$( ql.mm - Version of 11-Apr-2012 #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# Metamath source file for logic, set theory, numbers, and Hilbert space #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# ~~ PUBLIC DOMAIN ~~ This work is waived of all rights, including copyright, according to the CC0 Public Domain Dedication. http://creativecommons.org/publicdomain/zero/1.0/ Norman Megill - email: nm(at)alum(dot)mit(dot)edu - http://metamath.org $) $( placeholder #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# AUQL - Algebraic Unified Quantum Logic of M. Pavicic #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# $) $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# Ortholattices #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Basic syntax and axioms =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( Declare the primitive constant symbols. $) $c ( $. $( Left parenthesis $) $c ) $. $( Right parenthesis $) $c = $. $( Equality (read: 'equals') $) $c == $. $( Biconditional (read: 'equivalent') $) $c v $. $( Disjunction (read: 'or') $) $c ^ $. $( Conjuction (read: 'and') $) $c 1 $. $( True constant (upside down ' ) (read: 'true') $) $c 0 $. $( False constant ( ' ) (read: 'false') $) $c ' $. $( Orthocomplement $) $c wff $. $( Well-formed formula symbol (read: 'the following symbol sequence is a wff') $) $c term $. $( Term $) $c |- $. $( Turnstile (read: 'the following symbol sequence is provable' or 'a proof exists for') $) $( Relations as operations $) $c C $. $( Commutes relation or commutator operation $) $c =< $. $( Less-than-or-equal-to $) $c =<2 $. $( Less-than-or-equal-to analogue for terms $) $c ->0 $. $( Right arrow (read: 'implies') $) $c ->1 $. $( Right arrow (read: 'implies') $) $c ->2 $. $( Right arrow (read: 'implies') $) $c ->3 $. $( Right arrow (read: 'implies') $) $c ->4 $. $( Right arrow (read: 'implies') $) $c ->5 $. $( Right arrow (read: 'implies') $) $c ==0 $. $( Classical identity $) $c ==1 $. $( Asymmetrical identity $) $c ==2 $. $( Asymmetrical identity $) $c ==3 $. $( Asymmetrical identity $) $c ==4 $. $( Asymmetrical identity $) $c ==5 $. $( Asymmetrical identity $) $c ==OA $. $( Orthoarguesian identity $) $c , $. $( Comma $) $c <->3 $. $( Biconditional (read: 'equivalent') $) $c <->1 $. $( Biconditional (read: 'equivalent') $) $c u3 $. $( Disjunction (read: 'or') $) $c ^3 $. $( Conjuction (read: 'and') $) $( Introduce some variable names we will use to terms. $) $v a $. $v b $. $v c $. $v d $. $v e $. $v f $. $v g $. $v h $. $v j $. $v k $. $v l $. $v i $. $v m $. $v n $. $v p $. $v q $. $v r $. $v t $. $v u $. $v w $. $v x $. $v y $. $v z $. $v a0 a1 a2 b0 b1 b2 c0 c1 c2 p0 p1 p2 $. $( Specify some variables that we will use to represent terms. The fact that a variable represents a wff is relevant only to a theorem referring to that variable, so we may use $f hypotheses. The symbol ` term ` specifies that the variable that follows it represents a term. $) $( Let variable ` a ` be a term. $) wva $f term a $. $( Let variable ` b ` be a term. $) wvb $f term b $. $( Let variable ` c ` be a term. $) wvc $f term c $. $( Let variable ` d ` be a term. $) wvd $f term d $. $( Let variable ` e ` be a term. $) wve $f term e $. $( Let variable ` f ` be a term. $) wvf $f term f $. $( Let variable ` g ` be a term. $) wvg $f term g $. $( Let variable ` h ` be a term. $) wvh $f term h $. $( Let variable ` j ` be a term. $) wvj $f term j $. $( Let variable ` k ` be a term. $) wvk $f term k $. $( Let variable ` l ` be a term. $) wvl $f term l $. $( Let variable ` i ` be a term. $) wvi $f term i $. $( Let variable ` m ` be a term. $) wvm $f term m $. $( Let variable ` n ` be a term. $) wvn $f term n $. $( Let variable ` p ` be a term. $) wvp $f term p $. $( Let variable ` q ` be a term. $) wvq $f term q $. $( Let variable ` r ` be a term. $) wvr $f term r $. $( Let variable ` t ` be a term. $) wvt $f term t $. $( Let variable ` u ` be a term. $) wvu $f term u $. $( Let variable ` w ` be a term. $) wvw $f term w $. $( Let variable ` x ` be a term. $) wvx $f term x $. $( Let variable ` y ` be a term. $) wvy $f term y $. $( Let variable ` z ` be a term. $) wvz $f term z $. $( Let variable ` a0 ` be a term. $) wva0 $f term a0 $. $( Let variable ` a1 ` be a term. $) wva1 $f term a1 $. $( Let variable ` a2 ` be a term. $) wva2 $f term a2 $. $( Let variable ` b0 ` be a term. $) wvb0 $f term b0 $. $( Let variable ` b1 ` be a term. $) wvb1 $f term b1 $. $( Let variable ` b2 ` be a term. $) wvb2 $f term b2 $. $( Let variable ` c0 ` be a term. $) wvc0 $f term c0 $. $( Let variable ` c1 ` be a term. $) wvc1 $f term c1 $. $( Let variable ` c2 ` be a term. $) wvc2 $f term c2 $. $( Let variable ` p0 ` be a term. $) wvp0 $f term p0 $. $( Let variable ` p1 ` be a term. $) wvp1 $f term p1 $. $( Let variable ` p2 ` be a term. $) wvp2 $f term p2 $. $( Recursively define terms and wffs. $) $( If ` a ` and ` b ` are terms, ` a = b ` is a wff. $) wb $a wff a = b $. $( If ` a ` and ` b ` are terms, ` a =< b ` is a wff. $) wle $a wff a =< b $. $( If ` a ` and ` b ` are terms, ` a C b ` is a wff. $) wc $a wff a C b $. $( If ` a ` is a term, so is ` a ' ` . $) wn $a term a ' $. $( If ` a ` and ` b ` are terms, so is ` ( a == b ) ` . $) tb $a term ( a == b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a v b ) ` . $) wo $a term ( a v b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a ^ b ) ` . $) wa $a term ( a ^ b ) $. $( @( If ` a ` and ` b ` are terms, so is ` ( a ' b ) ` . @) wp @a term ( a ' b ) @. $) $( The logical true constant is a term. $) wt $a term 1 $. $( The logical false constant is a term. $) wf $a term 0 $. $( If ` a ` and ` b ` are terms, so is ` ( a =<2 b ) ` . $) wle2 $a term ( a =<2 b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a ->0 b ) ` . $) wi0 $a term ( a ->0 b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a ->1 b ) ` . $) wi1 $a term ( a ->1 b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a ->2 b ) ` . $) wi2 $a term ( a ->2 b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a ->3 b ) ` . $) wi3 $a term ( a ->3 b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a ->4 b ) ` . $) wi4 $a term ( a ->4 b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a ->5 b ) ` . $) wi5 $a term ( a ->5 b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a ==0 b ) ` . $) wid0 $a term ( a ==0 b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a ==1 b ) ` . $) wid1 $a term ( a ==1 b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a ==2 b ) ` . $) wid2 $a term ( a ==2 b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a ==3 b ) ` . $) wid3 $a term ( a ==3 b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a ==4 b ) ` . $) wid4 $a term ( a ==4 b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a ==5 b ) ` . $) wid5 $a term ( a ==5 b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a <->3 b ) ` . $) wb3 $a term ( a <->3 b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a <->3 b ) ` . $) wb1 $a term ( a <->1 b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a u3 b ) ` . $) wo3 $a term ( a u3 b ) $. $( If ` a ` and ` b ` are terms, so is ` ( a ^3 b ) ` . $) wan3 $a term ( a ^3 b ) $. $( If ` a ` , ` b ` , and ` c ` are terms, so is ` ( a == c ==OA b ) ` . $) wid3oa $a term ( a == c ==OA b ) $. $( If ` a ` , ` b ` , ` c ` , and ` d ` are terms, so is ` ( a == c , d ==OA b ) ` . $) wid4oa $a term ( a == c , d ==OA b ) $. $( If ` a ` and ` b ` are terms, so is ` C ( a , b ) ` . $) wcmtr $a term C ( a , b ) $. $( Axiom for ortholattices. $) ax-a1 $a |- a = a ' ' $. $( Axiom for ortholattices. $) ax-a2 $a |- ( a v b ) = ( b v a ) $. $( Axiom for ortholattices. $) ax-a3 $a |- ( ( a v b ) v c ) = ( a v ( b v c ) ) $. $( Axiom for ortholattices. $) ax-a4 $a |- ( a v ( b v b ' ) ) = ( b v b ' ) $. $( ax-a5 $a |- ( a v ( a ' v b ' ) ' ) = a $. $) $( Axiom for ortholattices. $) ax-a5 $a |- ( a v ( a ' v b ) ' ) = a $. $( df-b $a |- ( a == b ) = ( ( a ' ' v b ' ' ) ' v ( a ' v b ' ) ' ) $. $) ${ r1.1 $e |- a = b $. $( Inference rule for ortholattices. $) ax-r1 $a |- b = a $. $} ${ r2.1 $e |- a = b $. r2.2 $e |- b = c $. $( Inference rule for ortholattices. $) ax-r2 $a |- a = c $. $} $( Axiom ~ax-r3 is the orthomodular axiom and will be introduced when we start to use it. $) ${ r4.1 $e |- a = b $. $( Inference rule for ortholattices. $) ax-r4 $a |- a ' = b ' $. $} ${ r5.1 $e |- a = b $. $( Inference rule for ortholattices. $) ax-r5 $a |- ( a v c ) = ( b v c ) $. $} $( Define biconditional. $) df-b $a |- ( a == b ) = ( ( a ' v b ' ) ' v ( a v b ) ' ) $. $( Define conjunction. $) df-a $a |- ( a ^ b ) = ( a ' v b ' ) ' $. $( Define true. $) df-t $a |- 1 = ( a v a ' ) $. $( Define false. $) df-f $a |- 0 = 1 ' $. $( Define classical conditional. $) df-i0 $a |- ( a ->0 b ) = ( a ' v b ) $. $( Define Sasaki (Mittelstaedt) conditional. $) df-i1 $a |- ( a ->1 b ) = ( a ' v ( a ^ b ) ) $. $( Define Dishkant conditional. $) df-i2 $a |- ( a ->2 b ) = ( b v ( a ' ^ b ' ) ) $. $( Define Kalmbach conditional. $) df-i3 $a |- ( a ->3 b ) = ( ( ( a ' ^ b ) v ( a ' ^ b ' ) ) v ( a ^ ( a ' v b ) ) ) $. $( Define non-tollens conditional. $) df-i4 $a |- ( a ->4 b ) = ( ( ( a ^ b ) v ( a ' ^ b ) ) v ( ( a ' v b ) ^ b ' ) ) $. $( Define relevance conditional. $) df-i5 $a |- ( a ->5 b ) = ( ( ( a ^ b ) v ( a ' ^ b ) ) v ( a ' ^ b ' ) ) $. $( Define classical identity. $) df-id0 $a |- ( a ==0 b ) = ( ( a ' v b ) ^ ( b ' v a ) ) $. $( Define asymmetrical identity (for "Non-Orthomodular Models..." paper). $) df-id1 $a |- ( a ==1 b ) = ( ( a v b ' ) ^ ( a ' v ( a ^ b ) ) ) $. $( Define asymmetrical identity (for "Non-Orthomodular Models..." paper). $) df-id2 $a |- ( a ==2 b ) = ( ( a v b ' ) ^ ( b v ( a ' ^ b ' ) ) ) $. $( Define asymmetrical identity (for "Non-Orthomodular Models..." paper). $) df-id3 $a |- ( a ==3 b ) = ( ( a ' v b ) ^ ( a v ( a ' ^ b ' ) ) ) $. $( Define asymmetrical identity (for "Non-Orthomodular Models..." paper). $) df-id4 $a |- ( a ==4 b ) = ( ( a ' v b ) ^ ( b ' v ( a ^ b ) ) ) $. $( Defined disjunction. $) df-o3 $a |- ( a u3 b ) = ( a ' ->3 ( a ' ->3 b ) ) $. $( Defined conjunction. $) df-a3 $a |- ( a ^3 b ) = ( a ' u3 b ' ) ' $. $( Defined biconditional. $) df-b3 $a |- ( a <->3 b ) = ( ( a ->3 b ) ^ ( b ->3 a ) ) $. $( The 3-variable orthoarguesian identity term. $) df-id3oa $a |- ( a == c ==OA b ) = ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) $. $( The 4-variable orthoarguesian identity term. $) df-id4oa $a |- ( a == c , d ==OA b ) = ( ( a == d ==OA b ) v ( ( a == d ==OA c ) ^ ( b == d ==OA c ) ) ) $. $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Basic lemmas =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( Identity law. $) id $p |- a = a $= ( wn ax-a1 ax-r1 ax-r2 ) AABBZAACZAFGDE $. $( [9-Aug-97] $) $( Justification of definition ~df-t of true ( ` 1 ` ). This shows that the definition is independent of the variable used to define it. $) tt $p |- ( a v a ' ) = ( b v b ' ) $= ( wn wo ax-a4 ax-r1 ax-a2 ax-r2 ) AACDZIBBCDZDZJIJIDZKLIJAEFJIGHIBEH $. $( [9-Aug-97] $) ${ cm.1 $e |- a = b $. $( Commutative inference rule for ortholattices. $) cm $p |- b = a $= ( ax-r1 ) ABCD $. $( [26-May-2008] $) $( [26-May-2008] $) $} ${ tr.1 $e |- a = b $. tr.2 $e |- b = c $. $( Transitive inference rule for ortholattices. $) tr $p |- a = c $= ( ax-r2 ) ABCDEF $. $( [26-May-2008] $) $( [26-May-2008] $) $} ${ 3tr1.1 $e |- a = b $. 3tr1.2 $e |- c = a $. 3tr1.3 $e |- d = b $. $( Transitive inference useful for introducing definitions. $) 3tr1 $p |- c = d $= ( ax-r1 ax-r2 ) CADFABDEDBGHII $. $( [10-Aug-97] $) $} ${ 3tr2.1 $e |- a = b $. 3tr2.2 $e |- a = c $. 3tr2.3 $e |- b = d $. $( Transitive inference useful for eliminating definitions. $) 3tr2 $p |- c = d $= ( ax-r1 3tr1 ) ABCDEACFHBDGHI $. $( [10-Aug-97] $) $} ${ 3tr.1 $e |- a = b $. 3tr.2 $e |- b = c $. 3tr.3 $e |- c = d $. $( Triple transitive inference. $) 3tr $p |- a = d $= ( ax-r2 ) ACDABCEFHGH $. $( [20-Sep-98] $) $} ${ con1.1 $e |- a ' = b ' $. $( Contraposition inference. $) con1 $p |- a = b $= ( wn ax-r4 ax-a1 3tr1 ) ADZDBDZDABHICEAFBFG $. $( [10-Aug-97] $) $} ${ con2.1 $e |- a = b ' $. $( Contraposition inference. $) con2 $p |- a ' = b $= ( wn ax-r4 ax-a1 ax-r1 ax-r2 ) ADBDZDZBAICEBJBFGH $. $( [10-Aug-97] $) $} ${ con3.1 $e |- a ' = b $. $( Contraposition inference. $) con3 $p |- a = b ' $= ( wn ax-a1 ax-r4 ax-r2 ) AADZDBDAEHBCFG $. $( [10-Aug-97] $) $} ${ con4.1 $e |- a = b $. $( Contraposition inference. $) con4 $p |- a ' = b ' $= ( ax-r4 ) ABCD $. $( [31-Mar-2011] $) $( [26-May-2008] $) $} ${ lor.1 $e |- a = b $. $( Inference introducing disjunct to left. $) lor $p |- ( c v a ) = ( c v b ) $= ( wo ax-r5 ax-a2 3tr1 ) ACEBCECAECBEABCDFCAGCBGH $. $( [10-Aug-97] $) $( Inference introducing disjunct to right. $) ror $p |- ( a v c ) = ( b v c ) $= ( ax-r5 ) ABCDE $. $( [31-Mar-2011] $) $( [26-May-2008] $) $} ${ 2or.1 $e |- a = b $. 2or.2 $e |- c = d $. $( Join both sides with disjunction. $) 2or $p |- ( a v c ) = ( b v d ) $= ( wo lor ax-r5 ax-r2 ) ACGADGBDGCDAFHABDEIJ $. $( [10-Aug-97] $) $} $( Commutative law. $) orcom $p |- ( a v b ) = ( b v a ) $= ( ax-a2 ) ABC $. $( [31-Mar-2011] $) $( [27-May-2008] $) $( Commutative law. $) ancom $p |- ( a ^ b ) = ( b ^ a ) $= ( wn wo wa ax-a2 ax-r4 df-a 3tr1 ) ACZBCZDZCKJDZCABEBAELMJKFGABHBAHI $. $( [10-Aug-97] $) $( Associative law. $) orass $p |- ( ( a v b ) v c ) = ( a v ( b v c ) ) $= ( ax-a3 ) ABCD $. $( [31-Mar-2011] $) $( [27-May-2008] $) $( Associative law. $) anass $p |- ( ( a ^ b ) ^ c ) = ( a ^ ( b ^ c ) ) $= ( wa wn wo ax-a3 df-a con2 ax-r5 lor 3tr1 ax-r4 ) ABDZEZCEZFZEAEZBCDZEZFZEN CDASDQUARBEZFZPFRUBPFZFQUARUBPGOUCPNUCABHIJTUDRSUDBCHIKLMNCHASHL $. $( [12-Aug-97] $) ${ lan.1 $e |- a = b $. $( Introduce conjunct on left. $) lan $p |- ( c ^ a ) = ( c ^ b ) $= ( wn wo wa ax-r4 lor df-a 3tr1 ) CEZAEZFZELBEZFZECAGCBGNPMOLABDHIHCAJCBJK $. $( [10-Aug-97] $) $} ${ ran.1 $e |- a = b $. $( Introduce conjunct on right. $) ran $p |- ( a ^ c ) = ( b ^ c ) $= ( wa lan ancom 3tr1 ) CAECBEACEBCEABCDFACGBCGH $. $( [10-Aug-97] $) $} ${ 2an.1 $e |- a = b $. 