "; althtmldef "|=" as "⊧"; latexdef "|=" as "\models"; htmldef "bool" as "*"; althtmldef "bool" as '∗'; latexdef "bool" as "\ast"; htmldef "ind" as "iota"; althtmldef "ind" as 'ι'; latexdef "ind" as "\iota"; htmldef "->" as " -> "; althtmldef "->" as ' → '; latexdef "->" as "\rightarrow"; htmldef "(" as "("; althtmldef "(" as "("; latexdef "(" as "("; htmldef ")" as ")"; althtmldef ")" as ")"; latexdef ")" as ")"; htmldef "," as ", "; althtmldef "," as ', '; latexdef "," as ","; htmldef "\" as "\"; althtmldef "\" as 'λ'; latexdef "\" as "\lambda"; htmldef "=" as " = "; althtmldef "=" as ' = '; /* = */ latexdef "=" as "="; htmldef "T." as "T."; althtmldef "T." as '⊤'; latexdef "T." as "\top"; htmldef "[" as "["; althtmldef "[" as '['; /* [ */ latexdef "[" as "["; htmldef "]" as "]"; althtmldef "]" as ']'; /* ] */ latexdef "]" as "]"; htmldef "al" as "al"; althtmldef "al" as 'α'; latexdef "al" as "\alpha"; htmldef "be" as "be"; althtmldef "be" as 'β'; latexdef "be" as "\beta"; htmldef "ga" as "ga"; althtmldef "ga" as 'γ'; latexdef "ga" as "\gamma"; htmldef "de" as "de"; althtmldef "de" as 'δ'; latexdef "de" as "\delta"; htmldef "x" as "x"; althtmldef "x" as 'x'; latexdef "x" as "x"; htmldef "y" as "y"; althtmldef "y" as 'y'; latexdef "y" as "y"; htmldef "z" as "z"; althtmldef "z" as 'z'; latexdef "z" as "z"; htmldef "f" as "f"; althtmldef "f" as 'f'; latexdef "f" as "f"; htmldef "g" as "g"; althtmldef "g" as 'g'; latexdef "g" as "g"; htmldef "p" as "p"; althtmldef "p" as 'p'; latexdef "p" as "p"; htmldef "q" as "q"; althtmldef "q" as 'q'; latexdef "q" as "q"; htmldef "A" as "A"; althtmldef "A" as 'A'; latexdef "A" as "A"; htmldef "B" as "B"; althtmldef "B" as 'B'; latexdef "B" as "B"; htmldef "C" as "C"; althtmldef "C" as 'C'; latexdef "C" as "C"; htmldef "F" as "F"; althtmldef "F" as 'F'; latexdef "F" as "F"; htmldef "R" as "R"; althtmldef "R" as 'R'; latexdef "R" as "R"; htmldef "S" as "S"; althtmldef "S" as 'S'; latexdef "S" as "S"; htmldef "T" as "T"; althtmldef "T" as 'T'; latexdef "T" as "T"; htmldef "F." as "F."; althtmldef "F." as '⊥'; latexdef "F." as "\bot"; htmldef "/\" as " /\ "; althtmldef "/\" as ' '; /* althtmldef "/\" as ' '; */ /* was ∧ which is circle in Mozilla on WinXP Pro (but not Home) */ /* Changed back 6-Mar-2012 NM */ latexdef "/\" as "\wedge"; htmldef "~" as "~ "; althtmldef "~" as '¬ '; latexdef "~" as "\lnot"; htmldef "==>" as " ==> "; althtmldef "==>" as ' ⇒ '; latexdef "==>" as "\Rightarrow"; htmldef "!" as "A."; althtmldef "!" as ''; /* ∀ */ latexdef "!" as "\forall"; htmldef "?" as "E."; althtmldef "?" as ''; /* ∃ */ /* Without sans-serif, bad in Opera and way too big in FF3 */ latexdef "?" as "\exists"; htmldef "\/" as " \/ "; althtmldef "\/" as ' ' ; /* althtmldef "\/" as ' ' ; */ /* was ∨ - changed to match font of ∧ replacement */ /* Changed back 6-Mar-2012 NM */ latexdef "\/" as "\vee"; htmldef "?!" as "E!"; althtmldef "?!" as '∃!'; latexdef "?!" as "\exists{!}"; htmldef "typedef" as "typedef "; althtmldef "typedef" as 'typedef '; latexdef "typedef" as "\mbox{typedef }"; htmldef "1-1" as "1-1 "; althtmldef "1-1" as '1-1 '; latexdef "1-1" as "\mbox{1-1 }"; htmldef "onto" as "onto "; althtmldef "onto" as 'onto '; latexdef "onto" as "\mbox{onto }"; htmldef "@" as "@"; althtmldef "@" as 'ε'; latexdef "@" as "\varepsilon"; /* End of typesetting definition section */ $) $( 456789012345 (79-character line to adjust text window width) 567890123456 $)