2an.2 $e |- c = d $. $( Conjoin both sides of hypotheses. $) 2an $p |- ( a ^ c ) = ( b ^ d ) $= ( wa lan ran ax-r2 ) ACGADGBDGCDAFHABDEIJ $. $( [10-Aug-97] $) $} $( Swap disjuncts. $) or12 $p |- ( a v ( b v c ) ) = ( b v ( a v c ) ) $= ( wo ax-a2 ax-r5 ax-a3 3tr2 ) ABDZCDBADZCDABCDDBACDDIJCABEFABCGBACGH $. $( [27-Aug-97] $) $( Swap conjuncts. $) an12 $p |- ( a ^ ( b ^ c ) ) = ( b ^ ( a ^ c ) ) $= ( wa ancom ran anass 3tr2 ) ABDZCDBADZCDABCDDBACDDIJCABEFABCGBACGH $. $( [27-Aug-97] $) $( Swap disjuncts. $) or32 $p |- ( ( a v b ) v c ) = ( ( a v c ) v b ) $= ( wo ax-a2 lor ax-a3 3tr1 ) ABCDZDACBDZDABDCDACDBDIJABCEFABCGACBGH $. $( [27-Aug-97] $) $( Swap conjuncts. $) an32 $p |- ( ( a ^ b ) ^ c ) = ( ( a ^ c ) ^ b ) $= ( wa ancom lan anass 3tr1 ) ABCDZDACBDZDABDCDACDBDIJABCEFABCGACBGH $. $( [27-Aug-97] $) $( Swap disjuncts. $) or4 $p |- ( ( a v b ) v ( c v d ) ) = ( ( a v c ) v ( b v d ) ) $= ( wo or12 lor ax-a3 3tr1 ) ABCDEZEZEACBDEZEZEABEJEACELEKMABCDFGABJHACLHI $. $( [27-Aug-97] $) $( Rearrange disjuncts. $) or42 $p |- ( ( a v b ) v ( c v d ) ) = ( ( a v d ) v ( b v c ) ) $= ( wo ax-a2 lor or4 ax-r2 ) ABEZCDEZEJDCEZEADEBCEEKLJCDFGABDCHI $. $( [4-Mar-06] $) $( Swap conjuncts. $) an4 $p |- ( ( a ^ b ) ^ ( c ^ d ) ) = ( ( a ^ c ) ^ ( b ^ d ) ) $= ( wa an12 lan anass 3tr1 ) ABCDEZEZEACBDEZEZEABEJEACELEKMABCDFGABJHACLHI $. $( [27-Aug-97] $) $( Disjunction expressed with conjunction. $) oran $p |- ( a v b ) = ( a ' ^ b ' ) ' $= ( wn wo wa ax-a1 2or df-a ax-r4 3tr1 ) ACZCZBCZCZDZOCZCABDKMEZCOFALBNAFBFGQ PKMHIJ $. $( [10-Aug-97] $) $( Conjunction expressed with disjunction. $) anor1 $p |- ( a ^ b ' ) = ( a ' v b ) ' $= ( wn wa wo df-a ax-a1 ax-r1 lor ax-r4 ax-r2 ) ABCZDACZLCZEZCMBEZCALFOPNBMBN BGHIJK $. $( [12-Aug-97] $) $( Conjunction expressed with disjunction. $) anor2 $p |- ( a ' ^ b ) = ( a v b ' ) ' $= ( wn wa wo df-a ax-a1 ax-r1 ax-r5 ax-r4 ax-r2 ) ACZBDLCZBCZEZCANEZCLBFOPMAN AMAGHIJK $. $( [12-Aug-97] $) $( Conjunction expressed with disjunction. $) anor3 $p |- ( a ' ^ b ' ) = ( a v b ) ' $= ( wn wa wo oran ax-r1 con3 ) ACBCDZABEZJICABFGH $. $( [15-Dec-97] $) $( Disjunction expressed with conjunction. $) oran1 $p |- ( a v b ' ) = ( a ' ^ b ) ' $= ( wn wo wa anor2 ax-r1 con3 ) ABCDZACBEZJICABFGH $. $( [15-Dec-97] $) $( Disjunction expressed with conjunction. $) oran2 $p |- ( a ' v b ) = ( a ^ b ' ) ' $= ( wn wo wa anor1 ax-r1 con3 ) ACBDZABCEZJICABFGH $. $( [15-Dec-97] $) $( Disjunction expressed with conjunction. $) oran3 $p |- ( a ' v b ' ) = ( a ^ b ) ' $= ( wn wo wa df-a ax-r1 con3 ) ACBCDZABEZJICABFGH $. $( [15-Dec-97] $) $( Biconditional expressed with others. $) dfb $p |- ( a == b ) = ( ( a ^ b ) v ( a ' ^ b ' ) ) $= ( tb wn wo wa df-b df-a ax-r1 oran con2 2or ax-r2 ) ABCADZBDZEDZABEZDZEABFZ NOFZEABGPSRTSPABHIQTABJKLM $. $( [10-Aug-97] $) $( Negated biconditional. $) dfnb $p |- ( a == b ) ' = ( ( a v b ) ^ ( a ' v b ' ) ) $= ( wa wn wo tb oran con2 ancom ax-r2 dfb ax-r4 df-a ax-r1 2an 3tr1 ) ABCZADZ BDZCZEZDZTDZQDZCZABFZDABEZRSEZCUBUDUCCZUEUAUIQTGHUDUCIJUFUAABKLUGUCUHUDABGU DUHQUHABMHNOP $. $( [30-Aug-97] $) $( Commutative law. $) bicom $p |- ( a == b ) = ( b == a ) $= ( wa wn wo tb ancom 2or dfb 3tr1 ) ABCZADZBDZCZEBACZMLCZEABFBAFKONPABGLMGHA BIBAIJ $. $( [10-Aug-97] $) ${ lbi.1 $e |- a = b $. $( Introduce biconditional to the left. $) lbi $p |- ( c == a ) = ( c == b ) $= ( wa wn wo tb lan ax-r4 2or dfb 3tr1 ) CAEZCFZAFZEZGCBEZOBFZEZGCAHCBHNRQT ABCDIPSOABDJIKCALCBLM $. $( [10-Aug-97] $) $} ${ rbi.1 $e |- a = b $. $( Introduce biconditional to the right. $) rbi $p |- ( a == c ) = ( b == c ) $= ( tb lbi bicom 3tr1 ) CAECBEACEBCEABCDFACGBCGH $. $( [10-Aug-97] $) $} ${ 2bi.1 $e |- a = b $. 2bi.2 $e |- c = d $. $( Join both sides with biconditional. $) 2bi $p |- ( a == c ) = ( b == d ) $= ( tb lbi rbi ax-r2 ) ACGADGBDGCDAFHABDEIJ $. $( [10-Aug-97] $) $} $( Alternate defintion of "false". $) dff2 $p |- 0 = ( a v a ' ) ' $= ( wf wt wn wo df-f df-t ax-r4 ax-r2 ) BCDAADEZDFCJAGHI $. $( [10-Aug-97] $) $( Alternate defintion of "false". $) dff $p |- 0 = ( a ^ a ' ) $= ( wf wn wo wa dff2 ancom anor2 ax-r2 ax-r1 ) BAACZDCZAKEZAFMLMKAELAKGAAHIJI $. $( [29-Aug-97] $) $( Disjunction with 0. $) or0 $p |- ( a v 0 ) = a $= ( wf wo wn dff2 ax-a2 ax-r4 ax-r2 lor ax-a5 ) ABCAADZACZDZCABMABAKCZDMAENLA KFGHIAAJH $. $( [10-Aug-97] $) $( Disjunction with 0. $) or0r $p |- ( 0 v a ) = a $= ( wf wo ax-a2 or0 ax-r2 ) BACABCABADAEF $. $( [26-Nov-97] $) $( Disjunction with 1. $) or1 $p |- ( a v 1 ) = 1 $= ( wt wo wn df-t lor ax-a4 ax-r2 ax-r1 ) ABCZAADCZBJAKCKBKAAEZFAAGHBKLIH $. $( [10-Aug-97] $) $( Disjunction with 1. $) or1r $p |- ( 1 v a ) = 1 $= ( wt wo ax-a2 or1 ax-r2 ) BACABCBBADAEF $. $( [26-Nov-97] $) $( Conjunction with 1. $) an1 $p |- ( a ^ 1 ) = a $= ( wt wa wn wo df-a wf df-f ax-r1 lor or0 ax-r2 con2 ) ABCADZBDZEZDAABFPAPNG ENOGNGOHIJNKLML $. $( [10-Aug-97] $) $( Conjunction with 1. $) an1r $p |- ( 1 ^ a ) = a $= ( wt wa ancom an1 ax-r2 ) BACABCABADAEF $. $( [26-Nov-97] $) $( Conjunction with 0. $) an0 $p |- ( a ^ 0 ) = 0 $= ( wf wa wn wo df-a wt or1 df-f con2 lor 3tr1 ax-r2 ) ABCADZBDZEZDBABFPBNGEG PONHOGNBGIJZKQLJM $. $( [10-Aug-97] $) $( Conjunction with 0. $) an0r $p |- ( 0 ^ a ) = 0 $= ( wf wa ancom an0 ax-r2 ) BACABCBBADAEF $. $( [26-Nov-97] $) $( Idempotent law. $) oridm $p |- ( a v a ) = a $= ( wo wn wf ax-a1 or0 ax-r1 ax-r4 ax-r2 lor ax-a5 ) AABAACZDBZCZBAANAALCNAEL MMLLFGHIJADKI $. $( [10-Aug-97] $) $( Idempotent law. $) anidm $p |- ( a ^ a ) = a $= ( wa wn wo df-a oridm con2 ax-r2 ) AABACZIDZCAAAEJAIFGH $. $( [10-Aug-97] $) $( Distribution of disjunction over disjunction. $) orordi $p |- ( a v ( b v c ) ) = ( ( a v b ) v ( a v c ) ) $= ( wo oridm ax-r1 ax-r5 or4 ax-r2 ) ABCDZDAADZJDABDACDDAKJKAAEFGAABCHI $. $( [27-Aug-97] $) $( Distribution of disjunction over disjunction. $) orordir $p |- ( ( a v b ) v c ) = ( ( a v c ) v ( b v c ) ) $= ( wo oridm ax-r1 lor or4 ax-r2 ) ABDZCDJCCDZDACDBCDDCKJKCCEFGABCCHI $. $( [27-Aug-97] $) $( Distribution of conjunction over conjunction. $) anandi $p |- ( a ^ ( b ^ c ) ) = ( ( a ^ b ) ^ ( a ^ c ) ) $= ( wa anidm ax-r1 ran an4 ax-r2 ) ABCDZDAADZJDABDACDDAKJKAAEFGAABCHI $. $( [27-Aug-97] $) $( Distribution of conjunction over conjunction. $) anandir $p |- ( ( a ^ b ) ^ c ) = ( ( a ^ c ) ^ ( b ^ c ) ) $= ( wa anidm ax-r1 lan an4 ax-r2 ) ABDZCDJCCDZDACDBCDDCKJKCCEFGABCCHI $. $( [27-Aug-97] $) $( Identity law. $) biid $p |- ( a == a ) = 1 $= ( wa wn wo tb wt anidm 2or dfb df-t 3tr1 ) AABZACZMBZDAMDAAEFLANMAGMGHAAIAJ K $. $( [10-Aug-97] $) $( Identity law. $) 1b $p |- ( 1 == a ) = a $= ( wt tb wa wn wo dfb wf ancom df-f ax-r1 lan ax-r2 2or an1 an0 or0 ) BACBAD ZBEZAEZDZFZABAGUBAHFZAUBABDZTHDZFUCRUDUAUEBAIUATSDUESTISHTHSJKLMNUDAUEHAOTP NMAQMM $. $( [10-Aug-97] $) ${ bi1.1 $e |- a = b $. $( Identity inference. $) bi1 $p |- ( a == b ) = 1 $= ( tb wt rbi biid ax-r2 ) ABDBBDEABBCFBGH $. $( [30-Aug-97] $) $} ${ 1bi.1 $e |- a = b $. $( Identity inference. $) 1bi $p |- 1 = ( a == b ) $= ( tb wt bi1 ax-r1 ) ABDEABCFG $. $( [30-Aug-97] $) $} $( Absorption law. $) orabs $p |- ( a v ( a ^ b ) ) = a $= ( wa wo wn df-a lor ax-a5 ax-r2 ) AABCZDAAEBEZDEZDAJLAABFGAKHI $. $( [11-Aug-97] $) $( Absorption law. $) anabs $p |- ( a ^ ( a v b ) ) = a $= ( wo wa wn ax-a1 ax-r5 lan df-a ax-r2 ax-a5 con2 ) AABCZDZAEZOEZBCZECZEZANA QDSMQAAPBAFGHAQIJRAOBKLJ $. $( [11-Aug-97] $) $( Contraposition law. $) conb $p |- ( a == b ) = ( a ' == b ' ) $= ( wa wn wo tb ax-a2 ax-a1 2an lor ax-r2 dfb 3tr1 ) ABCZADZBDZCZEZQODZPDZCZE ZABFOPFRQNEUBNQGNUAQASBTAHBHIJKABLOPLM $. $( [10-Aug-97] $) ${ leoa.1 $e |- ( a v c ) = b $. $( Relation between two methods of expressing "less than or equal to". $) leoa $p |- ( a ^ b ) = a $= ( wa wo ax-r1 lan anabs ax-r2 ) ABEAACFZEABKAKBDGHACIJ $. $( [11-Aug-97] $) $} ${ leao.1 $e |- ( c ^ b ) = a $. $( Relation between two methods of expressing "less than or equal to". $) leao $p |- ( a v b ) = b $= ( wo wa ax-a2 ax-r1 ancom ax-r2 lor orabs ) ABEZBBCFZEZBMBAEOABGANBACBFZN PADHNPBCIHJKJBCLJ $. $( [11-Aug-97] $) $} $( Mittelstaedt implication. $) mi $p |- ( ( a v b ) == b ) = ( b v ( a ' ^ b ' ) ) $= ( wo tb wa wn dfb ancom ax-a2 lan anabs ax-r2 oran con2 ran anass anidm 2or ) ABCZBDSBEZSFZBFZEZCBAFZUBEZCSBGTBUCUETBSEZBSBHUFBBACZEBSUGBABIJBAKLLUCUDU BUBEZEZUEUCUEUBEUIUAUEUBSUEABMNOUDUBUBPLUHUBUDUBQJLRL $. $( [12-Aug-97] $) $( Dishkant implication. $) di $p |- ( ( a ^ b ) == a ) = ( a ' v ( a ^ b ) ) $= ( wn wo tb wa conb ax-a1 ax-r1 rbi mi ax-r2 ancom df-a 2an lor 3tr1 ) BCZAC ZDZCZAEZSRCZSCZFZDZABFZAESUGDUBUACZSEZUFUAAGUITSEUFUHTSTUHTHIJRSKLLUGUAAUGB AFZUAABMZBANLJUGUESUGUJUEUKBUCAUDBHAHOLPQ $. $( [12-Aug-97] $) $( Lemma in proof of Th. 1 of Pavicic 1987. $) omlem1 $p |- ( ( a v ( a ' ^ ( a v b ) ) ) v ( a v b ) ) = ( a v b ) $= ( wn wo wa ax-a2 ax-a3 3tr1 ax-r2 ax-r1 oridm ax-r5 ancom 2or orabs 3tr2 ) AACZABDZEZDZADBDZRADZSDZTRDZRUDRTDUAUCTRFTABGZRASGHUEUCRRQEZDRUBRSUFUBAADZB DZRUHUBUHARDUBAABGARFIJUGABAKLIQRMNRQOIP $. $( [12-Aug-97] $) $( Lemma in proof of Th. 1 of Pavicic 1987. $) omlem2 $p |- ( ( a v b ) ' v ( a v ( a ' ^ ( a v b ) ) ) ) = 1 $= ( wo wn wa wt ax-a2 anor2 2or ax-a3 ax-r1 df-t 3tr1 ) ABCZDZACZADNEZCZAOCZS DZCOAQCCZFPSQTOAGANHIRUAOAQJKSLM $. $( [12-Aug-97] $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Relationship analogues (ordering; commutation) =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( Define 'less than or equal to' analogue. $) df-le $a |- ( a =<2 b ) = ( ( a v b ) == b ) $. $( Since we don't have strong BMP in AUQL, we must add extra definitions to eliminate the middle = . $) ${ df-le1.1 $e |- ( a v b ) = b $. $( Define 'less than or equal to'. See ~ df-le2 for the other direction. $) df-le1 $a |- a =< b $. $} ${ df-le2.1 $e |- a =< b $. $( Define 'less than or equal to'. See ~ df-le1 for the other direction. $) df-le2 $a |- ( a v b ) = b $. $} ${ df-c1.1 $e |- a = ( ( a ^ b ) v ( a ^ b ' ) ) $. $( Define 'commutes'. See ~ df-c2 for the other direction. $) df-c1 $a |- a C b $. $} ${ df-c2.1 $e |- a C b $. $( Define 'commutes'. See ~ df-c1 for the other direction. $) df-c2 $a |- a = ( ( a ^ b ) v ( a ^ b ' ) ) $. $} $( Define 'commutator'. $) df-cmtr $a |- C ( a , b ) = ( ( ( a ^ b ) v ( a ^ b ' ) ) v ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) $. ${ df2le1.1 $e |- ( a ^ b ) = a $. $( Alternate definition of 'less than or equal to'. $) df2le1 $p |- a =< b $= ( leao df-le1 ) ABABACDE $. $( [27-Aug-97] $) $} ${ df2le2.1 $e |- a =< b $. $( Alternate definition of 'less than or equal to'. $) df2le2 $p |- ( a ^ b ) = a $= ( df-le2 leoa ) ABBABCDE $. $( [27-Aug-97] $) $} ${ letr.1 $e |- a =< b $. letr.2 $e |- b =< c $. $( Transitive law for l.e. $) letr $p |- a =< c $= ( wa wo df-le2 ax-r5 ax-r1 ax-a3 3tr2 lan anabs ax-r2 df2le1 ) ACACFAABCG ZGZFACRAQABGZCGZCRTQSBCABDHIJBCEHABCKLMAQNOP $. $( [27-Aug-97] $) $} ${ bltr.1 $e |- a = b $. bltr.2 $e |- b =< c $. $( Transitive inference. $) bltr $p |- a =< c $= ( wo ax-r5 df-le2 ax-r2 df-le1 ) ACACFBCFCABCDGBCEHIJ $. $( [28-Aug-97] $) $} ${ lbtr.1 $e |- a =< b $. lbtr.2 $e |- b = c $. $( Transitive inference. $) lbtr $p |- a =< c $= ( wa ax-r1 lan df2le2 ax-r2 df2le1 ) ACACFABFACBABCEGHABDIJK $. $( [28-Aug-97] $) $} ${ le3tr1.1 $e |- a =< b $. le3tr1.2 $e |- c = a $. le3tr1.3 $e |- d = b $. $( Transitive inference useful for introducing definitions. $) le3tr1 $p |- c =< d $= ( bltr ax-r1 lbtr ) CBDCABFEHDBGIJ $. $( [27-Aug-97] $) $} ${ le3tr2.1 $e |- a =< b $. le3tr2.2 $e |- a = c $. le3tr2.3 $e |- b = d $. $( Transitive inference useful for eliminating definitions. $) le3tr2 $p |- c =< d $= ( ax-r1 le3tr1 ) ABCDEACFHBDGHI $. $( [27-Aug-97] $) $} ${ bile.1 $e |- a = b $. $( Biconditional to l.e. $) bile $p |- a =< b $= ( wo ax-r5 oridm ax-r2 df-le1 ) ABABDBBDBABBCEBFGH $. $( [27-Aug-97] $) $} $( An ortholattice inequality, corresponding to a theorem provable in Hilbert space. Part of Definition 2.1 p. 2092, in M. Pavicic and N. Megill, "Quantum and Classical Implicational Algebras with Primitive Implication," _Int. J. of Theor. Phys._ 37, 2091-2098 (1998). $) qlhoml1a $p |- a =< a ' ' $= ( wn ax-a1 bile ) AABBACD $. $( [3-Feb-02] $) $( An ortholattice inequality, corresponding to a theorem provable in Hilbert space. $) qlhoml1b $p |- a ' ' =< a $= ( wn ax-a1 ax-r1 bile ) ABBZAAFACDE $. $( [3-Feb-02] $) ${ lebi.1 $e |- a =< b $. lebi.2 $e |- b =< a $. $( L.e. to biconditional. $) lebi $p |- a = b $= ( wo df-le2 ax-r1 ax-a2 ax-r2 ) AABEZBABAEZJKABADFGBAHIABCFI $. $( [27-Aug-97] $) $} $( Anything is l.e. 1. $) le1 $p |- a =< 1 $= ( wt or1 df-le1 ) ABACD $. $( [30-Aug-97] $) $( 0 is l.e. anything. $) le0 $p |- 0 =< a $= ( wf wo ax-a2 or0 ax-r2 df-le1 ) BABACABCABADAEFG $. $( [30-Aug-97] $) $( Identity law for less-than-or-equal. $) leid $p |- a =< a $= ( id bile ) AAABC $. $( [24-Dec-98] $) ${ le.1 $e |- a =< b $. $( Add disjunct to right of l.e. $) ler $p |- a =< ( b v c ) $= ( wo ax-a3 ax-r1 df-le2 ax-r5 ax-r2 df-le1 ) ABCEZALEZABEZCEZLOMABCFGNBCA BDHIJK $. $( [27-Aug-97] $) $( Add disjunct to right of l.e. $) lerr $p |- a =< ( c v b ) $= ( wo ler ax-a2 lbtr ) ABCECBEABCDFBCGH $. $( [11-Nov-97] $) $( Add conjunct to left of l.e. $) lel $p |- ( a ^ c ) =< b $= ( wa an32 df2le2 ran ax-r2 df2le1 ) ACEZBKBEABEZCEKACBFLACABDGHIJ $. $( [27-Aug-97] $) $( Add disjunct to right of both sides. $) leror $p |- ( a v c ) =< ( b v c ) $= ( wo orordir ax-r1 df-le2 ax-r5 ax-r2 df-le1 ) ACEZBCEZLMEZABEZCEZMPNABCF GOBCABDHIJK $. $( [27-Aug-97] $) $( Add conjunct to right of both sides. $) leran $p |- ( a ^ c ) =< ( b ^ c ) $= ( wa anandir ax-r1 df2le2 ran ax-r2 df2le1 ) ACEZBCEZLMEZABEZCEZLPNABCFGO ACABDHIJK $. $( [27-Aug-97] $) $( Contrapositive for l.e. $) lecon $p |- b ' =< a ' $= ( wn wa wo ax-a2 oran df-le2 3tr2 con3 df2le1 ) BDZADZMNEZBBAFABFODBBAGBA HABCIJKL $. $( [27-Aug-97] $) $} ${ lecon1.1 $e |- a ' =< b ' $. $( Contrapositive for l.e. $) lecon1 $p |- b =< a $= ( wn lecon ax-a1 le3tr1 ) BDZDADZDBAIHCEBFAFG $. $( [7-Nov-97] $) $} ${ lecon2.1 $e |- a ' =< b $. $( Contrapositive for l.e. $) lecon2 $p |- b ' =< a $= ( wn ax-a1 lbtr lecon1 ) ABDZADBHDCBEFG $. $( [19-Dec-98] $) $} ${ lecon3.1 $e |- a =< b ' $. $( Contrapositive for l.e. $) lecon3 $p |- b =< a ' $= ( wn lecon lecon2 lecon1 ) ADZBBDZHAICEFG $. $( [19-Dec-98] $) $} $( L.e. absorption. $) leo $p |- a =< ( a v b ) $= ( wo anabs df2le1 ) AABCABDE $. $( [27-Aug-97] $) $( L.e. absorption. $) leor $p |- a =< ( b v a ) $= ( wo leo ax-a2 lbtr ) AABCBACABDABEF $. $( [11-Nov-97] $) $( L.e. absorption. $) lea $p |- ( a ^ b ) =< a $= ( wa wo ax-a2 orabs ax-r2 df-le1 ) ABCZAIADAIDAIAEABFGH $. $( [27-Aug-97] $) $( L.e. absorption. $) lear $p |- ( a ^ b ) =< b $= ( wa ancom lea bltr ) ABCBACBABDBAEF $. $( [11-Nov-97] $) $( L.e. absorption. $) leao1 $p |- ( a ^ b ) =< ( a v c ) $= ( wa wo lea leo letr ) ABDAACEABFACGH $. $( [8-Jul-00] $) $( L.e. absorption. $) leao2 $p |- ( b ^ a ) =< ( a v c ) $= ( wa wo lear leo letr ) BADAACEBAFACGH $. $( [8-Jul-00] $) $( L.e. absorption. $) leao3 $p |- ( a ^ b ) =< ( c v a ) $= ( wa wo lea leor letr ) ABDACAEABFACGH $. $( [8-Jul-00] $) $( L.e. absorption. $) leao4 $p |- ( b ^ a ) =< ( c v a ) $= ( wa wo lear leor letr ) BADACAEBAFACGH $. $( [8-Jul-00] $) ${ lel.1 $e |- a =< b $. $( Add disjunct to left of both sides. $) lelor $p |- ( c v a ) =< ( c v b ) $= ( wo leror ax-a2 le3tr1 ) ACEBCECAECBEABCDFCAGCBGH $. $( [25-Oct-97] $) $( Add conjunct to left of both sides. $) lelan $p |- ( c ^ a ) =< ( c ^ b ) $= ( wa leran ancom le3tr1 ) ACEBCECAECBEABCDFCAGCBGH $. $( [25-Oct-97] $) $} ${ le2.1 $e |- a =< b $. le2.2 $e |- c =< d $. $( Disjunction of 2 l.e.'s. $) le2or $p |- ( a v c ) =< ( b v d ) $= ( wo leror lelor letr ) ACGBCGBDGABCEHCDBFIJ $. $( [25-Oct-97] $) $( Conjunction of 2 l.e.'s. $) le2an $p |- ( a ^ c ) =< ( b ^ d ) $= ( wa leran lelan letr ) ACGBCGBDGABCEHCDBFIJ $. $( [25-Oct-97] $) $} ${ lel2.1 $e |- a =< b $. lel2.2 $e |- c =< b $. $( Disjunction of 2 l.e.'s. $) lel2or $p |- ( a v c ) =< b $= ( wo le2or oridm lbtr ) ACFBBFBABCBDEGBHI $. $( [11-Nov-97] $) $( Conjunction of 2 l.e.'s. $) lel2an $p |- ( a ^ c ) =< b $= ( wa le2an anidm lbtr ) ACFBBFBABCBDEGBHI $. $( [11-Nov-97] $) $} ${ ler2.1 $e |- a =< b $. ler2.2 $e |- a =< c $. $( Disjunction of 2 l.e.'s. $) ler2or $p |- a =< ( b v c ) $= ( wo oridm ax-r1 le2or bltr ) AAAFZBCFKAAGHABACDEIJ $. $( [11-Nov-97] $) $( Conjunction of 2 l.e.'s. $) ler2an $p |- a =< ( b ^ c ) $= ( wa anidm ax-r1 le2an bltr ) AAAFZBCFKAAGHABACDEIJ $. $( [11-Nov-97] $) $} $( Half of distributive law. $) ledi $p |- ( ( a ^ b ) v ( a ^ c ) ) =< ( a ^ ( b v c ) ) $= ( wa wo anidm ax-r1 lea le2or oridm lbtr ancom bltr le2an ) ABDZACDZEZQQDZA BCEZDRQQFGQAQSQAAEAOAPAABHACHIAJKOBPCOBADBABLBAHMPCADCACLCAHMINM $. $( [28-Aug-97] $) $( Half of distributive law. $) ledir $p |- ( ( b ^ a ) v ( c ^ a ) ) =< ( ( b v c ) ^ a ) $= ( wa wo ledi ancom 2or le3tr1 ) ABDZACDZEABCEZDBADZCADZELADABCFMJNKBAGCAGHL AGI $. $( [30-Nov-98] $) $( Half of distributive law. $) ledio $p |- ( a v ( b ^ c ) ) =< ( ( a v b ) ^ ( a v c ) ) $= ( wa wo anidm ax-r1 leo le2an bltr ax-a2 lbtr le2or oridm ) ABCDZEABEZACEZD ZRERARORAAADZRSAAFGAPAQABHACHIJBPCQBBAEPBAHBAKLCCAEQCAHCAKLIMRNL $. $( [28-Aug-97] $) $( Half of distributive law. $) ledior $p |- ( ( b ^ c ) v a ) =< ( ( b v a ) ^ ( c v a ) ) $= ( wa wo ledio ax-a2 2an le3tr1 ) ABCDZEABEZACEZDJAEBAEZCAEZDABCFJAGMKNLBAGC AGHI $. $( [30-Nov-98] $) $( Commutation with 0. Kalmbach 83 p. 20. $) comm0 $p |- a C 0 $= ( wf wo wa wn ax-a2 or0 ax-r2 ax-r1 an0 wt df-f con2 lan an1 2or df-c1 ) AB ABACZABDZABEZDZCZRARABCABAFAGHIUBRSBUAAAJUAAKDATKABKLMNAOHPIHQ $. $( [27-Aug-97] $) $( Commutation with 1. Kalmbach 83 p. 20. $) comm1 $p |- 1 C a $= ( wt wn wo wa df-t ancom an1 ax-r2 2or ax-r1 df-c1 ) BABAACZDZBAEZBMEZDZAFQ NOAPMOABEABAGAHIPMBEMBMGMHIJKIL $. $( [27-Aug-97] $) ${ lecom.1 $e |- a =< b $. $( Comparable elements commute. Beran 84 2.3(iii) p. 40. $) lecom $p |- a C b $= ( wn wa wo orabs ax-r1 df2le2 ax-r5 ax-r2 df-c1 ) ABAAABDZEZFZABEZNFOAAMG HAPNPAABCIHJKL $. $( [30-Aug-97] $) $} ${ bctr.1 $e |- a = b $. bctr.2 $e |- b C c $. $( Transitive inference. $) bctr $p |- a C c $= ( wa wn wo df-c2 ran 2or 3tr1 df-c1 ) ACBBCFZBCGZFZHAACFZAOFZHBCEIDQNRPAB CDJABODJKLM $. $( [30-Aug-97] $) $} ${ cbtr.1 $e |- a C b $. cbtr.2 $e |- b = c $. $( Transitive inference. $) cbtr $p |- a C c $= ( wa wn wo df-c2 lan ax-r4 2or ax-r2 df-c1 ) ACAABFZABGZFZHACFZACGZFZHABD IORQTBCAEJPSABCEKJLMN $. $( [30-Aug-97] $) $} ${ comcom2.1 $e |- a C b $. $( Commutation equivalence. Kalmbach 83 p. 23. Does not use OML. $) comcom2 $p |- a C b ' $= ( wn wa wo df-c2 ax-a1 lan ax-r5 ax-r2 ax-a2 df-c1 ) ABDZAANDZEZANEZFZQPF AABEZQFRABCGSPQBOABHIJKPQLKM $. $( [27-Aug-97] $) $} $( Commutation law. Does not use OML. $) comorr $p |- a C ( a v b ) $= ( wo leo lecom ) AABCABDE $. $( [30-Aug-97] $) $( Commutation law. Does not use OML. $) coman1 $p |- ( a ^ b ) C a $= ( wa lea lecom ) ABCAABDE $. $( [30-Aug-97] $) $( Commutation law. Does not use OML. $) coman2 $p |- ( a ^ b ) C b $= ( wa ancom coman1 bctr ) ABCBACBABDBAEF $. $( [9-Nov-97] $) $( Identity law for commutation. Does not use OML. $) comid $p |- a C a $= ( wo comorr oridm cbtr ) AAABAAACADE $. $( [9-Nov-97] $) ${ distlem.1 $e |- ( a ^ ( b v c ) ) =< b $. $( Distributive law inference (uses OL only). $) distlem $p |- ( a ^ ( b v c ) ) = ( ( a ^ b ) v ( a ^ c ) ) $= ( wo wa lea ler2an leo letr ledi lebi ) ABCEZFZABFZACFZEZNOQNABAMGDHOPIJA BCKL $. $( [17-Nov-98] $) $} ${ str.1 $e |- a =< ( b v c ) $. str.2 $e |- ( a ^ ( b v c ) ) =< b $. $( Strengthening rule. $) str $p |- a =< b $= ( wo wa id bile ler2an letr ) AABCFZGBAALAAAHIDJEK $. $( [18-Nov-98] $) $} $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Commutator (ortholattice theorems) =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( Commutative law for commutator. $) cmtrcom $p |- C ( a , b ) = C ( b , a ) $= ( wa wn wo wcmtr ancom 2or or4 ax-r2 df-cmtr 3tr1 ) ABCZABDZCZEZADZBCZQNCZE ZEZBACZBQCZENACZNQCZEEZABFBAFUAUBUDEZUCUEEZEUFPUGTUHMUBOUDABGANGHRUCSUEQBGQ NGHHUBUDUCUEIJABKBAKL $. $( [24-Jan-99] $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Weak "orthomodular law" in ortholattices. =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= All theorems here do not require R3 and are true in all ortholattices. $) $( Weak A1. $) wa1 $p |- ( a == a ' ' ) = 1 $= ( wn ax-a1 bi1 ) AABBACD $. $( [27-Sep-97] $) $( Weak A2. $) wa2 $p |- ( ( a v b ) == ( b v a ) ) = 1 $= ( wo ax-a2 bi1 ) ABCBACABDE $. $( [27-Sep-97] $) $( Weak A3. $) wa3 $p |- ( ( ( a v b ) v c ) == ( a v ( b v c ) ) ) = 1 $= ( wo ax-a3 bi1 ) ABDCDABCDDABCEF $. $( [27-Sep-97] $) $( Weak A4. $) wa4 $p |- ( ( a v ( b v b ' ) ) == ( b v b ' ) ) = 1 $= ( wn wo ax-a4 bi1 ) ABBCDZDGABEF $. $( [27-Sep-97] $) $( Weak A5. $) wa5 $p |- ( ( a v ( a ' v b ' ) ' ) == a ) = 1 $= ( wn wo ax-a5 bi1 ) AACBCZDCDAAGEF $. $( [27-Sep-97] $) $( Weak A6. $) wa6 $p |- ( ( a == b ) == ( ( a ' v b ' ) ' v ( a v b ) ' ) ) = 1 $= ( tb wn wo df-b bi1 ) ABCADBDEDABEDEABFG $. $( [12-Jul-98] $) ${ wr1.1 $e |- ( a == b ) = 1 $. $( Weak R1. $) wr1 $p |- ( b == a ) = 1 $= ( tb wt bicom ax-r2 ) BADABDEBAFCG $. $( [2-Sep-97] $) $} ${ wr3.1 $e |- ( 1 == a ) = 1 $. $( Weak R3. $) wr3 $p |- a = 1 $= ( wt tb 1b ax-r1 ax-r2 ) ACADZCHAAEFBG $. $( [2-Sep-97] $) $} ${ wr4.1 $e |- ( a == b ) = 1 $. $( Weak R4. $) wr4 $p |- ( a ' == b ' ) = 1 $= ( wn tb wt conb ax-r1 ax-r2 ) ADBDEZABEZFKJABGHCI $. $( [2-Sep-97] $) $} $( Absorption law. $) wa5b $p |- ( ( a v ( a ^ b ) ) == a ) = 1 $= ( wa wo orabs bi1 ) AABCDAABEF $. $( [27-Sep-97] $) $( Absorption law. $) wa5c $p |- ( ( a ^ ( a v b ) ) == a ) = 1 $= ( wo wa anabs bi1 ) AABCDAABEF $. $( [27-Sep-97] $) $( Contraposition law. $) wcon $p |- ( ( a == b ) == ( a ' == b ' ) ) = 1 $= ( tb wn conb bi1 ) ABCADBDCABEF $. $( [27-Sep-97] $) $( Commutative law. $) wancom $p |- ( ( a ^ b ) == ( b ^ a ) ) = 1 $= ( wa ancom bi1 ) ABCBACABDE $. $( [27-Sep-97] $) $( Associative law. $) wanass $p |- ( ( ( a ^ b ) ^ c ) == ( a ^ ( b ^ c ) ) ) = 1 $= ( wa anass bi1 ) ABDCDABCDDABCEF $. $( [27-Sep-97] $) ${ wwbmp.1 $e |- a = 1 $. wwbmp.2 $e |- ( a == b ) = 1 $. $( Weak weak equivalential detachment (WBMP). $) wwbmp $p |- b = 1 $= ( wt tb rbi ax-r1 ax-r2 wr3 ) BEBFZABFZELKAEBCGHDIJ $. $( [2-Sep-97] $) $} ${ wwbmpr.1 $e |- b = 1 $. wwbmpr.2 $e |- ( a == b ) = 1 $. $( Weak weak equivalential detachment (WBMP). $) wwbmpr $p |- a = 1 $= ( wr1 wwbmp ) BACABDEF $. $( [24-Sep-97] $) $} ${ wcon1.1 $e |- ( a ' == b ' ) = 1 $. $( Weak contraposition. $) wcon1 $p |- ( a == b ) = 1 $= ( tb wn wt conb ax-r2 ) ABDAEBEDFABGCH $. $( [24-Sep-97] $) $} ${ wcon2.1 $e |- ( a == b ' ) = 1 $. $( Weak contraposition. $) wcon2 $p |- ( a ' == b ) = 1 $= ( wn tb wt conb ax-a1 rbi ax-r1 ax-r2 ) ADZBEZABDZEZFMLDZNEZOLBGOQAPNAHIJ KCK $. $( [24-Sep-97] $) $} ${ wcon3.1 $e |- ( a ' == b ) = 1 $. $( Weak contraposition. $) wcon3 $p |- ( a == b ' ) = 1 $= ( wn tb wt ax-a1 ax-r1 lbi ax-r2 wcon1 ) ABDZADZLDZEMBEFNBMBNBGHICJK $. $( [24-Sep-97] $) $} ${ wlem3.1.1 $e |- ( a v b ) = b $. wlem3.1.2 $e |- ( b ' v a ) = 1 $. $( Weak analogue to lemma used in proof of Th. 3.1 of Pavicic 1993. $) wlem3.1 $p |- ( a == b ) = 1 $= ( tb wn wo wt wa dfb leoa oran ax-r1 ax-r2 con3 2or ax-a2 ) ABEZBFZAGZHRA BIZAFSIZGZTABJUCASGTUAAUBSABBCKUBBUBFZABGZBUEUDABLMCNOPASQNNDN $. $( [2-Sep-97] $) $} $( Theorem structurally similar to orthomodular law but does not require R3. $) woml $p |- ( ( a v ( a ' ^ ( a v b ) ) ) == ( a v b ) ) = 1 $= ( wn wo wa omlem1 omlem2 wlem3.1 ) AACABDZEDIABFABGH $. $( [2-Sep-97] $) ${ wwoml2.1 $e |- a =< b $. $( Weak orthomodular law. $) wwoml2 $p |- ( ( a v ( a ' ^ b ) ) == b ) = 1 $= ( wn wa wo tb wt df-le2 ax-r1 lan lor rbi lbi woml 3tr2 ) AADZBEZFZABFZGA QTEZFZTGSBGHSUBTRUAABTQTBABCIZJKLMTBSUCNABOP $. $( [2-Sep-97] $) $} ${ wwoml3.1 $e |- a =< b $. wwoml3.2 $e |- ( b ^ a ' ) = 0 $. $( Weak orthomodular law. $) wwoml3 $p |- ( a == b ) = 1 $= ( wf wo tb wn wa wt ax-r1 ancom ax-r2 lor rbi or0 wwoml2 3tr2 ) AEFZBGAAH ZBIZFZBGABGJSUBBEUAAEBTIZUAUCEDKBTLMNOSABAPOABCQR $. $( [2-Sep-97] $) $} ${ wwcomd.1 $e |- a ' C b $. $( Commutation dual (weak). Kalmbach 83 p. 23. $) wwcomd $p |- a = ( ( a v b ) ^ ( a v b ' ) ) $= ( wo wn wa df-c2 oran ax-a2 anor2 ax-r1 con3 2an ax-r4 3tr1 ax-r2 con1 ) AABDZABEZDZFZAEZUBBFZUBSFZDZUAEZUBBCGUDUCDUDEZUCEZFZEUEUFUDUCHUCUDIUAUIRU GTUHABHTUCUCTEABJKLMNOPQ $. $( [2-Sep-97] $) $} ${ wwcom3ii.1 $e |- b ' C a $. $( Lemma 3(ii) (weak) of Kalmbach 83 p. 23. $) wwcom3ii $p |- ( a ^ ( a ' v b ) ) = ( a ^ b ) $= ( wa wn wo wwcomd lan anass ax-r1 ax-a2 anabs ax-r2 2an ) ABDZAAEZBFZDZOA BAFZBPFZDZDZRBUAABACGHUBASDZTDZRUDUBASTIJUCATQUCAABFZDASUEABAKHABLMBPKNMM J $. $( [2-Sep-97] $) $} ${ wwfh.1 $e |- b C a $. wwfh.2 $e |- c C a $. $( Foulis-Holland Theorem (weak). $) wwfh1 $p |- ( ( a ^ ( b v c ) ) == ( ( a ^ b ) v ( a ^ c ) ) ) = 1 $= ( wo wa tb wn wf df-a ax-r1 con3 ax-r2 2an ax-a1 bctr wwcom3ii anandi lan wt bicom ledi ancom 2or con2 anass 3tr1 an12 oran dff an0 wwoml3 ) ABCFZG ZABGZACGZFZHURUOHUAUOURUBURUOABCUCUOURIZGZAUNBIZCIZGZGZGZJUTUNAGZAIZVAFZV GVBFZGZGZVEUOVFUSVJAUNUDURVJURVHIZVIIZFZVJIUPVLUQVMABKACKUEVNVJVJVNIVHVIK LMNUFOVKUNAVCGZGZVEVKUNAVJGZGVPUNAVJUGVQVOUNAVHGZAVIGZGAVAGZAVBGZGVQVOVRV TVSWAAVAVAIZBABWBBPLDQRAVBVBIZCACWCCPLEQROAVHVISAVAVBSUHTNUNAVCUINNVEAJGJ VDJAVDUNUNIZGZJVCWDUNVCUNUNVCIBCUJLMTJWEUNUKLNTAULNNUMN $. $( [3-Sep-97] $) $} ${ wwfh2.1 $e |- a C b $. wwfh2.2 $e |- c ' C a $. $( Foulis-Holland Theorem (weak). $) wwfh2 $p |- ( ( b ^ ( a v c ) ) == ( ( b ^ a ) v ( b ^ c ) ) ) = 1 $= ( wo wa tb wt bicom wn wf con2 ran ax-r2 lan an4 ax-r1 wwcom3ii anass dff ledi oran df-a ax-r4 ax-a1 bctr ancom ax-r5 comcom2 an12 3tr1 an0 wwoml3 ) BACFZGZBAGZBCGZFZHUSUPHIUPUSJUSUPBACUBUPUSKZGZAKZCBURKZGZGZGZLVAVBCGZVD GZVFVAVBUOGZVDGZVHVAVBBGZUOVCGZGZVJVAUPBKVBFZVCGZGZVMUTVOUPUSVOUSUQKZVCGZ KVOKUQURUCVRVOVQVNVCUQVNBAUDMNUEOMPVPBVNGZVLGVMBUOVNVCQVSVKVLVSBVBGVKBVBV BKZABAVTAUFZRDUGSBVBUHONOOVBBUOVCQOVIVGVDVIVBVTCFZGVGUOWBVBAVTCWAUIPVBCCK AEUJSONOVBCVDTOVFVBLGLVELVBBCVCGGZURVCGZVELWDWCBCVCTRCBVCUKURUAULPVBUMOOU NO $. $( [3-Sep-97] $) $} ${ wwfh3.1 $e |- b ' C a $. wwfh3.2 $e |- c ' C a $. $( Foulis-Holland Theorem (weak). $) wwfh3 $p |- ( ( a v ( b ^ c ) ) == ( ( a v b ) ^ ( a v c ) ) ) = 1 $= ( wa wo tb wn wt conb oran df-a con2 lan ax-r4 ax-r2 2or 2bi comcom2 wwfh1 ) ABCFZGZABGZACGZFZHZAIZBIZCIZGZFZUHUIFZUHUJFZGZHZJUGUCIZUFIZHUPUCU FKUQULURUOUCULUCUHUBIZFZIULIAUBLUTULUSUKUHUBUKBCMNOPQNUFUOUFUDIZUEIZGZIUO IUDUEMVCUOVAUMVBUNUDUMABLNUEUNACLNRPQNSQUHUIUJUIADTUJAETUAQ $. $( [3-Sep-97] $) $} ${ wwfh4.1 $e |- a ' C b $. wwfh4.2 $e |- c C a $. $( Foulis-Holland Theorem (weak). $) wwfh4 $p |- ( ( b v ( a ^ c ) ) == ( ( b v a ) ^ ( b v c ) ) ) = 1 $= ( wa wo tb wn wt conb oran df-a con2 lan ax-r4 ax-r2 2or 2bi comcom2 bctr ax-a1 ax-r1 wwfh2 ) BACFZGZBAGZBCGZFZHZBIZAIZCIZGZFZUKULFZUKUMFZGZHZJUJUF IZUIIZHUSUFUIKUTUOVAURUFUOUFUKUEIZFZIUOIBUELVCUOVBUNUKUEUNACMNOPQNUIURUIU GIZUHIZGZIURIUGUHMVFURVDUPVEUQUGUPBALNUHUQBCLNRPQNSQULUKUMULBDTUMIZAVGCAC VGCUBUCEUATUDQ $. $( [3-Sep-97] $) $} $( Weak OM-like absorption law for ortholattices. $) womao $p |- ( a ' ^ ( a v ( a ' ^ ( a v b ) ) ) ) = ( a ' ^ ( a v b ) ) $= ( wn wo wa lea lear leo lel2or letr ler2an leor lebi ) ACZANABDZEZDZEZPRNON QFRQONQGAOPABHNOGIJKPNQNOFPALKM $. $( [8-Nov-98] $) $( Weak OM-like absorption law for ortholattices. $) womaon $p |- ( a ^ ( a ' v ( a ^ ( a ' v b ) ) ) ) = ( a ^ ( a ' v b ) ) $= ( wn wo wa lea lear leo lel2or letr ler2an leor lebi ) AACZANBDZEZDZEZPRAOA QFRQOAQGNOPNBHAOGIJKPAQAOFPNLKM $. $( [8-Nov-98] $) $( Weak OM-like absorption law for ortholattices. $) womaa $p |- ( a ' v ( a ^ ( a ' v ( a ^ b ) ) ) ) = ( a ' v ( a ^ b ) ) $= ( wn wa wo leo lear lel2or lea leor ler2an letr lebi ) ACZANABDZEZDZEZPNPQN OFAPGHNRONQFOQROAPABIONJKQNJLHM $. $( [8-Nov-98] $) $( Weak OM-like absorption law for ortholattices. $) womaan $p |- ( a v ( a ' ^ ( a v ( a ' ^ b ) ) ) ) = ( a v ( a ' ^ b ) ) $= ( wn wa wo leo lear lel2or lea leor ler2an letr lebi ) AACZANBDZEZDZEZPAPQA OFNPGHAROAQFOQRONPNBIOAJKQAJLHM $. $( [8-Nov-98] $) $( Absorption law for ortholattices. $) anorabs2 $p |- ( a ^ ( b v ( a ^ ( b v c ) ) ) ) = ( a ^ ( b v c ) ) $= ( wo wa lea lear leo lel2or letr ler2an leor lebi ) ABABCDZEZDZEZOQANAPFQPN APGBNOBCHANGIJKOAPANFOBLKM $. $( [13-Nov-98] $) $( Absorption law for ortholattices. $) anorabs $p |- ( a ' ^ ( b v ( a ' ^ ( a v b ) ) ) ) = ( a ' ^ ( a v b ) ) $= ( wn wo wa anorabs2 ax-a2 lan lor 3tr1 ) ACZBKBADZEZDZEMKBKABDZEZDZEPKBAFQN KPMBOLKABGHZIHRJ $. $( [8-Nov-98] $) $( Axiom KA2a in Pavicic and Megill, 1998 $) ska2a $p |- ( ( ( a v c ) == ( b v c ) ) == ( ( c v a ) == ( c v b ) ) ) = 1 $= ( wo tb ax-a2 2bi bi1 ) ACDZBCDZECADZCBDZEIKJLACFBCFGH $. $( [9-Nov-98] $) $( Axiom KA2b in Pavicic and Megill, 1998 $) ska2b $p |- ( ( ( a v c ) == ( b v c ) ) == ( ( a ' ^ c ' ) ' == ( b ' ^ c ' ) ' ) ) = 1 $= ( wo tb wn wa oran 2bi bi1 ) ACDZBCDZEAFCFZGFZBFMGFZEKNLOACHBCHIJ $. $( [9-Nov-98] $) $( Lemma for KA4 soundness (OR version) - uses OL only. $) ka4lemo $p |- ( ( a v b ) v ( ( a v c ) == ( b v c ) ) ) = 1 $= ( wo tb wt le1 wn df-t wa ax-a2 lbtr lelor leror oran con2 ax-r1 ax-r2 bltr 2an leo ax-a3 ledio le3tr1 dfb anor1 anandir ax-r5 ax-r4 3tr1 lor letr lebi ) ABDZACDZBCDZEZDZFURGFUNCDZUSHZDZURUSIVAUNABJZCDZDZUTDZURUSVDUTCVCUNCCVBDZ VCCVBUACVBKLMNVEUNVCUTDZDURUNVCUTUBVGUQUNVGUOUPJZUTDZUQVCVHUTVFCADZCBDZJVCV HCABUCVBCKUOVJUPVKACKBCKTUDNUQVIUQVHUOHZUPHZJZDVIUOUPUEVNUTVHVNAHZCHZJZBHZV PJZJZUTVLVQVMVSUOVQACOPUPVSBCOPTVOVRJZVPJZWAHZCDZHVTUTWACUFWBVTVOVRVPUGQUSW DUNWCCABOUHUIUJRUKRQLMSULSUM $. $( [25-Oct-97] $) $( Lemma for KA4 soundness (AND version) - uses OL only. $) ka4lem $p |- ( ( a ^ b ) ' v ( ( a ^ c ) == ( b ^ c ) ) ) = 1 $= ( wa wn tb wo wt df-a con2 2bi conb ax-r1 ax-r2 2or ka4lemo ) ABDZEZACDZBCD ZFZGAEZBEZGZUBCEZGZUCUEGZFZGHRUDUAUHQUDABIJUAUFEZUGEZFZUHSUITUJACIBCIKUHUKU FUGLMNOUBUCUEPN $. $( [25-Oct-97] $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Kalmbach axioms (soundness proofs) that are true in all ortholattices =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) ${ sklem.1 $e |- a =< b $. $( Soundness lemma. $) sklem $p |- ( a ' v b ) = 1 $= ( wn wo wt or12 df-t ax-r5 ax-r1 ax-a3 ax-a2 3tr2 ax-r2 df-le2 lor or1 ) ADZABEZEZBFEZRBEZFTAUBEZUARABGAREZBEZFBEZUCUAUFUEFUDBAHIJARBKFBLMNSBRABCO PBQM $. $( [30-Aug-97] $) $} $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA1. $) ska1 $p |- ( a == a ) = 1 $= ( biid ) AB $. $( [30-Aug-97] $) $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA3. $) ska3 $p |- ( ( a == b ) ' v ( a ' == b ' ) ) = 1 $= ( wn tb wo wt conb ax-r4 lor ax-a2 df-t 3tr1 ) ACBCDZABDZCZEMMCZEOMEFOPMNMA BGHIOMJMKL $. $( [30-Aug-97] $) $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA5. $) ska5 $p |- ( ( a ^ b ) == ( b ^ a ) ) = 1 $= ( wa ancom bi1 ) ABCBACABDE $. $( [30-Aug-97] $) $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA6. $) ska6 $p |- ( ( a ^ ( b ^ c ) ) == ( ( a ^ b ) ^ c ) ) = 1 $= ( wa anass ax-r1 bi1 ) ABCDDZABDCDZIHABCEFG $. $( [30-Aug-97] $) $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA7. $) ska7 $p |- ( ( a ^ ( a v b ) ) == a ) = 1 $= ( wo wa anabs bi1 ) AABCDAABEF $. $( [30-Aug-97] $) $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA8. $) ska8 $p |- ( ( a ' ^ a ) == ( ( a ' ^ a ) ^ b ) ) = 1 $= ( wn wa wf an0 ax-r1 ancom ax-r2 dff ran 3tr2 bi1 ) ACZADZOBDZEEBDZOPEBEDZQ REBFGBEHIEANDOAJANHIZEOBSKLM $. $( [30-Aug-97] $) $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA9. $) ska9 $p |- ( a == a ' ' ) = 1 $= ( wn ax-a1 bi1 ) AABBACD $. $( [30-Aug-97] $) $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA10. $) ska10 $p |- ( ( a v b ) ' == ( a ' ^ b ' ) ) = 1 $= ( wo wn wa oran con2 bi1 ) ABCZDADBDEZIJABFGH $. $( [30-Aug-97] $) $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA11. $) ska11 $p |- ( ( a v ( a ' ^ ( a v b ) ) ) == ( a v b ) ) = 1 $= ( woml ) ABC $. $( [2-Sep-97] $) $( [30-Aug-97] $) $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA12. $) ska12 $p |- ( ( a == b ) == ( b == a ) ) = 1 $= ( tb bicom bi1 ) ABCBACABDE $. $( [30-Aug-97] $) $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA13. $) ska13 $p |- ( ( a == b ) ' v ( a ' v b ) ) = 1 $= ( tb wn wo wa ledio lea letr ancom bltr leror dfb ax-a2 le3tr1 sklem ) ABCZ ADZBEZABFZRBDZFEZBREZQSUBTREZUCUBUDTUAEZFUDTRUAGUDUEHITBRTBAFBABJBAHKLIABMR BNOP $. $( [30-Aug-97] $) ${ skr0.1 $e |- a = 1 $. skr0.2 $e |- ( a ' v b ) = 1 $. $( Soundness theorem for Kalmbach's quantum propositional logic axiom KR0. $) skr0 $p |- b = 1 $= ( wn wo wt wf ax-a2 or0 ax-r1 ax-r4 df-f ax-r2 ax-r5 3tr1 ) BAEZBFZGBHFZH BFBRBHISBBJKQHBQGEZHAGCLHTMKNOPDN $. $( [30-Aug-97] $) $} $( Lemma for 2-variable WOML proof. $) wlem1 $p |- ( ( a == b ) ' v ( ( a ->1 b ) ^ ( b ->1 a ) ) ) = 1 $= ( tb wn wi1 wa wo wt le1 df-t ax-a2 ax-r2 dfb ledio df-i1 ancom ax-r5 ax-r1 2an bltr lbtr lelor lebi ) ABCZDZABEZBAEZFZGZHUIIHUEUDGZUIHUDUEGUJUDJUDUEKL UDUHUEUDABFZADZBDZFGZUHABMUNUKULGZUKUMGZFZUHUKULUMNUHUQUFUOUGUPUFULUKGUOABO ULUKKLUGUMBAFZGZUPBAOUSURUMGUPUMURKURUKUMBAPQLLSRUATUBTUC $. $( [11-Nov-98] $) $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA15. $) ska15 $p |- ( ( a ->3 b ) ' v ( a ' v b ) ) = 1 $= ( wi3 wn wo wa df-i3 ax-a2 lea lear le2or bltr oridm lbtr sklem ) ABCZADZBE ZPQBFZQBDZFZEZARFZEZRABGUDRRERUBRUCRUBUASERSUAHUAQSBQTIQBJKLARJKRMNLO $. $( [2-Nov-97] $) ${ skmp3.1 $e |- a = 1 $. skmp3.2 $e |- ( a ->3 b ) = 1 $. $( Soundness proof for KMP3. $) skmp3 $p |- b = 1 $= ( wi3 wn wo ska15 skr0 ) ABCABEAFBGDABHII $. $( [2-Nov-97] $) $} ${ lei3.1 $e |- a =< b $. $( L.e. to Kalmbach implication. $) lei3 $p |- ( a ->3 b ) = 1 $= ( wn wa wo wi3 wt ax-a3 ax-a2 ancom lecon df2le2 ax-r2 sklem lan an1 3tr1 2or anor2 con2 lor df-i3 df-t ) ADZBEZUEBDZEZFAUEBFZEZFZUFUFDZFZABGHUKUFU HUJFZFUMUFUHUJIUNULUFUGAFAUGFZUNULUGAJUHUGUJAUHUGUEEUGUEUGKUGUEABCLMNUJAH EAUIHAABCOPAQNSUFUOABTUARUBNABUCUFUDR $. $( [3-Nov-97] $) $} $( E2 - OL theorem proved by EQP $) mccune2 $p |- ( a v ( ( a ' ^ ( ( a v b ' ) ^ ( a v b ) ) ) v ( a ' ^ ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) ) ) = 1 $= ( wn wo wa wt ax-a3 ax-r1 anor2 lear lel2or id bile ler2an lebi anor3 oran3 lea 2or ax-r2 ax-a2 lor df-t 3tr1 ) AABCZDZABDZEZCZAUIDZCZDZDZUJUKDZAACZUHE ZUOUOBEZUOUEEZDZEZDZDFUNUMAUIUKGHVAULAVAUKUIDULUPUKUTUIAUHIUTUSUIUTUSUOUSJU SUOUSUQUOURUOBRUOUERKUSUSUSLMNOUSUFCZUGCZDUIUQVBURVCABIABPSUFUGQTTSUKUIUATU BUJUCUD $. $( [14-Nov-98] $) $( E3 - OL theorem proved by EQP $) mccune3 $p |- ( ( ( ( a ' ^ b ) v ( a ' ^ b ' ) ) v ( a ^ ( a ' v b ) ) ) ' v ( a ' v b ) ) = 1 $= ( wn wa wo wi3 wt df-i3 ax-r1 ax-r4 ax-r5 ska15 ax-r2 ) ACZBDNBCDEANBEZDEZC ZOEABFZCZOEGQSOPRRPABHIJKABLM $. $( [14-Nov-98] $) $( Equivalence for Kalmbach implication. $) i3n1 $p |- ( a ' ->3 b ' ) = ( ( ( a ^ b ' ) v ( a ^ b ) ) v ( a ' ^ ( a v b ' ) ) ) $= ( wn wi3 wa wo df-i3 ax-a1 ran 2an 2or ax-r5 lan ax-r1 ax-r2 ) ACZBCZDPCZQE ZRQCZEZFZPRQFZEZFZAQEZABEZFZPAQFZEZFZPQGUKUEUHUBUJUDUFSUGUAARQAHZIARBTULBHJ KUIUCPARQULLMKNO $. $( [9-Nov-97] $) $( Equivalence for Kalmbach implication. $) ni31 $p |- ( a ->3 b ) ' = ( ( ( a v b ' ) ^ ( a v b ) ) ^ ( a ' v ( a ^ b ' ) ) ) $= ( wi3 wn wo wa df-i3 oran anor2 con2 ax-r1 2an ax-r4 ax-r2 df-a anor1 lor ) ABCZABDZEZABEZFZADZASFZEZFZRUCBFZUCSFZEZAUCBEZFZEZUFDZABGULUIDZUKDZFZDUMUIU KHUPUFUNUBUOUEUIUBUIUGDZUHDZFZDUBDUGUHHUSUBUQTURUAUGTABIJUAURABHKLMNJUKUEUK UCUJDZEZDUEDAUJOVAUEUTUDUCUDUTABPKQMNJLMNNJ $. $( [9-Nov-97] $) $( Identity for Kalmbach implication. $) i3id $p |- ( a ->3 a ) = 1 $= ( wn wa wo wi3 wt wf ancom dff ax-r1 ax-r2 anidm 2or ax-a2 or0 df-t lan an1 df-i3 3tr1 ) ABZACZUAUACZDZAUAADZCZDZAUADZAAEFUGUEUHUDUAUFAUDUAGDZUAUDGUADU IUBGUCUAUBAUACZGUAAHGUJAIJKUALMGUANKUAOKUFAFCAUEFAUEUHFUAANZFUHAPZJKQARKMUK KAASULT $. $( [2-Nov-97] $) ${ li3.1 $e |- a = b $. $( Introduce Kalmbach implication to the left. $) li3 $p |- ( c ->3 a ) = ( c ->3 b ) $= ( wn wa wo wi3 lan ax-r4 2or lor df-i3 3tr1 ) CEZAFZOAEZFZGZCOAGZFZGOBFZO BEZFZGZCOBGZFZGCAHCBHSUEUAUGPUBRUDABODIQUCOABDJIKTUFCABODLIKCAMCBMN $. $( [2-Nov-97] $) $} ${ ri3.1 $e |- a = b $. $( Introduce Kalmbach implication to the right. $) ri3 $p |- ( a ->3 c ) = ( b ->3 c ) $= ( wn wa wo wi3 ax-r4 ran 2or ax-r5 2an df-i3 3tr1 ) AEZCFZPCEZFZGZAPCGZFZ GBEZCFZUCRFZGZBUCCGZFZGACHBCHTUFUBUHQUDSUEPUCCABDIZJPUCRUIJKABUAUGDPUCCUI LMKACNBCNO $. $( [2-Nov-97] $) $} ${ 2i3.1 $e |- a = b $. 2i3.2 $e |- c = d $. $( Join both sides with Kalmbach implication. $) 2i3 $p |- ( a ->3 c ) = ( b ->3 d ) $= ( wi3 li3 ri3 ax-r2 ) ACGADGBDGCDAFHABDEIJ $. $( [2-Nov-97] $) $} ${ ud1lem0a.1 $e |- a = b $. $( Introduce ` ->1 ` to the left. $) ud1lem0a $p |- ( c ->1 a ) = ( c ->1 b ) $= ( wn wa wo wi1 lan lor df-i1 3tr1 ) CEZCAFZGMCBFZGCAHCBHNOMABCDIJCAKCBKL $. $( [23-Nov-97] $) $( Introduce ` ->1 ` to the right. $) ud1lem0b $p |- ( a ->1 c ) = ( b ->1 c ) $= ( wn wa wo wi1 ax-r4 ran 2or df-i1 3tr1 ) AEZACFZGBEZBCFZGACHBCHNPOQABDIA BCDJKACLBCLM $. $( [23-Nov-97] $) $} ${ ud1lem0ab.1 $e |- a = b $. ud1lem0ab.2 $e |- c = d $. $( Join both sides of hypotheses with ` ->1 ` . $) ud1lem0ab $p |- ( a ->1 c ) = ( b ->1 d ) $= ( wi1 ud1lem0b ud1lem0a ax-r2 ) ACGBCGBDGABCEHCDBFIJ $. $( [19-Dec-98] $) $} ${ ud2lem0a.1 $e |- a = b $. $( Introduce ` ->2 ` to the left. $) ud2lem0a $p |- ( c ->2 a ) = ( c ->2 b ) $= ( wn wa wo wi2 ax-r4 lan 2or df-i2 3tr1 ) ACEZAEZFZGBNBEZFZGCAHCBHABPRDOQ NABDIJKCALCBLM $. $( [23-Nov-97] $) $( Introduce ` ->2 ` to the right. $) ud2lem0b $p |- ( a ->2 c ) = ( b ->2 c ) $= ( wn wa wo wi2 ax-r4 ran lor df-i2 3tr1 ) CAEZCEZFZGCBEZOFZGACHBCHPRCNQOA BDIJKACLBCLM $. $( [23-Nov-97] $) $} ${ ud3lem0a.1 $e |- a = b $. $( Introduce Kalmbach implication to the left. $) ud3lem0a $p |- ( c ->3 a ) = ( c ->3 b ) $= ( li3 ) ABCDE $. $( [23-Nov-97] $) $( Introduce Kalmbach implication to the right. $) ud3lem0b $p |- ( a ->3 c ) = ( b ->3 c ) $= ( ri3 ) ABCDE $. $( [23-Nov-97] $) $} ${ ud4lem0a.1 $e |- a = b $. $( Introduce ` ->4 ` to the left. $) ud4lem0a $p |- ( c ->4 a ) = ( c ->4 b ) $= ( wa wn wo wi4 lan 2or lor ax-r4 2an df-i4 3tr1 ) CAEZCFZAEZGZQAGZAFZEZGC BEZQBEZGZQBGZBFZEZGCAHCBHSUEUBUHPUCRUDABCDIABQDIJTUFUAUGABQDKABDLMJCANCBN O $. $( [23-Nov-97] $) $( Introduce ` ->4 ` to the right. $) ud4lem0b $p |- ( a ->4 c ) = ( b ->4 c ) $= ( wa wn wo wi4 ran ax-r4 2or ax-r5 df-i4 3tr1 ) ACEZAFZCEZGZPCGZCFZEZGBCE ZBFZCEZGZUCCGZTEZGACHBCHRUEUAUGOUBQUDABCDIPUCCABDJZIKSUFTPUCCUHLIKACMBCMN $. $( [23-Nov-97] $) $} ${ ud5lem0a.1 $e |- a = b $. $( Introduce ` ->5 ` to the left. $) ud5lem0a $p |- ( c ->5 a ) = ( c ->5 b ) $= ( wa wn wo wi5 lan 2or ax-r4 df-i5 3tr1 ) CAEZCFZAEZGZOAFZEZGCBEZOBEZGZOB FZEZGCAHCBHQUBSUDNTPUAABCDIABODIJRUCOABDKIJCALCBLM $. $( [23-Nov-97] $) $( Introduce ` ->5 ` to the right. $) ud5lem0b $p |- ( a ->5 c ) = ( b ->5 c ) $= ( wa wn wo wi5 ran ax-r4 2or df-i5 3tr1 ) ACEZAFZCEZGZOCFZEZGBCEZBFZCEZGZ UAREZGACHBCHQUCSUDNTPUBABCDIOUACABDJZIKOUARUEIKACLBCLM $. $( [23-Nov-97] $) $} $( Correspondence between Sasaki and Dishkant conditionals. $) i1i2 $p |- ( a ->1 b ) = ( b ' ->2 a ' ) $= ( wn wa wo wi1 wi2 ax-a1 2an ancom ax-r2 lor df-i1 df-i2 3tr1 ) ACZABDZEPBC ZCZPCZDZEABFRPGQUAPQTSDUAATBSAHBHITSJKLABMRPNO $. $( [25-Nov-98] $) $( Correspondence between Sasaki and Dishkant conditionals. $) i2i1 $p |- ( a ->2 b ) = ( b ' ->1 a ' ) $= ( wn wi2 wi1 ax-a1 ud2lem0b ud2lem0a i1i2 3tr1 ) ABCZCZDACZCZLDABDKMEANLAFG BLABFHKMIJ $. $( [7-Feb-99] $) $( Correspondence between Sasaki and Dishkant conditionals. $) i1i2con1 $p |- ( a ->1 b ' ) = ( b ->2 a ' ) $= ( wn wi1 wi2 i1i2 ax-a1 ax-r1 ud2lem0b ax-r2 ) ABCZDKCZACZEBMEAKFLBMBLBGHIJ $. $( [28-Feb-99] $) $( Correspondence between Sasaki and Dishkant conditionals. $) i1i2con2 $p |- ( a ' ->1 b ) = ( b ' ->2 a ) $= ( wn wi1 wi2 i1i2 ax-a1 ax-r1 ud2lem0a ax-r2 ) ACZBDBCZKCZELAEKBFMALAMAGHIJ $. $( [28-Feb-99] $) $( Correspondence between Kalmbach and non-tollens conditionals. $) i3i4 $p |- ( a ->3 b ) = ( b ' ->4 a ' ) $= ( wn wa wi3 wi4 ax-a2 ancom ax-a1 ran ax-r2 2or ax-r5 2an df-i3 df-i4 3tr1 wo ) ACZBDZSBCZDZRZASBRZDZRUASDZUACZSDZRZUGSRZSCZDZRABEUASFUCUIUEULUCUBTRUI TUBGUBUFTUHSUAHTBSDUHSBHBUGSBIZJKLKUEUDADULAUDHUDUJAUKUDBSRUJSBGBUGSUMMKAIN KLABOUASPQ $. $( [7-Feb-99] $) $( Correspondence between Kalmbach and non-tollens conditionals. $) i4i3 $p |- ( a ->4 b ) = ( b ' ->3 a ' ) $= ( wi4 wn wi3 ax-a1 ud4lem0a ud4lem0b ax-r2 i3i4 ax-r1 ) ABCZADZDZBDZDZCZOME ZLAPCQBPABFGANPAFHIRQOMJKI $. $( [7-Feb-99] $) $( Converse of ` ->5 ` . $) i5con $p |- ( a ->5 b ) = ( b ' ->5 a ' ) $= ( wa wn wo wi5 ancom ax-a2 ax-a1 ran ax-r2 2an 2or ax-a3 3tr1 df-i5 ) ABCZA DZBCZEZRBDZCZEZUARCZUADZRCZEUERDZCZEZABFUARFUBTEUDUFUHEZEUCUIUBUDTUJRUAGTSQ EUJQSHSUFQUHSBRCUFRBGBUERBIZJKQBACUHABGBUEAUGUKAILKMKMTUBHUDUFUHNOABPUARPO $. $( [7-Feb-99] $) $( Antecedent of 0 on Sasaki conditional. $) 0i1 $p |- ( 0 ->1 a ) = 1 $= ( wf wi1 wn wa wo wt df-i1 ax-a2 df-f con2 lor ax-r2 or1 3tr ) BACBDZBAEZFZ QGFZGBAHRQPFSPQIPGQBGJKLMQNO $. $( [24-Dec-98] $) $( Antecedent of 1 on Sasaki conditional. $) 1i1 $p |- ( 1 ->1 a ) = a $= ( wt wi1 wn wa wo df-i1 wf df-f ax-r1 ancom an1 ax-r2 2or ax-a2 or0 ) BACBD ZBAEZFZABAGSHAFZAQHRAHQIJRABEABAKALMNTAHFAHAOAPMMM $. $( [24-Dec-98] $) $( Identity law for Sasaki conditional. $) i1id $p |- ( a ->1 a ) = 1 $= ( wi1 wn wa wo wt df-i1 ax-a2 anidm lor df-t 3tr1 ax-r2 ) AABACZAADZEZFAAGN AEANEPFNAHOANAIJAKLM $. $( [25-Dec-98] $) $( Identity law for Dishkant conditional. $) i2id $p |- ( a ->2 a ) = 1 $= ( wi2 wn wa wo wt df-i2 anidm lor df-t ax-r1 ax-r2 ) AABAACZMDZEZFAAGOAMEZF NMAMHIFPAJKLL $. $( [26-Jun-03] $) $( Lemma for unified disjunction. $) ud1lem0c $p |- ( a ->1 b ) ' = ( a ^ ( a ' v b ' ) ) $= ( wi1 wn wo wa df-i1 df-a ax-r1 lor ax-r4 ax-r2 con3 con2 ) ABCZAADZBDEZFZO PABFZEZRDABGTRRTDZRPQDZEZDUAAQHUCTUBSPSUBABHIJKLIMLN $. $( [23-Nov-97] $) $( Lemma for unified disjunction. $) ud2lem0c $p |- ( a ->2 b ) ' = ( b ' ^ ( a v b ) ) $= ( wi2 wn wo wa df-i2 oran ax-r1 lan ax-r4 ax-r2 con2 ) ABCZBDZABEZFZNBADOFZ EZQDZABGSORDZFZDTBRHUBQUAPOPUAABHIJKLLM $. $( [23-Nov-97] $) $( Lemma for unified disjunction. $) ud3lem0c $p |- ( a ->3 b ) ' = ( ( ( a v b ' ) ^ ( a v b ) ) ^ ( a ' v ( a ^ b ' ) ) ) $= ( ni31 ) ABC $. $( [22-Nov-97] $) $( Lemma for unified disjunction. $) ud4lem0c $p |- ( a ->4 b ) ' = ( ( ( a ' v b ' ) ^ ( a v b ' ) ) ^ ( ( a ^ b ' ) v b ) ) $= ( wi4 wn wo wa df-i4 oran df-a con2 anor2 2an ax-r4 ax-r2 anor1 ax-r1 ax-r5 ) ABCZADZBDZEZATEZFZATFZBEZFZRABFZSBFZEZSBEZTFZEZUFDZABGULUIDZUKDZFZDUMUIUK HUPUFUNUCUOUEUIUCUIUGDZUHDZFZDUCDUGUHHUSUCUQUAURUBUGUAABIJUHUBABKJLMNJUKUEU KUJDZBEZDUEDUJBOVAUEUTUDBUDUTABOPQMNJLMNNJ $. $( [23-Nov-97] $) $( Lemma for unified disjunction. $) ud5lem0c $p |- ( a ->5 b ) ' = ( ( ( a ' v b ' ) ^ ( a v b ' ) ) ^ ( a v b ) ) $= ( wi5 wn wo wa df-i5 oran df-a con2 anor2 2an ax-r4 ax-r2 ax-r1 ) ABCZADZBD ZEZAREZFZABEZFZPABFZQBFZEZQRFZEZUCDZABGUHUFDZUGDZFZDUIUFUGHULUCUJUAUKUBUFUA UFUDDZUEDZFZDUADUDUEHUOUAUMSUNTUDSABIJUETABKJLMNJUBUKABHOLMNNJ $. $( [23-Nov-97] $) $( Pavicic binary logic ax-a1 analog. $) bina1 $p |- ( a ->3 a ' ' ) = 1 $= ( wi3 wn i3id ax-a1 li3 bi1 wwbmp ) AABZAACCZBZADIKAJAAEFGH $. $( [5-Nov-97] $) $( Pavicic binary logic ax-a2 analog. $) bina2 $p |- ( a ' ' ->3 a ) = 1 $= ( wi3 wn i3id ax-a1 ri3 bi1 wwbmp ) AABZACCZABZADIKAJAAEFGH $. $( [5-Nov-97] $) $( Pavicic binary logic ax-a3 analog. $) bina3 $p |- ( a ->3 ( a v b ) ) = 1 $= ( wo leo lei3 ) AABCABDE $. $( [5-Nov-97] $) $( Pavicic binary logic ax-a4 analog. $) bina4 $p |- ( b ->3 ( a v b ) ) = 1 $= ( wo leo ax-a2 lbtr lei3 ) BABCZBBACHBADBAEFG $. $( [5-Nov-97] $) $( Pavicic binary logic ax-a5 analog. $) bina5 $p |- ( b ->3 ( a v a ' ) ) = 1 $= ( wn wo wt le1 df-t lbtr lei3 ) BAACDZBEJBFAGHI $. $( [5-Nov-97] $) ${ wql1lem.1 $e |- ( a ->1 b ) = 1 $. $( Classical implication inferred from Sakaki implication. $) wql1lem $p |- ( a ' v b ) = 1 $= ( wn wo wt le1 wi1 ax-r1 wa df-i1 lear lelor bltr lebi ) ADZBEZFQGFABHZQR FCIRPABJZEQABKSBPABLMNNO $. $( [5-Dec-98] $) $} ${ wql2lem.1 $e |- ( a ->2 b ) = 1 $. $( Classical implication inferred from Dishkant implication. $) wql2lem $p |- ( a ' v b ) = 1 $= ( wn wo wt le1 wa wi2 df-i2 ax-a2 3tr2 lea leror bltr lebi ) ADZBEZFRGFQB DZHZBEZRABIBTEFUAABJCBTKLTQBQSMNOP $. $( [6-Dec-98] $) $} ${ wql2lem2.1 $e |- ( ( a v c ) ->2 ( b v c ) ) = 1 $. $( Lemma for ` ->2 ` WQL axiom. $) wql2lem2 $p |- ( ( a v ( b v c ) ) ' v ( b v c ) ) = 1 $= ( wo wn wi2 wt df-i2 anor3 ax-a3 ax-r1 orordir ax-r2 ax-r4 lor ax-a2 3tr wa ) ABCEZEZFZTEZACEZTGZHUEUCUETUDFTFSZETUBEUCUDTIUFUBTUFUDTEZFZUBUDTJUBU HUAUGUAABECEZUGUIUAABCKLABCMNOLNPTUBQRLDN $. $( [6-Dec-98] $) $} ${ wql2lem3.1 $e |- ( a ->2 b ) = 1 $. $( Lemma for ` ->2 ` WQL axiom. $) wql2lem3 $p |- ( ( a ^ b ' ) ->2 a ' ) = 1 $= ( wn wa wi2 wo wt df-i2 oran2 ax-r1 ran ancom lor wql2lem omlem2 skr0 3tr ax-r2 ) ABDEZADZFUATDZUADZEZGUAUCUABGZEZGZHTUAIUDUFUAUDUEUCEUFUBUEUCUEUBA BJKLUEUCMSNUEUGABCOUABPQR $. $( [6-Dec-98] $) $} ${ wql2lem4.1 $e |- ( ( ( a ^ b ' ) v ( a ^ b ) ) ->2 ( a ' v ( a ^ b ) ) ) = 1 $. wql2lem4.2 $e |- ( ( a ->1 b ) v ( a ^ b ' ) ) = 1 $. $( Lemma for ` ->2 ` WQL axiom. $) wql2lem4 $p |- ( a ->1 b ) = 1 $= ( wi1 wn wa wo wt df-i1 id ax-a2 ax-r5 ax-r1 3tr wql2lem2 skr0 ) ABEZAFZA BGZHZUAIABJZUAKABFGZUAHZUAUDUAUCHZRUCHZIUCUALUFUERUAUCUBMNDOUCSTCPQO $. $( [6-Dec-98] $) $} ${ wql2lem5.1 $e |- ( a ->2 b ) = 1 $. $( Lemma for ` ->2 ` WQL axiom. $) wql2lem5 $p |- ( ( b ' ^ ( a v b ) ) ->2 a ' ) = 1 $= ( wn wo wa wi2 wt anor3 oran3 ud2lem0c ax-r5 ran ancom an1 3tr ax-r4 3tr2 ax-r2 lor df-i2 df-t 3tr1 ) ADZBDABEFZDUDDZFZEUDUFEUEUDGHUGUFUDUGUEUDEZDU FUEUDIUHUDABGZDZUDEUIAFZDUHUDUIAJUJUEUDABKLUKAUKHAFAHFAUIHACMHANAOPQRQSTU EUDUAUDUBUC $. $( [6-Dec-98] $) $} ${ wql1.1 $e |- ( a ->1 b ) = 1 $. wql1.2 $e |- ( ( a v c ) ->1 ( b v c ) ) = 1 $. wql1.3 $e |- c = b $. $( The 2nd hypothesis is the first ` ->1 ` WQL axiom. We show it implies the WOM law. $) wql1 $p |- ( a ->2 b ) = 1 $= ( wi2 wn wa wo wt df-i2 anor3 lor ax-a2 wi1 oridm ax-r2 ud1lem0a ax-r1 ud1lem0b 3tr2 wql1lem 3tr ) ABGBAHBHIZJBABJZHZJZKABLUEUGBABMNUHUGBJKBUGOU FBACJZBPZUIBCJZPZUFBPKULUJUKBUIUKBBJBCBBFNBQRSTUIUFBCBAFNUAEUBUCRUD $. $( [5-Dec-98] $) $} ${ oaidlem1.1 $e |- ( a ^ b ) =< c $. $( Lemma for OA identity-like law. $) oaidlem1 $p |- ( a ' v ( b ->1 c ) ) = 1 $= ( wn wi1 wo wa df-i1 lor oran3 ax-r5 ax-a3 lear ler2an sklem 3tr2 ax-r2 wt ) AEZBCFZGTBEZBCHZGZGZSUAUDTBCIJTUBGZUCGABHZEZUCGUESUFUHUCABKLTUBUCMUG UCUGBCABNDOPQR $. $( [22-Jan-99] $) $} ${ womle2a.1 $e |- ( a ^ ( a ->2 b ) ) =< ( ( a ->2 b ) ' v ( a ->1 b ) ) $. $( An equivalent to the WOM law. $) womle2a $p |- ( ( a ->2 b ) ' v ( a ->1 b ) ) = 1 $= ( wi2 wn wi1 wo wa wt or4 oridm df-i1 ax-r5 or32 3tr1 ax-r2 2or ax-a2 lor oran3 3tr2 le1 df-t leror bltr lebi ) ABDZEZABFZGZUJAUGHZEZGZIUHUHGZUIAEZ GZGUJUHUOGZGUJUMUHUHUIUOJUNUHUPUIUHKUPUOABHZGZUOGZUIUIUSUOABLZMUOUOGZURGU SUTUIVBUOURUOKMUOURUONVAOPQUQULUJUQUOUHGULUHUORAUGTPSUAUMIUMUBIUKULGUMUKU CUKUJULCUDUEUFP $. $( [24-Jan-99] $) $} ${ womle2b.1 $e |- ( ( a ->2 b ) ' v ( a ->1 b ) ) = 1 $. $( An equivalent to the WOM law. $) womle2b $p |- ( a ^ ( a ->2 b ) ) =< ( ( a ->2 b ) ' v ( a ->1 b ) ) $= ( wi2 wa wt wn wi1 wo le1 ax-r1 lbtr ) AABDZEZFMGABHIZNJOFCKL $. $( [24-Jan-99] $) $} ${ womle3b.1 $e |- ( ( a ->1 b ) ' v ( a ->2 b ) ) = 1 $. $( Implied by the WOM law. $) womle3b $p |- ( a ^ ( a ->1 b ) ) =< ( ( a ->1 b ) ' v ( a ->2 b ) ) $= ( wi1 wa wt wn wi2 wo le1 ax-r1 lbtr ) AABDZEZFMGABHIZNJOFCKL $. $( [27-Jan-99] $) $} ${ womle.1 $e |- ( a ^ ( a ->1 b ) ) = ( a ^ ( a ->2 b ) ) $. $( An equality implying the WOM law. $) womle $p |- ( ( a ->2 b ) ' v ( a ->1 b ) ) = 1 $= ( wi2 wa wi1 wn wo ax-r1 lear bltr leor letr womle2a ) ABAABDZEZABFZOGZQH PAQEZQSPCIAQJKQRLMN $. $( [24-Jan-99] $) $} $( Lemma for "Non-Orthomodular Models..." paper. $) nomb41 $p |- ( a ==4 b ) = ( b ==1 a ) $= ( wn wo wa wid4 wid1 ax-a2 ancom lor 2an df-id4 df-id1 3tr1 ) ACZBDZBCZABEZ DZEBODZQBAEZDZEABFBAGPTSUBOBHRUAQABIJKABLBAMN $. $( [7-Feb-99] $) $( Lemma for "Non-Orthomodular Models..." paper. $) nomb32 $p |- ( a ==3 b ) = ( b ==2 a ) $= ( wn wo wa wid3 wid2 ax-a2 ancom lor 2an df-id3 df-id2 3tr1 ) ACZBDZAOBCZEZ DZEBODZAQOEZDZEABFBAGPTSUBOBHRUAAOQIJKABLBAMN $. $( [7-Feb-99] $) $( Lemma for "Non-Orthomodular Models..." paper. $) nomcon0 $p |- ( a ==0 b ) = ( b ' ==0 a ' ) $= ( wn wo wa wid0 ax-a2 ax-a1 ax-r5 ax-r2 2an df-id0 3tr1 ) ACZBDZBCZADZEPCZN DZNCZPDZEABFPNFOSQUAOBNDSNBGBRNBHIJQAPDUAPAGATPAHIJKABLPNLM $. $( [7-Feb-99] $) $( Lemma for "Non-Orthomodular Models..." paper. $) nomcon1 $p |- ( a ==1 b ) = ( b ' ==2 a ' ) $= ( wn wo wa wid1 wid2 ax-a2 ax-a1 lor ax-r2 ancom 2an df-id1 df-id2 3tr1 ) A BCZDZACZABEZDZEQSCZDZSQCZUBEZDZEABFQSGRUCUAUFRQADUCAQHAUBQAIZJKTUESTBAEUEAB LBUDAUBBIUGMKJMABNQSOP $. $( [7-Feb-99] $) $( Lemma for "Non-Orthomodular Models..." paper. $) nomcon2 $p |- ( a ==2 b ) = ( b ' ==1 a ' ) $= ( wn wo wa wid2 wid1 ax-a2 ax-a1 lor ax-r2 ancom 2or 2an df-id2 df-id1 3tr1 ) ABCZDZBACZREZDZERTCZDZRCZRTEZDZEABFRTGSUDUBUGSRADUDARHAUCRAIJKBUEUAUFBITR LMNABORTPQ $. $( [7-Feb-99] $) $( Lemma for "Non-Orthomodular Models..." paper. $) nomcon3 $p |- ( a ==3 b ) = ( b ' ==4 a ' ) $= ( wid2 wn wid1 wid3 wid4 nomcon2 nomb32 nomb41 3tr1 ) BACADZBDZEABFMLGBAHAB IMLJK $. $( [7-Feb-99] $) $( Lemma for "Non-Orthomodular Models..." paper. $) nomcon4 $p |- ( a ==4 b ) = ( b ' ==3 a ' ) $= ( wid1 wn wid2 wid4 wid3 nomcon1 nomb41 nomb32 3tr1 ) BACADZBDZEABFMLGBAHAB IMLJK $. $( [7-Feb-99] $) $( Lemma for "Non-Orthomodular Models..." paper. $) nomcon5 $p |- ( a == b ) = ( b ' == a ' ) $= ( tb wn bicom conb ax-r2 ) ABCBACBDADCABEBAFG $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom10 $p |- ( a ->0 ( a ^ b ) ) = ( a ->1 b ) $= ( wn wa wo wi0 wi1 id df-i0 df-i1 3tr1 ) ACABDZEZMALFABGMHALIABJK $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom11 $p |- ( a ->1 ( a ^ b ) ) = ( a ->1 b ) $= ( wn wa wo wi1 anass ax-r1 anidm ran ax-r2 lor df-i1 3tr1 ) ACZAABDZDZEOPEA PFABFQPOQAADZBDZPSQAABGHRABAIJKLAPMABMN $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom12 $p |- ( a ->2 ( a ^ b ) ) = ( a ->1 b ) $= ( wa wn wo wi2 wi1 oran ax-r1 orabs ax-r2 con3 lor ax-a2 df-i2 df-i1 3tr1 ) ABCZADZRDCZEZSREZARFABGUARSEUBTSRTATDZAREZAUDUCARHIABJKLMRSNKAROABPQ $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom13 $p |- ( a ->3 ( a ^ b ) ) = ( a ->1 b ) $= ( wn wa wo wi3 wi1 oran ax-r1 orabs ax-r2 con3 lor df-le2 ax-r5 womaa df-i3 lea df-i1 3tr1 ) ACZABDZDZUAUBCDZEZAUAUBEZDZEZUFAUBFABGUHUAUGEUFUEUAUGUEUCU AEUAUDUAUCUDAUDCZAUBEZAUJUIAUBHIABJKLMUCUAUAUBRNKOABPKAUBQABST $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom14 $p |- ( a ->4 ( a ^ b ) ) = ( a ->1 b ) $= ( wa wn wi4 wi1 ax-a2 anass ax-r1 anidm ran ax-r2 lor lear df-le2 3tr ax-r5 wo leo lea lbtr lel2or lecon ler2an lelor lebi df-i4 df-i1 3tr1 ) AABCZCZAD ZUJCZRZULUJRZUJDZCZRZUOAUJEABFURUJUQRZUJULRZUOUNUJUQUNUMUKRUMUJRUJUKUMGUKUJ UMUKAACZBCZUJVBUKAABHIVAABAJKLMUMUJULUJNOPQUSUTUJUTUQUJULSUQUOUTUOUPTULUJGU AUBULUQUJULUOUPULUJSUJAABTUCUDUEUFUJULGPAUJUGABUHUI $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom15 $p |- ( a ->5 ( a ^ b ) ) = ( a ->1 b ) $= ( wa wn wo wi5 wi1 anass ax-r1 anidm ran ax-r2 ax-r5 ax-a2 df-le2 3tr oran3 lear lan anabs 2or df-i5 df-i1 3tr1 ) AABCZCZADZUECZEZUGUEDZCZEZUGUEEZAUEFA BGULUEUGEUMUIUEUKUGUIUEUHEUHUEEUEUFUEUHUFAACZBCZUEUOUFAABHIUNABAJKLMUEUHNUH UEUGUEROPUKUGUGBDZEZCZUGURUKUQUJUGABQSIUGUPTLUAUEUGNLAUEUBABUCUD $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom20 $p |- ( a ==0 ( a ^ b ) ) = ( a ->1 b ) $= ( wn wa wo wid0 wi1 lea leor letr lelor ax-a3 ax-r1 oran3 ax-r5 lbtr df2le2 ax-r2 df-id0 df-i1 3tr1 ) ACZABDZEZUCCZAEZDUDAUCFABGUDUFUDUBBCZAEZEZUFUCUHU BUCAUHABHAUGIJKUIUBUGEZAEZUFUKUIUBUGALMUJUEAABNORPQAUCSABTUA $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom21 $p |- ( a ==1 ( a ^ b ) ) = ( a ->1 b ) $= ( wa wn wo wid1 wi1 ancom oran3 lor ax-r2 anidm ran ax-r1 anass 2an lea leo or12 letr lelor df2le2 3tr2 df-id1 df-i1 3tr1 ) AABCZDZEZADZAUGCZEZCZUJUGEZ AUGFABGUJABDZEZEZUNCUNUQCUMUNUQUNHUQUIUNULUQAUJUOEZEUIUJAUOSURUHAABIJKUGUKU JUGAACZBCZUKUTUGUSABALMNAABOKJPUNUQUGUPUJUGAUPABQAUORTUAUBUCAUGUDABUEUF $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom22 $p |- ( a ==2 ( a ^ b ) ) = ( a ->1 b ) $= ( wa wn wid2 wi1 oran3 lor ax-r1 or12 ax-r2 ax-a2 lan anabs ax-r5 2an ancom wo lea leo letr lelor df2le2 3tr df-id2 df-i1 3tr1 ) AABCZDZRZUHADZUICZRZCZ UKUHRZAUHEABFUNUKABDZRZRZUOCUOURCUOUJURUMUOUJAUKUPRZRZURUTUJUSUIAABGZHIAUKU PJKUMULUHRUOUHULLULUKUHULUKUSCZUKVBULUSUIUKVAMIUKUPNKOKPURUOQUOURUHUQUKUHAU QABSAUPTUAUBUCUDAUHUEABUFUG $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom23 $p |- ( a ==3 ( a ^ b ) ) = ( a ->1 b ) $= ( wn wa wo wid3 wi1 wt le1 df-t anabs ax-r1 oran3 lan ax-r2 lor lbtr df2le2 df-id3 df-i1 3tr1 ) ACZABDZEZAUBUCCZDZEZDUDAUCFABGUDUGUDHUGUDIHAUBEUGAJUBUF AUBUBUBBCZEZDZUFUJUBUBUHKLUIUEUBABMNOPOQRAUCSABTUA $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom24 $p |- ( a ==4 ( a ^ b ) ) = ( a ->1 b ) $= ( wn wa wo wid4 wi1 leo leror oran3 anidm ran ax-r1 anass ax-r2 lbtr df2le2 2or df-id4 df-i1 3tr1 ) ACZABDZEZUCCZAUCDZEZDUDAUCFABGUDUGUDUBBCZEZUCEUGUBU IUCUBUHHIUIUEUCUFABJUCAADZBDZUFUKUCUJABAKLMAABNORPQAUCSABTUA $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom25 $p |- ( a == ( a ^ b ) ) = ( a ->1 b ) $= ( wa wn wo tb wi1 anass ax-r1 anidm ran ax-r2 oran3 lan anabs 2or ax-a2 dfb df-i1 3tr1 ) AABCZCZADZUADZCZEZUCUAEZAUAFABGUFUAUCEUGUBUAUEUCUBAACZBCZUAUIU BAABHIUHABAJKLUEUCUCBDZEZCZUCULUEUKUDUCABMNIUCUJOLPUAUCQLAUARABST $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom30 $p |- ( ( a ^ b ) ==0 a ) = ( a ->1 b ) $= ( wa wid0 wi1 wn wo ancom df-id0 3tr1 nom20 ax-r2 ) ABCZADZAMDZABEMFAGZAFMG ZCQPCNOPQHMAIAMIJABKL $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom31 $p |- ( ( a ^ b ) ==1 a ) = ( a ->1 b ) $= ( wa wid1 wid4 wi1 nomb41 ax-r1 nom24 ax-r2 ) ABCZADZAKEZABFMLAKGHABIJ $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom32 $p |- ( ( a ^ b ) ==2 a ) = ( a ->1 b ) $= ( wa wid2 wid3 wi1 nomb32 ax-r1 nom23 ax-r2 ) ABCZADZAKEZABFMLAKGHABIJ $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom33 $p |- ( ( a ^ b ) ==3 a ) = ( a ->1 b ) $= ( wa wid3 wid2 wi1 nomb32 nom22 ax-r2 ) ABCZADAJEABFJAGABHI $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom34 $p |- ( ( a ^ b ) ==4 a ) = ( a ->1 b ) $= ( wa wid4 wid1 wi1 nomb41 nom21 ax-r2 ) ABCZADAJEABFJAGABHI $. $( [7-Feb-99] $) $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $) nom35 $p |- ( ( a ^ b ) == a ) = ( a ->1 b ) $= ( wa tb wi1 bicom nom25 ax-r2 ) ABCZADAIDABEIAFABGH $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom40 $p |- ( ( a v b ) ->0 b ) = ( a ->2 b ) $= ( wn wa wi0 wi1 wo wi2 nom10 ax-a2 ax-a1 ancom anor3 ax-r2 ax-r1 df-i0 3tr1 2or i2i1 ) BCZTACZDZEZTUAFABGZBEZABHTUAIUDCZBGZTCZUBGZUEUCUGBUFGUIUFBJBUHUF UBBKUBUFUBUATDUFTUALABMNORNUDBPTUBPQABSQ $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom41 $p |- ( ( a v b ) ->1 b ) = ( a ->2 b ) $= ( wn wo wi2 wi1 wa ancom anor3 ax-r2 ud2lem0a ax-r1 nom12 i1i2 i2i1 3tr1 ) BCZABDZCZEZQACZFZRBFABETQQUAGZEZUBUDTUCSQUCUAQGSQUAHABIJKLQUAMJRBNABOP $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom42 $p |- ( ( a v b ) ->2 b ) = ( a ->2 b ) $= ( wn wo wi1 wi2 wa ancom anor3 ax-r2 ud1lem0a ax-r1 nom11 i2i1 3tr1 ) BCZAB DZCZEZPACZEZQBFABFSPPTGZEZUAUCSUBRPUBTPGRPTHABIJKLPTMJQBNABNO $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom43 $p |- ( ( a v b ) ->3 b ) = ( a ->2 b ) $= ( wn wo wi4 wi1 wi3 wi2 wa ancom anor3 ax-r2 ud4lem0a ax-r1 nom14 i3i4 i2i1 3tr1 ) BCZABDZCZEZSACZFZTBGABHUBSSUCIZEZUDUFUBUEUASUEUCSIUASUCJABKLMNSUCOLT BPABQR $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom44 $p |- ( ( a v b ) ->4 b ) = ( a ->2 b ) $= ( wn wo wi3 wi1 wi4 wi2 wa ancom anor3 ax-r2 ud3lem0a ax-r1 nom13 i4i3 i2i1 3tr1 ) BCZABDZCZEZSACZFZTBGABHUBSSUCIZEZUDUFUBUEUASUEUCSIUASUCJABKLMNSUCOLT BPABQR $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom45 $p |- ( ( a v b ) ->5 b ) = ( a ->2 b ) $= ( wn wo wi5 wi1 wi2 ancom anor3 ax-r2 ud5lem0a ax-r1 nom15 i5con i2i1 3tr1 wa ) BCZABDZCZEZRACZFZSBEABGUARRUBQZEZUCUEUAUDTRUDUBRQTRUBHABIJKLRUBMJSBNAB OP $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom50 $p |- ( ( a v b ) ==0 b ) = ( a ->2 b ) $= ( wn wo wid0 wi1 wi2 wa ancom anor3 ax-r2 lor ax-r4 ax-r5 ax-r1 df-id0 3tr1 2an nom20 nomcon0 i2i1 ) BCZABDZCZEZUBACZFZUCBEABGUEUBUBUFHZEZUGUBCZUDDZUDC ZUBDZHZUJUHDZUHCZUBDZHZUEUIURUNUOUKUQUMUHUDUJUHUFUBHUDUBUFIABJKZLUPULUBUHUD USMNROUBUDPUBUHPQUBUFSKUCBTABUAQ $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom51 $p |- ( ( a v b ) ==1 b ) = ( a ->2 b ) $= ( wn wo wid2 wi1 wid1 wi2 wa ancom anor3 ax-r2 ax-r1 lor lan 2or 2an df-id2 ax-r4 3tr1 nom22 nomcon1 i2i1 ) BCZABDZCZEZUDACZFZUEBGABHUGUDUDUHIZEZUIUDUF CZDZUFUDCZULIZDZIUDUJCZDZUJUNUQIZDZIUGUKUMURUPUTULUQUDUFUJUJUFUJUHUDIZUFUDU HJABKZLMZSNUFUJUOUSVCULUQUNUFUJUFVAUJVAUFVBMUHUDJLSOPQUDUFRUDUJRTUDUHUALUEB UBABUCT $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom52 $p |- ( ( a v b ) ==2 b ) = ( a ->2 b ) $= ( wn wo wid1 wi1 wid2 wi2 wa ancom anor3 ax-r2 ax-r1 ax-r4 lor lan 2an 3tr1 df-id1 nom21 nomcon2 i2i1 ) BCZABDZCZEZUCACZFZUDBGABHUFUCUCUGIZEZUHUCUECZDZ UCCZUCUEIZDZIUCUICZDZUMUCUIIZDZIUFUJULUQUOUSUKUPUCUEUIUIUEUIUGUCIUEUCUGJABK LMZNOUNURUMUEUIUCUTPOQUCUESUCUISRUCUGTLUDBUAABUBR $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom53 $p |- ( ( a v b ) ==3 b ) = ( a ->2 b ) $= ( wn wo wid4 wi1 wid3 wi2 wa ancom anor3 ax-r2 ax-r1 lor lan 2or 2an df-id4 ax-r4 3tr1 nom24 nomcon3 i2i1 ) BCZABDZCZEZUDACZFZUEBGABHUGUDUDUHIZEZUIUDCZ UFDZUFCZUDUFIZDZIULUJDZUJCZUDUJIZDZIUGUKUMUQUPUTUFUJULUJUFUJUHUDIUFUDUHJABK LMZNUNURUOUSUFUJVASUFUJUDVAOPQUDUFRUDUJRTUDUHUALUEBUBABUCT $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom54 $p |- ( ( a v b ) ==4 b ) = ( a ->2 b ) $= ( wn wo wid3 wi1 wid4 wi2 wa ancom anor3 ax-r2 lor ax-r4 lan 2an 3tr1 ax-r1 df-id3 nom23 nomcon4 i2i1 ) BCZABDZCZEZUCACZFZUDBGABHUFUCUCUGIZEZUHUJUFUCCZ UIDZUCUKUICZIZDZIUKUEDZUCUKUECZIZDZIUJUFULUPUOUSUIUEUKUIUGUCIUEUCUGJABKLZMU NURUCUMUQUKUIUEUTNOMPUCUISUCUESQRUCUGTLUDBUAABUBQ $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom55 $p |- ( ( a v b ) == b ) = ( a ->2 b ) $= ( wn wa tb wi1 wo wi2 nom25 conb bicom ancom anor3 ax-r2 ax-r1 lbi 3tr i2i1 3tr1 ) BCZTACZDZEZTUAFABGZBEZABHTUAIUEUDCZTETUFEUCUDBJUFTKUFUBTUBUFUBUATDUF TUALABMNOPQABRS $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom60 $p |- ( b ==0 ( a v b ) ) = ( a ->2 b ) $= ( wo wid0 wi2 wn wa ancom df-id0 3tr1 nom50 ax-r2 ) BABCZDZMBDZABEBFMCZMFBC ZGQPGNOPQHBMIMBIJABKL $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom61 $p |- ( b ==1 ( a v b ) ) = ( a ->2 b ) $= ( wo wid1 wid4 wi2 nomb41 ax-r1 nom54 ax-r2 ) BABCZDZKBEZABFMLKBGHABIJ $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom62 $p |- ( b ==2 ( a v b ) ) = ( a ->2 b ) $= ( wo wid2 wid3 wi2 nomb32 ax-r1 nom53 ax-r2 ) BABCZDZKBEZABFMLKBGHABIJ $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom63 $p |- ( b ==3 ( a v b ) ) = ( a ->2 b ) $= ( wo wid3 wid2 wi2 nomb32 nom52 ax-r2 ) BABCZDJBEABFBJGABHI $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom64 $p |- ( b ==4 ( a v b ) ) = ( a ->2 b ) $= ( wo wid4 wid1 wi2 nomb41 nom51 ax-r2 ) BABCZDJBEABFBJGABHI $. $( [7-Feb-99] $) $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $) nom65 $p |- ( b == ( a v b ) ) = ( a ->2 b ) $= ( wo tb wi2 bicom nom55 ax-r2 ) BABCZDIBDABEBIFABGH $. $( [7-Feb-99] $) $( Lemma for proof of Mayet 8-variable "full" equation from 4-variable Godowski equation. $) go1 $p |- ( ( a ^ b ) ^ ( a ->1 b ' ) ) = 0 $= ( wa wn wi1 wo wf df-i1 lan lear lelor lelan oran3 dff ax-r1 ax-r2 lbtr le0 lebi ) ABCZABDZEZCTADZAUACZFZCZGUBUETAUAHIUFGUFTUCUAFZCZGUEUGTUDUAUCAUAJKLU HTTDZCZGUGUITABMIGUJTNOPQUFRSP $. $( [19-Nov-99] $) $( Lemma for disjunction of ` ->2 ` . $) i2or $p |- ( ( a ->2 c ) v ( b ->2 c ) ) =< ( ( a ^ b ) ->2 c ) $= ( wi2 wo wa wn df-i2 lea lecon leran lelor bltr lear lel2or ax-r1 lbtr ) AC DZBCDZECABFZGZCGZFZEZTCDZRUDSRCAGZUBFZEUDACHUGUCCUFUAUBTAABIJKLMSCBGZUBFZEU DBCHUIUCCUHUAUBTBABNJKLMOUEUDTCHPQ $. $( [5-Jul-00] $) $( Lemma for disjunction of ` ->1 ` . $) i1or $p |- ( ( c ->1 a ) v ( c ->1 b ) ) =< ( c ->1 ( a v b ) ) $= ( wi1 wo wn wa df-i1 leo lelan lelor bltr leor lel2or ax-r1 lbtr ) CADZCBDZ ECFZCABEZGZEZCTDZQUBRQSCAGZEUBCAHUDUASATCABIJKLRSCBGZEUBCBHUEUASBTCBAMJKLNU CUBCTHOP $. $( [5-Jul-00] $) $( "Less than" analogue is equal to ` ->2 ` implication. $) lei2 $p |- ( a =<2 b ) = ( a ->2 b ) $= ( wo tb wn wa wle2 wi2 mi df-le df-i2 3tr1 ) ABCBDBAEBEFCABGABHABIABJABKL $. $( [28-Jan-02] $) $( Relevance implication is l.e. Sasaki implication. $) i5lei1 $p |- ( a ->5 b ) =< ( a ->1 b ) $= ( wa wn wi5 wi1 ax-a3 ax-a2 ax-r2 lea lel2or leror bltr df-i5 df-i1 le3tr1 wo ) ABCZADZBCZQSBDZCZQZSRQZABEABFUCTUBQZRQZUDUCRUEQUFRTUBGRUEHIUESRTSUBSBJ SUAJKLMABNABOP $. $( [26-Jun-03] $) $( Relevance implication is l.e. Dishkant implication. $) i5lei2 $p |- ( a ->5 b ) =< ( a ->2 b ) $= ( wa wn wo wi5 wi2 lear lel2or leror df-i5 df-i2 le3tr1 ) ABCZADZBCZEZOBDCZ EBREABFABGQBRNBPABHOBHIJABKABLM $. $( [26-Jun-03] $) $( Relevance implication is l.e. Kalmbach implication. $) i5lei3 $p |- ( a ->5 b ) =< ( a ->3 b ) $= ( wa wn wo wi5 wi3 leor lelan leror df-i5 ax-a3 ax-r2 df-i3 ax-a2 le3tr1 ) ABCZADZBCZRBDCZEZEZARBEZCZUAEZABFZABGZQUDUABUCABRHIJUFQSETEUBABKQSTLMUGUAUD EUEABNUAUDOMP $. $( [26-Jun-03] $) $( Relevance implication is l.e. non-tollens implication. $) i5lei4 $p |- ( a ->5 b ) =< ( a ->4 b ) $= ( wa wn wo wi5 wi4 leo leran lelor df-i5 df-i4 le3tr1 ) ABCADZBCEZNBDZCZEON BEZPCZEABFABGQSONRPNBHIJABKABLM $. $( [26-Jun-03] $) $( Quantum identity is less than classical identity. $) id5leid0 $p |- ( a == b ) =< ( a ==0 b ) $= ( wa wn wo tb wid0 ax-a2 lea lear le2or ler2an bltr dfb df-id0 le3tr1 ) ABC ZADZBDZCZEZRBEZSAEZCZABFABGUATQEZUDQTHUEUBUCTRQBRSIABJKTSQARSJABIKLMABNABOP $. $( [4-Mar-06] $) ${ id5id0.1 $e |- ( a == b ) = 1 $. $( Show that classical identity follows from quantum identity in OL. $) id5id0 $p |- ( a ==0 b ) = 1 $= ( tb wid0 id5leid0 sklem skr0 ) ABDZABEZCIJABFGH $. $( [4-Mar-06] $) $} ${ k1-6.1 $e |- x = ( ( x ^ c ) v ( x ^ c ' ) ) $. $( Statement (6) in proof of Theorem 1 of Kalmbach, _Orthomodular Lattices_, p. 21. $) k1-6 $p |- ( x ' ^ c ) = ( ( x ' v c ' ) ^ c ) $= ( wn wa wo anor3 cm con4 oran3 oran2 2an 3tr1 ran anass ancom ax-a2 anabs lan 3tr ) BDZAEUAADZFZUAAFZEZAEUCUDAEZEUCAEUAUEABAEZBUBEZFZDZUGDZUHDZEZUA UEUMUJUGUHGHBUICIUCUKUDULBAJBAKLMNUCUDAOUFAUCUFAUDEAAUAFZEAUDAPUDUNAUAAQS AUARTST $. $( [26-May-2008] $) $} ${ k1-7.1 $e |- x = ( ( x ^ c ) v ( x ^ c ' ) ) $. $( Statement (7) in proof of Theorem 1 of Kalmbach, _Orthomodular Lattices_, p. 21. $) k1-7 $p |- ( x ' ^ c ' ) = ( ( x ' v c ) ^ c ' ) $= ( wn wa wo anor3 cm ax-a1 lan ror orcom 3tr con4 oran3 oran2 2an 3tr1 ran lor anass tr ancom ax-a2 anabs ) BDZADZEUFUGDZFZUFUGFZEZUGEZUFAFZUJUGEZEZ UMUGEUFUKUGBUGEZBUHEZFZDZUPDZUQDZEZUFUKVBUSUPUQGHBURBBAEZUPFUQUPFURCVCUQU PAUHBAIZJKUQUPLMNUIUTUJVABUGOBUGPQRSULUMUJEZUGEZUOVFULVEUKUGUMUIUJAUHUFVD TSSHUMUJUGUAUBUNUGUMUNUGUJEUGUGUFFZEUGUJUGUCUJVGUGUFUGUDJUGUFUEMJM $. $( [26-May-2008] $) $} ${ k1-8a.1 $e |- x ' = ( ( x ' ^ c ) v ( x ' ^ c ' ) ) $. k1-8a.2 $e |- x =< c $. k1-8a.3 $e |- y =< c ' $. $( First part of statement (8) in proof of Theorem 1 of Kalmbach, _Orthomodular Lattices_, p. 21. $) k1-8a $p |- x = ( ( x v y ) ^ c ) $= ( wo wa leo ler2an wn lelor leran ax-a1 ror ran k1-6 tr cm df2le2 lbtr 3tr lebi ) BBCGZAHZBUDABCIEJUEBAKZGZAHZBUDUGACUFBFLMUHBKZKZUFGZAHZBAHZBUG UKABUJUFBNZOPUMULUMUJAHULBUJAUNPAUIDQRSBAETUBUAUC $. $( [27-May-2008] $) $} ${ k1-8b.1 $e |- y ' = ( ( y ' ^ c ) v ( y ' ^ c ' ) ) $. k1-8b.2 $e |- x =< c $. k1-8b.3 $e |- y =< c ' $. $( Second part of statement (8) in proof of Theorem 1 of Kalmbach, _Orthomodular Lattices_, p. 21. $) k1-8b $p |- y = ( ( x v y ) ^ c ' ) $= ( wo wn wa ax-a1 lan ror orcom 3tr lbtr k1-8a ran tr ) CCBGZAHZIBCGZTITCB CHZUBAIZUBTIZGUBTHZIZUDGUDUFGDUCUFUDAUEUBAJZKLUFUDMNFBAUEEUGOPSUATCBMQR $. $( [27-May-2008] $) $} ${ k1-2.1 $e |- x = ( ( x ^ c ) v ( x ^ c ' ) ) $. k1-2.2 $e |- y = ( ( y ^ c ) v ( y ^ c ' ) ) $. k1-2.3 $e |- ( ( x ^ c ) v ( y ^ c ) ) ' = ( ( ( ( x ^ c ) v ( y ^ c ) ) ' ^ c ) v ( ( ( x ^ c ) v ( y ^ c ) ) ' ^ c ' ) ) $. $( Statement (2) in proof of Theorem 1 of Kalmbach, _Orthomodular Lattices_, p. 21. $) k1-2 $p |- ( ( x v y ) ^ c ) = ( ( x ^ c ) v ( y ^ c ) ) $= ( wo wa wn 2or or4 ax-r2 ran lear lel2or k1-8a ax-r1 tr ) BCGZAHBAHZCAHZG ZBAIZHZCUCHZGZGZAHZUBSUGASTUDGZUAUEGZGUGBUICUJDEJTUDUAUEKLMUBUHAUBUFFTAUA BANCANOUDUCUEBUCNCUCNOPQR $. $( [27-May-2008] $) $} ${ k1-3.1 $e |- x = ( ( x ^ c ) v ( x ^ c ' ) ) $. k1-3.2 $e |- y = ( ( y ^ c ) v ( y ^ c ' ) ) $. k1-3.3 $e |- ( ( x ^ c ' ) v ( y ^ c ' ) ) ' = ( ( ( ( x ^ c ' ) v ( y ^ c ' ) ) ' ^ c ) v ( ( ( x ^ c ' ) v ( y ^ c ' ) ) ' ^ c ' ) ) $. $( Statement (3) in proof of Theorem 1 of Kalmbach, _Orthomodular Lattices_, p. 21. $) k1-3 $p |- ( ( x v y ) ^ c ' ) = ( ( x ^ c ' ) v ( y ^ c ' ) ) $= ( wo wn wa 2or or4 ax-r2 ran lear lel2or k1-8b ax-r1 tr ) BCGZAHZIBAIZCAI ZGZBTIZCTIZGZGZTIZUFSUGTSUAUDGZUBUEGZGUGBUICUJDEJUAUDUBUEKLMUFUHAUCUFFUAA UBBANCANOUDTUEBTNCTNOPQR $. $( [27-May-2008] $) $} ${ k1-4.1 $e |- ( x ' ^ ( x v c ' ) ) = ( ( ( x ' ^ ( x v c ' ) ) ^ c ) v ( ( x ' ^ ( x v c ' ) ) ^ c ' ) ) $. k1-4.2 $e |- x =< c $. $( Statement (4) in proof of Theorem 1 of Kalmbach, _Orthomodular Lattices_, p. 21. $) k1-4 $p |- ( x v ( x ' ^ c ) ) = c $= ( wn wa wo oran1 lan cm anor3 an32 dff 3tr1 leao4 df2le2 df-le2 ax-r4 3tr wf tr 2or or0r 3tr2 con1 ) BBEZAFZGZAUFUGEZFZUFBAEZGZFZUHEUKUMUJULUIUFBAH ZIJBUGKUMUMAFZUMUKFZGTUKGUKCUOTUPUKUGULFUGUIFUOTULUIUGUNIUFULALUGMNUPUFUK FZULFUQUKUFULUKLUQULUKUFBOPUQBAGZEUKBAKURABADQRUASUBUKUCSUDUE $. $( [27-May-2008] $) $} ${ k1-5.1 $e |- ( x ' ^ ( x v c ) ) = ( ( ( x ' ^ ( x v c ) ) ^ c ) v ( ( x ' ^ ( x v c ) ) ^ c ' ) ) $. k1-5.2 $e |- x =< c ' $. $( Statement (5) in proof of Theorem 1 of Kalmbach, _Orthomodular Lattices_, p. 21. $) k1-5 $p |- ( x v ( x ' ^ c ' ) ) = c ' $= ( wn wo wa ax-a1 lor lan orcom ran 2an 2or tr 3tr2 k1-4 ) AEZBBEZBAFZGZUA AGZUARGZFZSBREZFZGZUGRGZUGUEGZFZCTUFSAUEBAHZIJZUDUCUBFUJUBUCKUCUHUBUIUAUG RULLUAUGAUEULUKMNOPDQ $. $( [27-May-2008] $) $} $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# Weakly orthomodular lattices #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Weak orthomodular law =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) ${ ax-wom.1 $e |- ( a ' v ( a ^ b ) ) = 1 $. $( 2-variable WOML rule. $) ax-wom $a |- ( b v ( a ' ^ b ' ) ) = 1 $. $} ${ 2vwomr2.1 $e |- ( b v ( a ' ^ b ' ) ) = 1 $. $( 2-variable WOML rule. $) 2vwomr2 $p |- ( a ' v ( a ^ b ) ) = 1 $= ( wn wa wo wt ancom ax-a1 2an ax-r2 lor 2or ax-r1 ax-wom ) ADZABEZFPBDZDZ PDZEZFGQUAPQBAEUAABHBSATBIZAIJKLRPSRPEZFZBPREZFZGUFUDBSUEUCUBPRHMNCKOK $. $( [13-Nov-98] $) $} ${ 2vwomr1a.1 $e |- ( a ->1 b ) = 1 $. $( 2-variable WOML rule. $) 2vwomr1a $p |- ( a ->2 b ) = 1 $= ( wi2 wn wa wo wt df-i2 wi1 df-i1 ax-r1 ax-r2 ax-wom ) ABDBAEZBEFGHABIABO ABFGZABJZHQPABKLCMNM $. $( [13-Nov-98] $) $} ${ 2vwomr2a.1 $e |- ( a ->2 b ) = 1 $. $( 2-variable WOML rule. $) 2vwomr2a $p |- ( a ->1 b ) = 1 $= ( wi1 wn wa wo wt df-i1 wi2 df-i2 ax-r1 ax-r2 2vwomr2 ) ABDAEZABFGHABIABB OBEFGZABJZHQPABKLCMNM $. $( [13-Nov-98] $) $} ${ 2vwomlem.1 $e |- ( a ->2 b ) = 1 $. 2vwomlem.2 $e |- ( b ->2 a ) = 1 $. $( Lemma from 2-variable WOML rule. $) 2vwomlem $p |- ( a == b ) = 1 $= ( tb wa wn wo wt dfb wf df-f ax-r1 wi2 anor3 ax-r2 lor df-i2 3tr 3tr2 ran anor2 ancom ax-r4 anabs anass oran 2an lan or0 le1 2vwomr2 lea leo ler2an oran3 lelor bltr lebi ax-wom ) ABEABFZAGZBGZFZHZIABJVEKHVEVBVEGZFZHVEIKVG VEKIGZVGLAABHZGZHZGZVBVIFZVHVGVMVLAVIUBMVKIVKAVCVBFZHZBANZIVJVNAVJVDVNVDV JABOMVBVCUCPQVPVOBARMDSUDVMVBVBVCHZFZVIFVBVQVIFZFVGVBVRVIVRVBVBVCUEMUAVBV QVIUFVSVFVBVSVAGZVDGZFVFVQVTVIWAABUPABUGUHVAVDOPUISTPQVEUJAVEVBAVEFZHZIWC UKIVBVAHZWCWDIABBVDHZABNZIWFWEABRMCPULMVAWBVBVAAVEABUMVAVDUNUOUQURUSUTTP $. $( [13-Nov-98] $) $} ${ wr5-2v.1 $e |- ( a == b ) = 1 $. $( WOML derived from 2-variable axioms. $) wr5-2v $p |- ( ( a v c ) == ( b v c ) ) = 1 $= ( wo wi2 wn wa wt df-i2 ax-r1 anandir anass ax-r2 3tr2 wi1 df-i1 bltr le1 lebi anor3 lan 2an lor tb wlem1 skr0 lea leo lelan 2vwomr1a lear 2vwomlem lelor ) ACEZBCEZUOUPFUPUOGZUPGZHZEZIUOUPJUPAGZURHZEZAUPFZUTIVDVCAUPJKVBUS UPVABGZHCGZHZVAVFHZVEVFHZHVBUSVAVEVFLVGVAVIHVBVAVEVFMVIURVABCUAZUBNVHUQVI URACUAZVJUCOUDAUPAUPPVAAUPHZEZIAUPQIVMIVMIVAABHZEZVMIABPZVOIVPIVPBAPZHZVP VRIABUEVRDABUFUGKZVPVQUHRVPSTABQNVNVLVABUPABCUIUJUNRVMSTKNUKONUPUOFUOURUQ HZEZIUPUOJUOVEUQHZEZBUOFZWAIWDWCBUOJKWBVTUOVEVAHVFHZVIVHHWBVTVEVAVFLWEVEV HHWBVEVAVFMVHUQVEVKUBNVIURVHUQVJVKUCOUDBUOBUOPVEBUOHZEZIBUOQIWGIWGIVEBAHZ EZWGIVQWIIVQIVRVQVSVPVQULRVQSTBAQNWHWFVEAUOBACUIUJUNRWGSTKNUKONUM $. $( [11-Nov-98] $) $} $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Weakly orthomodular lattices =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) ${ wom3.1 $e |- ( a == b ) = 1 $. $( Weak orthomodular law for study of weakly orthomodular lattices. $) wom3 $p |- a =< ( ( a v c ) == ( b v c ) ) $= ( wt wo tb le1 wr5-2v ax-r1 bile letr ) AEACFBCFGZAHEMMEABCDIJKL $. $( [13-Nov-98] $) $} ${ wlor.1 $e |- ( a == b ) = 1 $. $( Weak orthomodular law. $) wlor $p |- ( ( c v a ) == ( c v b ) ) = 1 $= ( wo tb wt ax-a2 2bi wr5-2v ax-r2 ) CAEZCBEZFACEZBCEZFGLNMOCAHCBHIABCDJK $. $( [24-Sep-97] $) $} ${ wran.1 $e |- ( a == b ) = 1 $. $( Weak orthomodular law. $) wran $p |- ( ( a ^ c ) == ( b ^ c ) ) = 1 $= ( wa tb wn wo wt df-a 2bi wr4 wr5-2v ax-r2 ) ACEZBCEZFAGZCGZHZGZBGZRHZGZF IOTPUCACJBCJKSUBQUARABDLMLN $. $( [24-Sep-97] $) $} ${ wlan.1 $e |- ( a == b ) = 1 $. $( Weak orthomodular law. $) wlan $p |- ( ( c ^ a ) == ( c ^ b ) ) = 1 $= ( wa tb wt ancom 2bi wran ax-r2 ) CAEZCBEZFACEZBCEZFGLNMOCAHCBHIABCDJK $. $( [24-Sep-97] $) $} ${ wr2.1 $e |- ( a == b ) = 1 $. wr2.2 $e |- ( b == c ) = 1 $. $( Inference rule of AUQL. $) wr2 $p |- ( a == c ) = 1 $= ( tb wa wn wo wt dfb rbi wr1 wran wr5-2v ax-r2 wwbmp wr4 wlor wwbmpr ) AC FZACGZBHZCHZGZIZBCFZUFEUGUFFBCGZUEIZUFFJUGUIUFBCKLUHUBUEBACABDMNOPQUAUFFU BAHZUDGZIZUFFJUAULUFACKLUKUEUBUJUCUDABDRNSPT $. $( [24-Sep-97] $) $} ${ w2or.1 $e |- ( a == b ) = 1 $. w2or.2 $e |- ( c == d ) = 1 $. $( Join both sides with disjunction. $) w2or $p |- ( ( a v c ) == ( b v d ) ) = 1 $= ( wo wlor wr5-2v wr2 ) ACGADGBDGCDAFHABDEIJ $. $( [13-Oct-97] $) $} ${ w2an.1 $e |- ( a == b ) = 1 $. w2an.2 $e |- ( c == d ) = 1 $. $( Join both sides with conjunction. $) w2an $p |- ( ( a ^ c ) == ( b ^ d ) ) = 1 $= ( wa wlan wran wr2 ) ACGADGBDGCDAFHABDEIJ $. $( [13-Oct-97] $) $} ${ w3tr1.1 $e |- ( a == b ) = 1 $. w3tr1.2 $e |- ( c == a ) = 1 $. w3tr1.3 $e |- ( d == b ) = 1 $. $( Transitive inference useful for introducing definitions. $) w3tr1 $p |- ( c == d ) = 1 $= ( wr1 wr2 ) CADFABDEDBGHII $. $( [13-Oct-97] $) $} ${ w3tr2.1 $e |- ( a == b ) = 1 $. w3tr2.2 $e |- ( a == c ) = 1 $. w3tr2.3 $e |- ( b == d ) = 1 $. $( Transitive inference useful for eliminating definitions. $) w3tr2 $p |- ( c == d ) = 1 $= ( wr1 w3tr1 ) ABCDEACFHBDGHI $. $( [13-Oct-97] $) $} $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Relationship analogues (ordering; commutation) in WOML =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) ${ wleoa.1 $e |- ( ( a v c ) == b ) = 1 $. $( Relation between two methods of expressing "less than or equal to". $) wleoa $p |- ( ( a ^ b ) == a ) = 1 $= ( wa wo wr1 wlan wa5c wr2 ) ABEAACFZEABKAKBDGHACIJ $. $( [27-Sep-97] $) $} ${ wleao.1 $e |- ( ( c ^ b ) == a ) = 1 $. $( Relation between two methods of expressing "less than or equal to". $) wleao $p |- ( ( a v b ) == b ) = 1 $= ( wo wa wa2 wr1 wancom wr2 wlor wa5b ) ABEZBBCFZEZBMBAEOABGANBACBFZNPADHN PBCIHJKJBCLJ $. $( [27-Sep-97] $) $} ${ wdf-le1.1 $e |- ( ( a v b ) == b ) = 1 $. $( Define 'less than or equal to' analogue for ` == ` analogue of ` = ` . $) wdf-le1 $p |- ( a =<2 b ) = 1 $= ( wle2 wo tb wt df-le ax-r2 ) ABDABEBFGABHCI $. $( [27-Sep-97] $) $} ${ wdf-le2.1 $e |- ( a =<2 b ) = 1 $. $( Define 'less than or equal to' analogue for ` == ` analogue of ` = ` . $) wdf-le2 $p |- ( ( a v b ) == b ) = 1 $= ( wo tb wle2 wt df-le ax-r1 ax-r2 ) ABDBEZABFZGLKABHICJ $. $( [27-Sep-97] $) $} ${ wom4.1 $e |- ( a =<2 b ) = 1 $. $( Orthomodular law. Kalmbach 83 p. 22. $) wom4 $p |- ( ( a v ( a ' ^ b ) ) == b ) = 1 $= ( wn wo wa woml wdf-le2 wlan wlor w3tr2 ) AADZABEZFZEMALBFZEBABGNOAMBLABC HZIJPK $. $( [13-Oct-97] $) $} ${ wom5.1 $e |- ( a =<2 b ) = 1 $. wom5.2 $e |- ( ( b ^ a ' ) == 0 ) = 1 $. $( Orthomodular law. Kalmbach 83 p. 22. $) wom5 $p |- ( a == b ) = 1 $= ( wf wo wn wa wr1 ancom bi1 wr2 wlor or0 wom4 w3tr2 ) AEFZAAGZBHZFABESAEB RHZSTEDITSBRJKLMQAANKABCOP $. $( [13-Oct-97] $) $} ${ wcomlem.1 $e |- ( a == ( ( a ^ b ) v ( a ^ b ' ) ) ) = 1 $. $( Analogue of commutation is symmetric. Similar to Kalmbach 83 p. 22. $) wcomlem $p |- ( b == ( ( b ^ a ) v ( b ^ a ' ) ) ) = 1 $= ( wa wn ax-a2 bi1 wran ancom wr2 anabs wlan df-a anor1 w2or wr4 wr1 anass wo wlor wcon2 w3tr1 orabs wdf-le1 wom4 w3tr2 ) ABDZUGEZBDZSZUGAEZBDZSZBBA DZBUKDZSUMUJULUIUGUKBEZSZUKBSZBDZDZUQBDULUIUSBUQUSBBUKSZDZBUSVABDZVBURVAB URVAUKBFGHVCVBVABIGJVBBBUKKGJLULUQURDZBDZUTUKVDBUKUQEZUREZSZEZVDAVHAUGAUP DZSVHCUGVFVJVGUGVFABMGZVJVGABNGOJPVDVIVDVIUQURMGQJHVEUTUQURBRGJUHUQBUGUQV KUAHUBTQUGBUGBUGBSZBUGSZBVLVMUGBFGVMBUNSZBUGUNBUGUNABIGZTVNBBAUCGJJUDUEUG UNULUOVOULUOUKBIGOUF $. $( [27-Jan-02] $) $} ${ wdf-c1.1 $e |- ( a == ( ( a ^ b ) v ( a ^ b ' ) ) ) = 1 $. $( Show that commutator is a 'commutes' analogue for ` == ` analogue of ` = ` . $) wdf-c1 $p |- C ( a , b ) = 1 $= ( wcmtr wa wn wo cmtrcom df-cmtr df-t bi1 wcomlem ax-a1 ax-r5 ax-a2 ax-r2 wt lan wr2 w2or wr3 3tr ) ABDBADBAEBAFZEGZBFZAEUEUCEGZGZQABHBAIUGQBUEGZUG QUHBJKBUDUEUFABCLAUEAABEZAUEEZGZUJAUEFZEZGZCUKUNUKUMUJGUNUIUMUJBULABMRNUM UJOPKSLTSUAUB $. $( [27-Jan-02] $) $} ${ wdf-c2.1 $e |- C ( a , b ) = 1 $. $( Show that commutator is a 'commutes' analogue for ` == ` analogue of ` = ` . $) wdf-c2 $p |- ( a == ( ( a ^ b ) v ( a ^ b ' ) ) ) = 1 $= ( wa wn wo tb wt le1 lea lel2or lelor wcmtr ax-r1 df-cmtr ax-r2 dfb ancom 2an anabs df2le2 anandi oran3 oran2 anor3 lan anidm 3tr2 2or le3tr1 lebi ) AABDZABEZDZFZGZHUPIUOAEZBDZUQUMDZFZFZUOUQFZHUPUTUQUOURUQUSUQBJUQUMJKLHA BMZVAVCHCNABOPUPAUODZUQUOEZDZFVBAUOQVDUOVFUQVDUOADUOAUORUOAULAUNABJAUMJKU APUQUQUMFZUQBFZDZDUQVGDZUQVHDZDZVFUQUQVGVHUBVIVEUQVIULEZUNEZDVEVGVMVHVNAB UCABUDSULUNUEPUFVLUQUQDUQVJUQVKUQUQUMTUQBTSUQUGPUHUIPUJUK $. $( [27-Jan-02] $) $} ${ wdf2le1.1 $e |- ( ( a ^ b ) == a ) = 1 $. $( Alternate definition of 'less than or equal to'. $) wdf2le1 $p |- ( a =<2 b ) = 1 $= ( wleao wdf-le1 ) ABABACDE $. $( [27-Sep-97] $) $} ${ wdf2le2.1 $e |- ( a =<2 b ) = 1 $. $( Alternate definition of 'less than or equal to'. $) wdf2le2 $p |- ( ( a ^ b ) == a ) = 1 $= ( wdf-le2 wleoa ) ABBABCDE $. $( [27-Sep-97] $) $} $( L.e. absorption. $) wleo $p |- ( a =<2 ( a v b ) ) = 1 $= ( wo wa5c wdf2le1 ) AABCABDE $. $( [27-Sep-97] $) $( L.e. absorption. $) wlea $p |- ( ( a ^ b ) =<2 a ) = 1 $= ( wa wo wa2 wa5b wr2 wdf-le1 ) ABCZAIADAIDAIAEABFGH $. $( [27-Sep-97] $) $( Anything is l.e. 1. $) wle1 $p |- ( a =<2 1 ) = 1 $= ( wt wo or1 bi1 wdf-le1 ) ABABCBADEF $. $( [27-Sep-97] $) $( 0 is l.e. anything. $) wle0 $p |- ( 0 =<2 a ) = 1 $= ( wf wle2 wo tb wt df-le ax-a2 or0 ax-r2 bi1 ) BACBADZAEFBAGLALABDABAHAIJKJ $. $( [11-Oct-97] $) ${ wle.1 $e |- ( a =<2 b ) = 1 $. $( Add disjunct to right of l.e. $) wler $p |- ( a =<2 ( b v c ) ) = 1 $= ( wo wle2 tb wt df-le ax-a3 ax-r1 rbi ax-r2 wr5-2v ) ABCEZFAOEZOGZHAOIQAB EZCEZOGHPSOSPABCJKLRBCRBGZABFZHUATABIKDMNMM $. $( [13-Oct-97] $) $( Add conjunct to left of l.e. $) wlel $p |- ( ( a ^ c ) =<2 b ) = 1 $= ( wa an32 bi1 wdf2le2 wran wr2 wdf2le1 ) ACEZBLBEZABEZCEZLMOACBFGNACABDHI JK $. $( [13-Oct-97] $) $( Add disjunct to right of both sides. $) wleror $p |- ( ( a v c ) =<2 ( b v c ) ) = 1 $= ( wo orordir bi1 wr1 wdf-le2 wr5-2v wr2 wdf-le1 ) ACEZBCEZMNEZABEZCEZNQOQ OABCFGHPBCABDIJKL $. $( [13-Oct-97] $) $( Add conjunct to right of both sides. $) wleran $p |- ( ( a ^ c ) =<2 ( b ^ c ) ) = 1 $= ( wa anandir bi1 wr1 wdf2le2 wran wr2 wdf2le1 ) ACEZBCEZMNEZABEZCEZMQOQOA BCFGHPACABDIJKL $. $( [13-Oct-97] $) $( Contrapositive for l.e. $) wlecon $p |- ( b ' =<2 a ' ) = 1 $= ( wn wa wo ax-a2 bi1 oran wdf-le2 w3tr2 wcon3 wdf2le1 ) BDZADZNOEZBBAFZAB FZPDZBQRBAGHQSBAIHABCJKLM $. $( [13-Oct-97] $) $} ${ wletr.1 $e |- ( a =<2 b ) = 1 $. wletr.2 $e |- ( b =<2 c ) = 1 $. $( Transitive law for l.e. $) wletr $p |- ( a =<2 c ) = 1 $= ( wa wo wdf-le2 wr5-2v wr1 ax-a3 bi1 w3tr2 wlan anabs wr2 wdf2le1 ) ACACF AABCGZGZFZACSARABGZCGZCSUBRUABCABDHIJBCEHUBSABCKLMNTAAROLPQ $. $( [13-Oct-97] $) $} ${ wbltr.1 $e |- ( a == b ) = 1 $. wbltr.2 $e |- ( b =<2 c ) = 1 $. $( Transitive inference. $) wbltr $p |- ( a =<2 c ) = 1 $= ( wo wr5-2v wdf-le2 wr2 wdf-le1 ) ACACFBCFCABCDGBCEHIJ $. $( [13-Oct-97] $) $} ${ wlbtr.1 $e |- ( a =<2 b ) = 1 $. wlbtr.2 $e |- ( b == c ) = 1 $. $( Transitive inference. $) wlbtr $p |- ( a =<2 c ) = 1 $= ( wa wr1 wlan wdf2le2 wr2 wdf2le1 ) ACACFABFACBABCEGHABDIJK $. $( [13-Oct-97] $) $} ${ wle3tr1.1 $e |- ( a =<2 b ) = 1 $. wle3tr1.2 $e |- ( c == a ) = 1 $. wle3tr1.3 $e |- ( d == b ) = 1 $. $( Transitive inference useful for introducing definitions. $) wle3tr1 $p |- ( c =<2 d ) = 1 $= ( wbltr wr1 wlbtr ) CBDCABFEHDBGIJ $. $( [13-Oct-97] $) $} ${ wle3tr2.1 $e |- ( a =<2 b ) = 1 $. wle3tr2.2 $e |- ( a == c ) = 1 $. wle3tr2.3 $e |- ( b == d ) = 1 $. $( Transitive inference useful for eliminating definitions. $) wle3tr2 $p |- ( c =<2 d ) = 1 $= ( wr1 wle3tr1 ) ABCDEACFHBDGHI $. $( [13-Oct-97] $) $} ${ wbile.1 $e |- ( a == b ) = 1 $. $( Biconditional to l.e. $) wbile $p |- ( a =<2 b ) = 1 $= ( wo wr5-2v oridm bi1 wr2 wdf-le1 ) ABABDBBDZBABBCEJBBFGHI $. $( [13-Oct-97] $) $} ${ wlebi.1 $e |- ( a =<2 b ) = 1 $. wlebi.2 $e |- ( b =<2 a ) = 1 $. $( L.e. to biconditional. $) wlebi $p |- ( a == b ) = 1 $= ( wo wdf-le2 wr1 ax-a2 bi1 wr2 ) AABEZBABAEZKLABADFGLKBAHIJABCFJ $. $( [13-Oct-97] $) $} ${ wle2.1 $e |- ( a =<2 b ) = 1 $. wle2.2 $e |- ( c =<2 d ) = 1 $. $( Disjunction of 2 l.e.'s. $) wle2or $p |- ( ( a v c ) =<2 ( b v d ) ) = 1 $= ( wo wleror ax-a2 bi1 wle3tr1 wletr ) ACGBCGZBDGZABCEHCBGZDBGZMNCDBFHMOBC IJNPBDIJKL $. $( [13-Oct-97] $) $( Conjunction of 2 l.e.'s. $) wle2an $p |- ( ( a ^ c ) =<2 ( b ^ d ) ) = 1 $= ( wa wleran ancom bi1 wle3tr1 wletr ) ACGBCGZBDGZABCEHCBGZDBGZMNCDBFHMOBC IJNPBDIJKL $. $( [13-Oct-97] $) $} $( Half of distributive law. $) wledi $p |- ( ( ( a ^ b ) v ( a ^ c ) ) =<2 ( a ^ ( b v c ) ) ) = 1 $= ( wa wo anidm bi1 wr1 wlea wle2or oridm wlbtr ancom wbltr wle2an ) ABDZACDZ EZRRDZABCEZDSRSRRFGHRARTRAAEZAPAQAABIACIJUAAAKGLPBQCPBADZBPUBABMGBAINQCADZC QUCACMGCAINJON $. $( [13-Oct-97] $) $( Half of distributive law. $) wledio $p |- ( ( a v ( b ^ c ) ) =<2 ( ( a v b ) ^ ( a v c ) ) ) = 1 $= ( wa wo anidm bi1 wr1 wleo wle2an wbltr ax-a2 wlbtr wle2or oridm ) ABCDZEAB EZACEZDZSEZSASPSAAADZSUAAUAAAFGHAQARABIACIJKBQCRBBAEZQBAIUBQBALGMCCAEZRCAIU CRCALGMJNTSSOGM $. $( [13-Oct-97] $) $( Commutation with 0. Kalmbach 83 p. 20. $) wcom0 $p |- C ( a , 0 ) = 1 $= ( wf wa wn wo comm0 df-c2 bi1 wdf-c1 ) ABAABCABDCEABAFGHI $. $( [13-Oct-97] $) $( Commutation with 1. Kalmbach 83 p. 20. $) wcom1 $p |- C ( 1 , a ) = 1 $= ( wt wa wn wo comm1 df-c2 bi1 wdf-c1 ) BABBACBADCEBAAFGHI $. $( [13-Oct-97] $) ${ wlecom.1 $e |- ( a =<2 b ) = 1 $. $( Comparable elements commute. Beran 84 2.3(iii) p. 40. $) wlecom $p |- C ( a , b ) = 1 $= ( wn wa wo orabs bi1 wr1 wdf2le2 wr5-2v wr2 wdf-c1 ) ABAAABDZEZFZABEZOFPA PAANGHIAQOQAABCJIKLM $. $( [13-Oct-97] $) $} ${ wbctr.1 $e |- ( a == b ) = 1 $. wbctr.2 $e |- C ( b , c ) = 1 $. $( Transitive inference. $) wbctr $p |- C ( a , c ) = 1 $= ( wa wn wo wdf-c2 wran w2or w3tr1 wdf-c1 ) ACBBCFZBCGZFZHAACFZAOFZHBCEIDQ NRPABCDJABODJKLM $. $( [13-Oct-97] $) $( [13-Oct-97] $) $} ${ wcbtr.1 $e |- C ( a , b ) = 1 $. wcbtr.2 $e |- ( b == c ) = 1 $. $( Transitive inference. $) wcbtr $p |- C ( a , c ) = 1 $= ( wa wn wo wdf-c2 wlan wr4 w2or wr2 wdf-c1 ) ACAABFZABGZFZHACFZACGZFZHABD IORQTBCAEJPSABCEKJLMN $. $( [13-Oct-97] $) $} $( Weak commutation law. $) wcomorr $p |- C ( a , ( a v b ) ) = 1 $= ( wo wleo wlecom ) AABCABDE $. $( [13-Oct-97] $) $( Weak commutation law. $) wcoman1 $p |- C ( ( a ^ b ) , a ) = 1 $= ( wa wlea wlecom ) ABCAABDE $. $( [13-Oct-97] $) ${ wcomcom.1 $e |- C ( a , b ) = 1 $. $( Commutation is symmetric. Kalmbach 83 p. 22. $) wcomcom $p |- C ( b , a ) = 1 $= ( wcmtr wt cmtrcom ax-r2 ) BADABDEBAFCG $. $( [13-Oct-97] $) $( Commutation equivalence. Kalmbach 83 p. 23. $) wcomcom2 $p |- C ( a , b ' ) = 1 $= ( wn wa wo wdf-c2 ax-a1 bi1 wlan wr5-2v wr2 ax-a2 wdf-c1 ) ABDZAAODZEZAOE ZFZRQFZAABEZRFSABCGUAQRBPABPBHIJKLSTQRMILN $. $( [13-Oct-97] $) $( Commutation equivalence. Kalmbach 83 p. 23. $) wcomcom3 $p |- C ( a ' , b ) = 1 $= ( wn wcomcom wcomcom2 ) BADBAABCEFE $. $( [13-Oct-97] $) $( Commutation equivalence. Kalmbach 83 p. 23. $) wcomcom4 $p |- C ( a ' , b ' ) = 1 $= ( wn wcomcom3 wcomcom2 ) ADBABCEF $. $( [13-Oct-97] $) $( Commutation dual. Kalmbach 83 p. 23. $) wcomd $p |- ( a == ( ( a v b ) ^ ( a v b ' ) ) ) = 1 $= ( wn wa wo wcomcom4 wdf-c2 wcon3 oran bi1 wcon2 w2an wr1 wr2 ) AADZBDZEZP QDEZFZDZABFZAQFZEZATPQABCGHIUARDZSDZEZUDTUGTUGDRSJKLUDUGUBUEUCUFUBUEABJKU CUFAQJKMNOO $. $( [13-Oct-97] $) $( Lemma 3(ii) of Kalmbach 83 p. 23. $) wcom3ii $p |- ( ( a ^ ( a ' v b ) ) == ( a ^ b ) ) = 1 $= ( wa wn wo wcomcom wcomd wlan anass bi1 wr1 ax-a2 anabs wr2 w2an ) ABDZAA EZBFZDZQABAFZBRFZDZDZTBUCABAABCGHIUDAUADZUBDZTUFUDUFUDAUAUBJKLUEAUBSUEAAB FZDZAUAUGAUAUGBAMKIUHAABNKOUBSBRMKPOOL $. $( [13-Oct-97] $) $} ${ wcomcom5.1 $e |- C ( a ' , b ' ) = 1 $. $( Commutation equivalence. Kalmbach 83 p. 23. $) wcomcom5 $p |- C ( a , b ) = 1 $= ( wn wa wo wcomcom4 wdf-c2 ax-a1 bi1 w2an w2or w3tr1 wdf-c1 ) ABADZDZPBDZ DZEZPRDZEZFAABEZAQEZFPROQCGHAPAIJZUBSUCUAAPBRUDBRBIJKAPQTUDQTQIJKLMN $. $( [13-Oct-97] $) $} ${ wcomdr.1 $e |- ( a == ( ( a v b ) ^ ( a v b ' ) ) ) = 1 $. $( Commutation dual. Kalmbach 83 p. 23. $) wcomdr $p |- C ( a , b ) = 1 $= ( wn wa wo df-a bi1 oran wcon2 w2or wr4 wr2 wdf-c1 wcomcom5 ) ABADZBDZAPQ EZPQDEZFZAABFZAQFZEZTDZCUCUADZUBDZFZDZUDUCUHUAUBGHUGTUERUFSUARUARDABIHJUB SUBSDAQIHJKLMMJNO $. $( [13-Oct-97] $) $} ${ wcom3i.1 $e |- ( ( a ^ ( a ' v b ) ) == ( a ^ b ) ) = 1 $. $( Lemma 3(i) of Kalmbach 83 p. 23. $) wcom3i $p |- C ( a , b ) = 1 $= ( wn wa anor1 bi1 wcon2 wran ancom wr2 wlor wlea wom4 ax-a2 w3tr2 wdf-c1 wo ) ABABDZEZTDZAEZRTABEZRZAUCTRZUBUCTUBAADBRZEZUCUBUFAEZUGUAUFATUFTUFDAB FGHIUHUGUFAJGKCKLTAASMNUDUETUCOGPQ $. $( [13-Oct-97] $) $} ${ wfh.1 $e |- C ( a , b ) = 1 $. wfh.2 $e |- C ( a , c ) = 1 $. $( Weak structural analog of Foulis-Holland Theorem. $) wfh1 $p |- ( ( a ^ ( b v c ) ) == ( ( a ^ b ) v ( a ^ c ) ) ) = 1 $= ( wa wo wledi wn bi1 df-a wr1 wcon3 wr2 w2an wcomcom2 wcom3ii anandi wlan wf ancom w2or wcon2 anass w3tr1 an12 oran dff an0 wom5 ) ABFZACFZGZABCGZF ZUMUOABCHUOUMIZFZAUNBIZCIZFZFZFZTUQUNAFZAIZURGZVDUSGZFZFZVBUOVCUPVGUOVCAU NUAJUMVGUMVEIZVFIZGZVGIUKVIULVJUKVIABKJULVJACKJUBVKVGVGVKIZVGVLVEVFKJLMNU COVHUNAUTFZFZVBVHUNAVGFZFZVNVHVPUNAVGUDJVOVMUNAVEFZAVFFZFZAURFZAUSFZFZVOV MVQVTVRWAAURABDPQAUSACEPQOVOVSAVEVFRJVMWBAURUSRJUESNVNVBUNAUTUFJNNVBATFZT VATAVAUNUNIZFZTUTWDUNUTUNUNUTIZUNWFBCUGJLMSTWETWEUNUHJLNSWCTAUIJNNUJL $. $( [13-Oct-97] $) $( Weak structural analog of Foulis-Holland Theorem. $) wfh2 $p |- ( ( b ^ ( a v c ) ) == ( ( b ^ a ) v ( b ^ c ) ) ) = 1 $= ( wa wo wledi wn wf oran bi1 wcon2 wran wr2 wlan an4 wcom3ii anass wr1 df-a wr4 wcomcom wcomcom2 ancom ax-a1 wr5-2v wcomcom3 an12 dff w3tr1 wom5 an0 ) BAFZBCFZGZBACGZFZUPURBACHURUPIZFZAIZCBUOIZFZFZFZJUTVACFZVCFZVEUTVAU QFZVCFZVGUTVABFZUQVBFZFZVIUTURBIVAGZVBFZFZVLUSVNURUPVNUPUNIZVBFZIZVNIUPVR UNUOKLVQVNVPVMVBUNVMUNVMIBAUALMNUBOMPVOBVMFZVKFZVLVOVTBUQVMVBQLVSVJVKVSBV AFZVJBVABAABDUCUDRWAVJBVAUELONOOVLVIVABUQVBQLOVHVFVCVHVAVAIZCGZFVFUQWCVAA WBCAWBAUFLUGPVACACEUHRONOVGVEVACVCSLOVEVAJFZJVDJVABCVBFFZUOVBFZVDJWFWEWFW EBCVBSLTVDWECBVBUILJWFUOUJLUKPWDJVAUMLOOULT $. $( [13-Oct-97] $) $( Weak structural analog of Foulis-Holland Theorem. $) wfh3 $p |- ( ( a v ( b ^ c ) ) == ( ( a v b ) ^ ( a v c ) ) ) = 1 $= ( wa wo wn wcomcom4 wfh1 anor2 bi1 df-a wr1 wlor wr4 wr2 oran w2an w3tr2 wcon1 ) ABCFZGZABGZACGZFZAHZBHZCHZGZFZUGUHFZUGUIFZGZUCHZUFHZUGUHUIABDIACE IJUKAUJHZGZHZUOUKUSAUJKLURUCUQUBAUBUQUBUQBCMLNOPQUNULHZUMHZFZHZUPUNVCULUM RLVBUFUFVBUDUTUEVAUDUTABRLUEVAACRLSNPQTUA $. $( [13-Oct-97] $) $( Weak structural analog of Foulis-Holland Theorem. $) wfh4 $p |- ( ( b v ( a ^ c ) ) == ( ( b v a ) ^ ( b v c ) ) ) = 1 $= ( wa wo wn wcomcom4 wfh2 anor2 bi1 df-a wr1 wlor wr4 wr2 oran w2an w3tr2 wcon1 ) BACFZGZBAGZBCGZFZBHZAHZCHZGZFZUGUHFZUGUIFZGZUCHZUFHZUHUGUIABDIACE IJUKBUJHZGZHZUOUKUSBUJKLURUCUQUBBUBUQUBUQACMLNOPQUNULHZUMHZFZHZUPUNVCULUM RLVBUFUFVBUDUTUEVAUDUTBARLUEVABCRLSNPQTUA $. $( [13-Oct-97] $) $( Th. 4.2 Beran p. 49. $) wcom2or $p |- C ( a , ( b v c ) ) = 1 $= ( wo wa wn wcomcom wdf-c2 ancom 2or bi1 wr2 w2or or4 wfh1 wcomcom3 wdf-c1 wr1 ) BCFZAUAAUAABGZACGZFZAHZBGZUECGZFZFZUAAGZUAUEGZFZUAUBUFFZUCUGFZFZUIB UMCUNBBAGZBUEGZFZUMBAABDIJURUMUPUBUQUFBAKBUEKLMNCCAGZCUEGZFZUNCAACEIJVAUN USUCUTUGCAKCUEKLMNOUOUIUBUFUCUGPMNULUIUJUDUKUHUJAUAGZUDUJVBUAAKMABCDEQNUK UEUAGZUHUKVCUAUEKMUEBCABDRACERQNOTNSI $. $( [10-Nov-98] $) $( Th. 4.2 Beran p. 49. $) wcom2an $p |- C ( a , ( b ^ c ) ) = 1 $= ( wa wn wo wcomcom4 wcom2or df-a con2 ax-r1 bi1 wcbtr wcomcom5 ) ABCFZAGZ BGZCGZHZQGZRSTABDIACEIJUAUBUBUAQUABCKLMNOP $. $( [10-Nov-98] $) $} $( Negated biconditional (distributive form) $) wnbdi $p |- ( ( a == b ) ' == ( ( ( a v b ) ^ a ' ) v ( ( a v b ) ^ b ' ) ) ) = 1 $= ( tb wn wo wa dfnb bi1 wcomorr wcomcom wcomcom2 ax-a2 wcbtr wfh1 wr2 ) ABCD ZABEZADZBDZEFZQRFQSFEPTABGHQRSQAAQABIJKQBBQBBAEZQBAIUAQBALHMJKNO $. $( [13-Oct-97] $) $( Lemma for KA14 soundness. $) wlem14 $p |- ( ( ( a ^ b ' ) v a ' ) ' v ( ( a ^ b ' ) v ( ( a ' ^ ( ( a v b ' ) ^ ( a v b ) ) ) v ( a ' ^ ( ( a v b ' ) ^ ( a v b ) ) ' ) ) ) ) = 1 $= ( wn wa wo wt df-t ax-r1 ax-a2 bi1 wwbmpr wlan anidm wr1 wleo wle2an wlecom wbltr wcomcom3 wlor wcomcom4 wfh1 an1 w3tr2 ) ABCZDZACZEZCZUFUGAUEEZABEZDZD UGULCZDEZEZEUIUHEZUPUHUIEZFUQUHGHUPUQUIUHIJKUOUHUIUNUGUFUGULUMEZDUGFDZUNUGU RFUGURFFURULGHJLUGULUMAULAULAAADZULUTAUTAAMJNAUJAUKAUEOABOPRQZSAULVAUAUBUSU GUGUCJUDTTK $. $( [25-Oct-97] $) ${ wr5.1 $e |- ( a == b ) = 1 $. $( Proof of weak orthomodular law from weaker-looking equivalent, ~ wom3 , which in turn is derived from ~ ax-wom . $) wr5 $p |- ( ( a v c ) == ( b v c ) ) = 1 $= ( wr5-2v ) ABCDE $. $( [25-Oct-97] $) $} $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Kalmbach axioms (soundness proofs) that require WOML =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( >>>Remove "id" when bug is fixed. $) $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA2. $) ska2 $p |- ( ( a == b ) ' v ( ( b == c ) ' v ( a == c ) ) ) = 1 $= ( wn wo wa wt ax-a3 ax-r1 ax-a2 or12 lor ax-r2 wcomorr bi1 wcomcom wcomcom2 bltr ancom wr2 tb dfnb dfb 2or id le1 df-t oran3 leor le2or lelor letr lebi orordi wcbtr wfh4 or1 ran an1 or32 w2or wlor orordir anor3 wcom2or oran leo wwbmpr wr5-2v wcomcom3 wfh1 wwbmp ax-r5 ledi leror ) ABUADZBCUADZACUAZEZEAB EZADZBDZEFZBCEZWBCDZEZFZACFZWAWEFZEZEZEZGVPWCVSWKABUBVQWGVRWJBCUBACUCUDUDWL WCWGEZWJEZGWNWLWCWGWJHIWNWNGWNUEWNGWNUFGVTWAFZWBVTFZEZWBWDFZWDWEFZEZEZWJEZW NGWOWPWREZWSEZEZWJEZXBXFGWOWBVTWDEZFZWSEZEZWJEZXFXKWJXJEZGXJWJJXLWOWJXIEZEZ GWJWOXIKXNWOWHWIWBEZWSEZEZEZXRWHWOXPEZEZGWOWHXPKXTWHWIWBWOEZWBWSEZEZEZEZGXS YDWHXSXOWOWSEZEZYDWOXOWSKYGWIWBYFEZEYDWIWBYFHYHYCWIWBWOWSUNLMMLYEWHWIWBWAEZ WFEZEZEZYLWIWHYJEZEZGWHWIYJKYNGYNUFGYMYNGWHWAWEEZEZYMGWHWHDZEZYPWHUGYPYRYOY QWHACUHLIMYOYJWHWAYIWEWFWAWBUIWEWBUIUJUKRYMWIUIULUMMYDYKWHYCYJWIYAYIYBWFYAW BVTEZYIFZYIVTWBWAVTBBVTBBAEZVTBANUUAVTBAJOUOZPQVTAAVTABNPQUPYTYIYTGYIFZYIYS GYIYSAWBBEZEZGWBABKUUEAGEGUUDGAUUDBWBEZGWBBJGUUFBUGIZMLAUQMMURUUCYIGFYIGYIS YIUSMMOTYBWBWDEZWFFZWFWDWBWEWDBBWDBCNZPQWDCCWDCCBEZWDCBNUUKWDCBJZOUOPQUPUUI WFUUIGWFFZWFUUHGWFUUHWDWBEZGWBWDJUUNUUFCEZGBCWBUTUUOCUUFEZGUUFCJUUPCGEGUUFG CUUGLCUQMMMMURUUMWFGFWFGWFSWFUSMMOTVAVBVBVHMMXMXQWOXMWHWIXIEZEZXQXMUURWHWIX IHOUUQXPWHUUQWIXHEZWSEZXPUUQUUTUUTUUQWIXHWSHIOUUSXOWSUUSWIXGWBFZEZXOUUSUVBX HUVAWIWBXGSLOUVBWIXGEZXOFZXOXGWIWBXGACEZDZWIXGUVEUVEXGUVEUVEBEZXGUVEBNUVGXG UVGVTUUKEXGACBVCUUKWDVTUULLMOUOPQUVFWIWIUVFACVDIOUOXGBBXGBVTWDUUBUUJVEPQUPU VDXOUVDGXOFZXOUVCGXOUVCGUVCUFGWIUVEEZUVCGWIWIDZEUVIWIUGUVJUVEWIUVEUVJACVFIL MUVEXGWIAVTCWDABVGCBUIUJUKRUMURUVHXOGFXOGXOSXOUSMMOTTVITVBTVBVHMMXJXEWJXIXD WOXHXCWSWBVTWDBVTUUBVJBWDUUJVJVKVIVBVIVLIXEXAWJXEWQWREZWSEZXAXEWOXCEZWSEZUV LUVNXEWOXCWSHIUVMUVKWSUVKUVMWOWPWRHIVMMWQWRWSHMVMMXAWMWJWQWCWTWGWQWOVTWBFZE WCWPUVOWOWBVTSLVTWAWBVNRWTWDWBFZWSEWGWRUVPWSWBWDSVMWDWBWEVNRUJVORUMMMM $. $( [10-Nov-98] $) $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA4. $) ska4 $p |- ( ( a == b ) ' v ( ( a ^ c ) == ( b ^ c ) ) ) = 1 $= ( tb wn wa wo wt 2or ax-a2 le1 df-t lor ax-r1 ax-r2 lea lecon leror wcomcom wcomcom2 dfnb dfb ax-a3 oran le2an bltr lebi ran ancom an1 3tr anandir lear oran3 ax-r5 ler2an lelor wlea wleo wletr wlecom wlbtr wcom2an wcomorr wcbtr bi1 wcom2or wfh4 wlor wwbmpr ) ABDEZACFZBCFZDZGABGZAEZBEZGZFZVLVMFZVLEZVMEZ FZGZGWDVSGZHVKVSVNWDABUAVLVMUBIVSWDJWEVTWCVSGZGZHVTWCVSUCWGVTWCVOGZWCVRGZFZ GZWKVTWIGZHWJWIVTWJHWIFWIHFWIWHHWIWHHWHKHVPVQFZVOGZWHHWMWMEZGZWNWMLWNWPVOWO WMABUDMNOWMWCVOVPWAVQWBVLAACPQVMBBCPQUERUFUGUHHWIUIWIUJUKMWLHWLKHVTCEZVRGZG ZWLHABFZCFZXAEZGWSXALXAVTXBWRABCULXBVRWQGZWRXCXBXCWTEZWQGXBVRXDWQABUNUOWTCU NONVRWQJOIOWRWIVTWQWCVRWQWAWBVLCACUMQVMCBCUMQUPRUQUFUGOWFWJVTVOWCVRVOWAWBVO VLVLVOVLVOVLAVOACURABUSUTVASTVOVMVMVOVMVOVMBVOBCURBBAGZVOBAUSXEVOBAJVFZVBUT VASTVCVOVPVQVOAAVOABVDSTVOBBVOBXEVOBAVDXFVESTVGVHVIVJOUK $. $( [9-Nov-98] $) $( Weak orthomodular law for study of weakly orthomodular lattices. $) wom2 $p |- a =< ( ( a == b ) ' v ( ( a v c ) == ( b v c ) ) ) $= ( wt tb wn wo le1 wa conb ax-r4 oran 2bi ax-r1 ax-r2 2or ska4 lbtr ) ADABEZ FZACGZBCGZEZGZAHUDDUDAFZBFZEZFZUECFZIZUFUIIZEZGDTUHUCULSUGABJKUCUJFZUKFZEZU LUAUMUBUNACLBCLMULUOUJUKJNOPUEUFUIQONR $. $( [13-Nov-98] $) $( 3-variable version of weakly orthomodular law. It is proved from a weaker-looking equivalent, ~ wom2 , which in turn is proved from ~ ax-wom . $) ka4ot $p |- ( ( a == b ) ' v ( ( a v c ) == ( b v c ) ) ) = 1 $= ( tb wn wo wt le1 wom2 bicom ax-r4 2or lbtr le2or oridm leror ka4lemo ax-a3 lor ax-r2 le3tr2 lebi ) ABDZEZACFZBCFZDZFZGUHHABFZUGFUHUGFZGUHUIUHUGUIUHUHF UHAUHBUHABCIBBADZEZUFUEDZFUHBACIULUDUMUGUKUCBAJKUFUEJLMNUHOMPABCQUJUDUGUGFZ FUHUDUGUGRUNUGUDUGOSTUAUB $. $( [25-Oct-97] $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Weak orthomodular law variants =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( Variant of weakly orthomodular law. $) woml6 $p |- ( ( a ->1 b ) ' v ( a ->2 b ) ) = 1 $= ( wn wo wa wt df-a lor ax-r2 ax-r1 2or ax-a2 ancom wcomorr wcomcom wcomcom3 bi1 wcomcom5 df-t 3tr wi1 wi2 df-i1 ax-r4 df-i2 ax-r5 ax-a3 tb wcbtr wr5-2v 1b wfh4 or12 or1 ran an1 anor3 wr2 wr1 3tr2 ) ABUAZCZABUBZDAACZBCZDZEZBVDVE EZDZDZFVBVGVCVIVBVDVFCZDZCZVGVAVLVAVDABEZDVLABUCVNVKVDABGHIUDVGVMAVFGJIABUE KVGBDZVHDBVFAEZDZVHDZVJFVOVQVHVOBVGDVQVGBLVGVPBAVFMHIUFVGBVHUGVRFVRUHZFVSVR VRUKJVRFVRBVFDZBADZEZVHDZFVQWBVHVFBAVFBVFVEVEVFVEVEVDDZVFVEVDNWDVFVEVDLQUIO PRVFAVFVDVDVFVDVENOPRULUJWCFWCABDZWECZDZFWBWEVHWFWBWAFEZWAWEWBFWAEWHVTFWAVT VDBVEDZDZVDFDZFBVDVEUMWKWJFWIVDBSHJVDUNTUOFWAMIWAUPBALTABUQKFWGWESJIQURUSIU TI $. $( [14-Nov-98] $) $( Variant of weakly orthomodular law. $) woml7 $p |- ( ( ( a ->2 b ) ^ ( b ->2 a ) ) ' v ( a == b ) ) = 1 $= ( wi2 wa wn tb wo wt df-i2 ax-a2 ax-r2 ancom ax-r5 3tr 2an wcoman1 wcomcom3 bi1 wcomcom5 wr2 ax-r4 id dfb 2or 1b ax-r1 df-t wa2 wbctr wfh3 wr4 wr5-2v ) ABCZBACZDZEZABFZGAEZBEZDZAGZUTBGZDZEZABDZUTGZGZHVGFZHUPVDUQVFUPVDVDUOVCUOVB VADVCUMVBUNVAUMBUTGVBABIBUTJKUNAUSURDZGVIAGVABAIAVIJVIUTAUSURLMNOVBVALKUAVD UBKABUCUDVHVGVGUEUFHVFEZVFGZVGHVKHVFVJGVKVFUGVFVJJKRVJVDVFVFVCVFUTVEGVCVEUT UHUTABUTAUTURURUSPQSUTBUTUSUTVIUSUTVIURUSLRUSURPUIQSUJTUKULTN $. $( [14-Nov-98] $) ${ ortha.1 $e |- a =< b ' $. $( Property of orthogonality. $) ortha $p |- ( a ^ b ) = 0 $= ( wa wf wn lecon3 lelan dff ax-r1 lbtr le0 lebi ) ABDZENAAFZDZEBOAABCGHEP AIJKNLM $. $( [10-Mar-02] $) $} $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# Orthomodular lattices #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Orthomodular law =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) ${ r3.1 $e |- ( c v c ' ) = ( ( a ' v b ' ) ' v ( a v b ) ' ) $. $( Orthomodular law - when added to an ortholattice, it makes the ortholattice an orthomodular lattice. See ~ r3a for a more compact version. $) ax-r3 $a |- a = b $. $} ${ r3a.1 $e |- 1 = ( a == b ) $. $( Orthomodular law restated. $) r3a $p |- a = b $= ( wt tb wn wo df-t df-b 3tr2 ax-r3 ) ABADABEAAFZGLBFGFABGFGCAHABIJK $. $( [12-Aug-97] $) $} ${ wed.1 $e |- a = b $. wed.2 $e |- ( a == b ) = ( c == d ) $. $( Weak equivalential detachment (WBMP). $) wed $p |- c = d $= ( wt tb 1bi ax-r2 r3a ) CDGABHCDHABEIFJK $. $( [10-Aug-97] $) $} ${ r3b.1 $e |- ( c v c ' ) = ( a == b ) $. $( Orthomodular law from weak equivalential detachment (WBMP). $) r3b $p |- a = b $= ( wt tb wn wo df-t ax-r2 1b wed ) EABFZABECCGHMCIDJMKL $. $( [10-Aug-97] $) $} ${ lem3.1.1 $e |- ( a v b ) = b $. lem3.1.2 $e |- ( b ' v a ) = 1 $. $( Lemma used in proof of Th. 3.1 of Pavicic 1993. $) lem3.1 $p |- a = b $= ( tb wt wlem3.1 ax-r1 r3a ) ABABEFABCDGHI $. $( [12-Aug-97] $) $( Lemma used in proof of Th. 3.1 of Pavicic 1993. $) lem3a.1 $p |- ( a v b ) = a $= ( wo lem3.1 ax-r1 lor oridm ax-r2 ) ABEAAEABAAABABCDFGHAIJ $. $( [12-Aug-97] $) $} $( Orthomodular law. Compare Th. 1 of Pavicic 1987. $) oml $p |- ( a v ( a ' ^ ( a v b ) ) ) = ( a v b ) $= ( wn wo wa omlem1 omlem2 lem3.1 ) AACABDZEDIABFABGH $. $( [12-Aug-97] $) $( Orthomodular law. $) omln $p |- ( a ' v ( a ^ ( a ' v b ) ) ) = ( a ' v b ) $= ( wn wo wa ax-a1 ran lor oml ax-r2 ) ACZAKBDZEZDKKCZLEZDLMOKANLAFGHKBIJ $. $( [2-Nov-97] $) $( Orthomodular law. $) omla $p |- ( a ^ ( a ' v ( a ^ b ) ) ) = ( a ^ b ) $= ( wn wa wo df-a ax-r1 lor ax-r4 ax-r2 omln con2 3tr1 con1 ) AACZABDZEZDZPOQ CZEZOBCZEZRCPCTOAUBDZEUBSUCOUCSUCOUBCZEZCSAUBFUEQUDPOPUDABFZGHIJGHAUAKJRTAQ FLPUBUFLMN $. $( [7-Nov-97] $) $( Orthomodular law. $) omlan $p |- ( a ' ^ ( a v ( a ' ^ b ) ) ) = ( a ' ^ b ) $= ( wn wa wo ax-a1 ax-r5 lan omla ax-r2 ) ACZAKBDZEZDKKCZLEZDLMOKANLAFGHKBIJ $. $( [7-Nov-97] $) $( Orthomodular law. $) oml5 $p |- ( ( a ^ b ) v ( ( a ^ b ) ' ^ ( b v c ) ) ) = ( b v c ) $= ( wa wn wo oml ax-a3 ancom lor orabs ax-r2 ax-r5 or12 3tr2 lan 3tr1 ) ABDZR EZBCFZDZFZBRFZCFZTRSRTFZDZFUEUBUDRTGUAUFRTUESUDBRCFFZTUEBRCHZUCBCUCBBADZFBR UIBABIJBAKLMZBRCNZOPJUDUGUEUHUKLQUJL $. $( [16-Nov-97] $) $( Orthomodular law. $) oml5a $p |- ( ( a v b ) ^ ( ( a v b ) ' v ( b ^ c ) ) ) = ( b ^ c ) $= ( wo wn wa omla anass ax-a2 lan anabs ax-r2 ran an12 3tr2 lor 3tr1 ) ABDZRE ZBCFZDZFZBRFZCFZTRSRTFZDZFUEUBUDRTGUAUFRTUESUDBRCFFZTUEBRCHZUCBCUCBBADZFBRU IBABIJBAKLMZBRCNZOPJUDUGUEUHUKLQUJL $. $( [16-Nov-97] $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Relationship analogues using OML (ordering; commutation) =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) ${ oml2.1 $e |- a =< b $. $( Orthomodular law. Kalmbach 83 p. 22. $) oml2 $p |- ( a v ( a ' ^ b ) ) = b $= ( wn wo wa oml df-le2 lan lor 3tr2 ) AADZABEZFZEMALBFZEBABGNOAMBLABCHZIJP K $. $( [27-Aug-97] $) $} ${ oml3.1 $e |- a =< b $. oml3.2 $e |- ( b ^ a ' ) = 0 $. $( Orthomodular law. Kalmbach 83 p. 22. $) oml3 $p |- a = b $= ( wf wo wn wa ax-r1 ancom ax-r2 lor or0 oml2 3tr2 ) AEFAAGZBHZFABEQAEBPHZ QREDIBPJKLAMABCNO $. $( [27-Aug-97] $) $} ${ comcom.1 $e |- a C b $. $( Commutation is symmetric. Kalmbach 83 p. 22. $) comcom $p |- b C a $= ( wa wn wo ax-a2 ran ancom ax-r2 anabs df-c2 df-a anor1 ax-r4 ax-r1 anass lan 2or lor con2 3tr1 orabs df-le1 oml2 3tr2 df-c1 ) BAABDZUHEZBDZFZUHAEZ BDZFZBBADZBULDZFUNUKUMUJUHULBEZFZULBFZBDZDZURBDUMUJUTBURUTBBULFZDZBUTVBBD VCUSVBBULBGHVBBIJBULKJRUMURUSDZBDVAULVDBULUREZUSEZFZEZVDAVGAUHAUQDZFVGABC LUHVEVIVFABMZABNSJOVDVHURUSMPJHURUSBQJUIURBUHURVJUAHUBTPUHBUHBUHBFBUHFZBU HBGVKBUOFBUHUOBABIZTBAUCJJUDUEUHUOUMUPVLULBISUFUG $. $( [27-Aug-97] $) $( Commutation equivalence. Kalmbach 83 p. 23. $) comcom3 $p |- a ' C b $= ( wn comcom comcom2 ) BADBAABCEFE $. $( [27-Aug-97] $) $( Commutation equivalence. Kalmbach 83 p. 23. $) comcom4 $p |- a ' C b ' $= ( wn comcom3 comcom2 ) ADBABCEF $. $( [27-Aug-97] $) $( Commutation dual. Kalmbach 83 p. 23. $) comd $p |- a = ( ( a v b ) ^ ( a v b ' ) ) $= ( wn wa wo comcom4 df-c2 con3 oran con2 2an ax-r1 ax-r2 ) AADZBDZEZOPDEZF ZDZABFZAPFZEZASOPABCGHITQDZRDZEZUCSUFQRJKUCUFUAUDUBUEABJAPJLMNN $. $( [27-Aug-97] $) $( Lemma 3(ii) of Kalmbach 83 p. 23. $) com3ii $p |- ( a ^ ( a ' v b ) ) = ( a ^ b ) $= ( wa wn wo comcom comd lan anass ax-r1 ax-a2 anabs ax-r2 2an ) ABDZAAEZBF ZDZPABAFZBQFZDZDZSBUBABAABCGHIUCATDZUADZSUEUCATUAJKUDAUARUDAABFZDATUFABAL IABMNBQLONNK $. $( [27-Aug-97] $) $} ${ comcom5.1 $e |- a ' C b ' $. $( Commutation equivalence. Kalmbach 83 p. 23. $) comcom5 $p |- a C b $= ( wn wa wo comcom4 df-c2 ax-a1 2an 2or 3tr1 df-c1 ) ABADZDZOBDZDZEZOQDZEZ FAABEZAPEZFOQNPCGHAIZUARUBTAOBQUCBIJAOPSUCPIJKLM $. $( [27-Aug-97] $) $} ${ comcom6.1 $e |- a ' C b $. $( Commutation equivalence. Kalmbach 83 p. 23. $) comcom6 $p |- a C b $= ( wn comcom2 comcom5 ) ABADBCEF $. $( [26-Nov-97] $) $} ${ comcom7.1 $e |- a C b ' $. $( Commutation equivalence. Kalmbach 83 p. 23. $) comcom7 $p |- a C b $= ( wn comcom3 comcom5 ) ABABDCEF $. $( [26-Nov-97] $) $} $( Commutation law. $) comor1 $p |- ( a v b ) C a $= ( wo comorr comcom ) AABCABDE $. $( [9-Nov-97] $) $( Commutation law. $) comor2 $p |- ( a v b ) C b $= ( wo ax-a2 comor1 bctr ) ABCBACBABDBAEF $. $( [9-Nov-97] $) $( Commutation law. $) comorr2 $p |- b C ( a v b ) $= ( wo comor2 comcom ) ABCBABDE $. $( [26-Nov-97] $) $( Commutation law. $) comanr1 $p |- a C ( a ^ b ) $= ( wa coman1 comcom ) ABCAABDE $. $( [26-Nov-97] $) $( Commutation law. $) comanr2 $p |- b C ( a ^ b ) $= ( wa coman2 comcom ) ABCBABDE $. $( [26-Nov-97] $) ${ comdr.1 $e |- a = ( ( a v b ) ^ ( a v b ' ) ) $. $( Commutation dual. Kalmbach 83 p. 23. $) comdr $p |- a C b $= ( wn wa wo df-a oran con2 2or ax-r4 ax-r2 df-c1 comcom5 ) ABADZBDZAOPEZOP DEZFZAABFZAPFZEZSDZCUBTDZUADZFZDUCTUAGUFSUDQUERTQABHIUARAPHIJKLLIMN $. $( [27-Aug-97] $) $} ${ com3i.1 $e |- ( a ^ ( a ' v b ) ) = ( a ^ b ) $. $( Lemma 3(i) of Kalmbach 83 p. 23. $) com3i $p |- a C b $= ( wn wa wo anor1 con2 ran ancom ax-r2 lor lea oml2 ax-a2 3tr2 df-c1 ) ABA BDZEZSDZAEZFSABEZFAUBSFUAUBSUAAADBFZEZUBUAUCAEUDTUCASUCABGHIUCAJKCKLSAARM NSUBOPQ $. $( [28-Aug-97] $) $} ${ df2c1.1 $e |- a = ( ( a v b ) ^ ( a v b ' ) ) $. $( Dual 'commutes' analogue for ` == ` analogue of ` = ` . $) df2c1 $p |- a C b $= ( wn wa wo df-a anor3 2or ax-r1 ax-r4 ax-r2 con2 df-c1 comcom5 ) ABADZBDZ APQEZPQDEZFZAABFZAQFZEZTDZCUCUADZUBDZFZDUDUAUBGUGTTUGRUESUFABHAQHIJKLLMNO $. $( [20-Sep-98] $) $} ${ fh.1 $e |- a C b $. fh.2 $e |- a C c $. $( Foulis-Holland Theorem. $) fh1 $p |- ( a ^ ( b v c ) ) = ( ( a ^ b ) v ( a ^ c ) ) $= ( wa wo ledi wn ancom df-a ax-r1 con3 ax-r2 2an comcom2 com3ii anandi lan wf 2or con2 anass 3tr1 an12 oran dff an0 oml3 ) ABFZACFZGZABCGZFZULUNABCH UNULIZFZAUMBIZCIZFZFZFZTUPUMAFZAIZUQGZVCURGZFZFZVAUNVBUOVFAUMJULVFULVDIZV EIZGZVFIUJVHUKVIABKACKUAVJVFVFVJIVDVEKLMNUBOVGUMAUSFZFZVAVGUMAVFFZFVLUMAV FUCVMVKUMAVDFZAVEFZFAUQFZAURFZFVMVKVNVPVOVQAUQABDPQAURACEPQOAVDVERAUQURRU DSNUMAUSUENNVAATFTUTTAUTUMUMIZFZTUSVRUMUSUMUMUSIBCUFLMSTVSUMUGLNSAUHNNUIL $. $( [29-Aug-97] $) $( Foulis-Holland Theorem. $) fh2 $p |- ( b ^ ( a v c ) ) = ( ( b ^ a ) v ( b ^ c ) ) $= ( wa wo ledi wn wf oran df-a con2 ran ax-r2 lan an4 com3ii anass ax-r1 ax-r4 comcom comcom2 ancom ax-a1 ax-r5 comcom3 an12 dff 3tr1 an0 oml3 ) B AFZBCFZGZBACGZFZUOUQBACHUQUOIZFZAIZCBUNIZFZFZFZJUSUTCFZVBFZVDUSUTUPFZVBFZ VFUSUTBFZUPVAFZFZVHUSUQBIUTGZVAFZFZVKURVMUQUOVMUOUMIZVAFZIVMIUMUNKVPVMVOV LVAUMVLBALMNUAOMPVNBVLFZVJFVKBUPVLVAQVQVIVJVQBUTFVIBUTBAABDUBUCRBUTUDONOO UTBUPVAQOVGVEVBVGUTUTIZCGZFVEUPVSUTAVRCAUEUFPUTCACEUGRONOUTCVBSOVDUTJFJVC JUTBCVAFFZUNVAFZVCJWAVTBCVASTCBVAUHUNUIUJPUTUKOOULT $. $( [29-Aug-97] $) $( Foulis-Holland Theorem. $) fh3 $p |- ( a v ( b ^ c ) ) = ( ( a v b ) ^ ( a v c ) ) $= ( wa wo comcom4 fh1 anor2 df-a ax-r1 lor ax-r4 ax-r2 oran 2an 3tr2 con1 wn ) ABCFZGZABGZACGZFZATZBTZCTZGZFZUFUGFZUFUHFZGZUBTZUETZUFUGUHABDHACEHIU JAUITZGZTUNAUIJUQUBUPUAAUAUPBCKLMNOUMUKTZULTZFZTUOUKULPUTUEUEUTUCURUDUSAB PACPQLNORS $. $( [29-Aug-97] $) $( Foulis-Holland Theorem. $) fh4 $p |- ( b v ( a ^ c ) ) = ( ( b v a ) ^ ( b v c ) ) $= ( wa wo comcom4 fh2 anor2 df-a ax-r1 lor ax-r4 ax-r2 oran 2an 3tr2 con1 wn ) BACFZGZBAGZBCGZFZBTZATZCTZGZFZUFUGFZUFUHFZGZUBTZUETZUGUFUHABDHACEHIU JBUITZGZTUNBUIJUQUBUPUABUAUPACKLMNOUMUKTZULTZFZTUOUKULPUTUEUEUTUCURUDUSBA PBCPQLNORS $. $( [29-Aug-97] $) $( Foulis-Holland Theorem. $) fh1r $p |- ( ( b v c ) ^ a ) = ( ( b ^ a ) v ( c ^ a ) ) $= ( wo wa fh1 ancom 2or 3tr1 ) ABCFZGABGZACGZFLAGBAGZCAGZFABCDEHLAIOMPNBAIC AIJK $. $( [23-Nov-97] $) $( Foulis-Holland Theorem. $) fh2r $p |- ( ( a v c ) ^ b ) = ( ( a ^ b ) v ( c ^ b ) ) $= ( wo wa fh2 ancom 2or 3tr1 ) BACFZGBAGZBCGZFLBGABGZCBGZFABCDEHLBIOMPNABIC BIJK $. $( [23-Nov-97] $) $( Foulis-Holland Theorem. $) fh3r $p |- ( ( b ^ c ) v a ) = ( ( b v a ) ^ ( c v a ) ) $= ( wa wo fh3 ax-a2 2an 3tr1 ) ABCFZGABGZACGZFLAGBAGZCAGZFABCDEHLAIOMPNBAIC AIJK $. $( [23-Nov-97] $) $( Foulis-Holland Theorem. $) fh4r $p |- ( ( a ^ c ) v b ) = ( ( a v b ) ^ ( c v b ) ) $= ( wa wo fh4 ax-a2 2an 3tr1 ) BACFZGBAGZBCGZFLBGABGZCBGZFABCDEHLBIOMPNABIC BIJK $. $( [23-Nov-97] $) $( Foulis-Holland Theorem. $) fh2c $p |- ( b ^ ( c v a ) ) = ( ( b ^ c ) v ( b ^ a ) ) $= ( wo wa fh2 ax-a2 lan 3tr1 ) BACFZGBAGZBCGZFBCAFZGNMFABCDEHOLBCAIJNMIK $. $( [20-Sep-98] $) $( Foulis-Holland Theorem. $) fh4c $p |- ( b v ( c ^ a ) ) = ( ( b v c ) ^ ( b v a ) ) $= ( wa wo fh4 ancom lor 3tr1 ) BACFZGBAGZBCGZFBCAFZGNMFABCDEHOLBCAIJNMIK $. $( [20-Sep-98] $) $( Foulis-Holland Theorem. $) fh1rc $p |- ( ( c v b ) ^ a ) = ( ( c ^ a ) v ( b ^ a ) ) $= ( wo wa fh1r ax-a2 ran 3tr1 ) BCFZAGBAGZCAGZFCBFZAGNMFABCDEHOLACBIJNMIK $. $( [10-Mar-02] $) $( Foulis-Holland Theorem. $) fh2rc $p |- ( ( c v a ) ^ b ) = ( ( c ^ b ) v ( a ^ b ) ) $= ( wo wa fh2r ax-a2 ran 3tr1 ) ACFZBGABGZCBGZFCAFZBGNMFABCDEHOLBCAIJNMIK $. $( [20-Sep-98] $) $( Foulis-Holland Theorem. $) fh3rc $p |- ( ( c ^ b ) v a ) = ( ( c v a ) ^ ( b v a ) ) $= ( wa wo fh3r ancom ax-r5 3tr1 ) BCFZAGBAGZCAGZFCBFZAGNMFABCDEHOLACBIJNMIK $. $( [6-Aug-01] $) $( Foulis-Holland Theorem. $) fh4rc $p |- ( ( c ^ a ) v b ) = ( ( c v b ) ^ ( a v b ) ) $= ( wa wo fh4r ancom ax-r5 3tr1 ) ACFZBGABGZCBGZFCAFZBGNMFABCDEHOLBCAIJNMIK $. $( [20-Sep-98] $) $( Th. 4.2 Beran p. 49. $) com2or $p |- a C ( b v c ) $= ( wo wa wn comcom df-c2 ancom 2or ax-r2 or4 fh1 comcom3 ax-r1 df-c1 ) BCF ZASASABGZACGZFZAHZBGZUCCGZFZFZSAGZSUCGZFZSTUDFZUAUEFZFUGBUKCULBBAGZBUCGZF UKBAABDIJUMTUNUDBAKBUCKLMCCAGZCUCGZFULCAACEIJUOUAUPUECAKCUCKLMLTUDUAUENMU JUGUHUBUIUFUHASGUBSAKABCDEOMUIUCSGUFSUCKUCBCABDPACEPOMLQMRI $. $( [7-Nov-97] $) $( Th. 4.2 Beran p. 49. $) com2an $p |- a C ( b ^ c ) $= ( wa wn wo comcom4 com2or df-a con2 ax-r1 cbtr comcom5 ) ABCFZAGZBGZCGZHZ PGZQRSABDIACEIJUATPTBCKLMNO $. $( [7-Nov-97] $) $} $( Commutation theorem for Sasaki implication. $) combi $p |- a C ( a == b ) $= ( wa wn wo tb comanr1 comcom6 com2or dfb ax-r1 cbtr ) AABCZADZBDZCZEZABFZAM PABGAPNOGHIRQABJKL $. $( [25-Oct-98] $) $( Negated biconditional (distributive form) $) nbdi $p |- ( a == b ) ' = ( ( ( a v b ) ^ a ' ) v ( ( a v b ) ^ b ' ) ) $= ( tb wn wo wa dfnb comorr comcom comcom2 ax-a2 cbtr fh1 ax-r2 ) ABCDABEZADZ BDZEFOPFOQFEABGOPQOAAOABHIJOBBOBBAEOBAHBAKLIJMN $. $( [30-Aug-97] $) $( Orthomodular law. $) oml4 $p |- ( ( a == b ) ^ a ) =< b $= ( tb wa ancom wn wo dfb lan coman1 comcom comcom2 comcom5 fh1 or0 ran anass wf ax-r2 3tr2 anidm ax-r1 an0 dff 2or lea bltr ) ABCZADZBADZBUIAUHDZUJUHAEU KAABDZAFZBFZDZGZDZUJUHUPAABHIUQAULDZAUODZGZUJAULUOULAABJKAUOUMUOUOUMUMUNJKL MNULRGULUTUJULOULURRUSULAADZBDZURVBULVAABAUAPUBAABQSRAUMDZUNDZUSUNRDRUNDRVD UNREUNUCRVCUNAUDPTAUMUNQSUEABETSSSBAUFUG $. $( [25-Oct-97] $) $( Orthomodular law. $) oml6 $p |- ( a v ( b ^ ( a ' v b ' ) ) ) = ( a v b ) $= ( wn wo wa comor1 comcom7 comor2 fh4c df-t ax-r5 ax-a2 or1 ax-r2 ax-a3 3tr2 wt ax-r1 lan an1 3tr ) ABACZBCZDZEDABDZAUDDZEUEQEUEUDABUDAUBUCFGUDBUBUCHGIU FQUEQUFQUCDZAUBDZUCDQUFQUHUCAJKUGUCQDQQUCLUCMNAUBUCOPRSUETUA $. $( [3-Jan-99] $) ${ gsth.1 $e |- a C b $. gsth.2 $e |- b C c $. gsth.3 $e |- a C ( b ^ c ) $. $( Gudder-Schelp's Theorem. Beran, p. 262, Th. 4.1. $) gsth $p |- ( a ^ b ) C c $= ( wa wo wn comcom fh4rc comcom2 lan fh1r ran lea ancom wf ax-r1 3tr lecom 2an an4 an32 comd leo letr coman2 com2or df2le2 fh1 anass dff an0 lor or0 cbtr ax-r2 2or ax-a2 lelan bltr df-le2 3tr2 df2c1 ) ABGZCVFCHZVFCIZHZGZVF VJACHZBCHZGZAVHHZBVHHZGZGVKVNGZVLVOGZGZVFVGVMVIVPBCAEABDJZKBVHABCELVTKUBV KVLVNVOUCVQBGVKBGZVNGZVSVFVKVNBUDBVRVQBCEUEMWBVFCBGZHZVNGVFVNGZWCVNGZHZVF WAWDVNBACVTENOVNVFWCVFVNVFVNVFAVNABPAVHUFUGZUAJVNBCGZWCWIVNWIAVHAWIFJZWIC BCUHLZUIJBCQUQNWGVFWIAGZHWLVFHVFWEVFWFWLVFVNWHUJWFWIVNGWLWIVHGZHZWLWCWIVN CBQOWIAVHWJWKUKWNWLRHWLWMRWLWMBCVHGZGBRGRBCVHULWORBRWOCUMSMBUNTUOWLUPURTU SVFWLUTWLVFWLAWIGVFWIAQWIBABCPVAVBVCTTVDTSVE $. $( [20-Sep-98] $) $} ${ gsth2.1 $e |- b C c $. gsth2.2 $e |- a C ( b ^ c ) $. $( Stronger version of Gudder-Schelp's Theorem. Beran, p. 263, Th. 4.2. $) gsth2 $p |- ( a ^ b ) C c $= ( wa wn comcom ancom ax-a2 ran ax-r2 comor2 comcom7 comcom2 coman1 com2or wo df-a cbtr gsth bctr lor ax-r4 ax-r1 com2an omla ) CABFZCBBGZBAFZRZFZUH CBUKBCDHCUKCBUIAGZRZFZUKGZUOCUOUMUIRZBFZCUOUNBFURBUNIUNUQBUIUMJKLUQBCUQBU MUIMNDBCFZUQUSUMUIUSAAUSEHOUSBBCPOQHUAUBHUOUIUNGZRZGZUPBUNSUPVBUKVAUJUTUI BASUCUDUELTNUFULUJUHBAUGBAILTH $. $( [20-Sep-98] $) $} ${ gstho.1 $e |- b C c $. gstho.2 $e |- a C ( b v c ) $. $( "OR" version of Gudder-Schelp's Theorem. $) gstho $p |- ( a v b ) C c $= ( wo wn wa anor3 ax-r1 comcom4 cbtr gsth2 bctr comcom5 ) ABFZCPGZAGZBGZHZ CGZTQABIJRSUABCDKRBCFZGZSUAHZAUBEKUDUCBCIJLMNO $. $( [19-Oct-98] $) $} ${ gt1.1 $e |- a = ( b v c ) $. gt1.2 $e |- b =< d $. gt1.3 $e |- c =< d ' $. $( Part of Lemma 1 from Gaisi Takeuti, "Quantum Set Theory". $) gt1 $p |- a C d $= ( wo lecom comcom wn comcom7 com2or bctr ) ABCHZDEDODBCBDBDFIJCDCDCDKGILJ MJN $. $( [2-Dec-98] $) $} $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Commutator (orthomodular lattice theorems) =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) ${ cmtr1com.1 $e |- C ( a , b ) = 1 $. $( Commutator equal to 1 commutes. Theorem 2.11 of Beran, p. 86. $) cmtr1com $p |- a C b $= ( wa wn wo lea lel2or df-le2 le1 wcmtr df-cmtr ax-a2 3tr2 leror bltr lebi wt lem3.1 ax-r1 df-c1 ) ABABDZABEZDZFZAUEAUEAUBAUDABGAUCGHIAEZUEFZRUGJRUF BDZUFUCDZFZUEFZUGABKUEUJFRUKABLCUEUJMNUJUFUEUHUFUIUFBGUFUCGHOPQSTUA $. $( [24-Jan-99] $) $} ${ comcmtr1.1 $e |- a C b $. $( Commutation implies commutator equal to 1. Theorem 2.11 of Beran, p. 86. $) comcmtr1 $p |- C ( a , b ) = 1 $= ( wa wn wo wcmtr wt df-c2 comcom3 2or ax-r1 df-cmtr df-t 3tr1 ) ABDABEZDF ZAEZBDRPDFZFZARFZABGHUATAQRSABCIRBABCJIKLABMANO $. $( [24-Jan-99] $) $} ${ i0cmtrcom.1 $e |- ( a ->0 C ( a , b ) ) = 1 $. $( Commutator element ` ->0 ` commutator implies commutation. $) i0cmtrcom $p |- a C b $= ( wa wn wo lea lel2or df-le2 wcmtr wi0 df-cmtr lor ax-r1 ax-a2 ax-r2 or12 wt 3tr df-i0 3tr1 lem3.1 df-c1 ) ABABDZABEZDZFZAUGAUGAUDAUFABGAUEGHIAEZUG FZAABJZKZRUHUGUHBDZUHUEDZFZFZFZUHUJFZUIUKUQUPUJUOUHABLMNUIUGUHFZUGUHUNFZF ZUPUHUGOUTURUSUHUGUSUNUHFUHUHUNOUNUHULUHUMUHBGUHUEGHIPMNUGUHUNQSAUJTUACPU BNUC $. $( [24-Jan-99] $) $} $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Kalmbach conditional =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( Kalmbach implication and biconditional. $) i3bi $p |- ( ( a ->3 b ) ^ ( b ->3 a ) ) = ( a == b ) $= ( wn wa wo lea leo ax-a2 letr ancom lecom comcom2 comcom bctr wf ax-r2 bltr ax-r1 lan 2or wi3 tb anor2 lbtr le3tr1 le2or oridm fh2 cbtr fh1 ran an4 dff anor1 2an anidm an12 con2 an0 anandi coman1 an32 or0 lor oran con3 fh3 3tr2 anass df-i3 or32 dfb 3tr1 ) ACZBCZDZVNBDZAVNBEZDZEZEZVPVOADZBVOAEZDZEZEZDZA BDZVPEZABUAZBAUAZDABUBVPVTWEDZEVPWHEWGWIWLWHVPWLVTWBDZVTWDDZEZWHWBVTWDWBBVN EZCZVTBAUCZVTWQVTWPVTWPVTWPWPEWPVQWPVSWPVQVNWPVNBFVNVRWPVNBGVNBHUDIVRADZVRV SWPVRAFZAVRJZBVNHZUEUFWPUGUDKLMNWBWQWDWRWDWQWDWPWDWPWDBWPBWCFZBVNGIKLMNUHWO OWHEZWHWMOWNWHWMWBVTDZOVTWBJXEWBVQDZWBVSDZEZOWBVQVSWBWCCZVQWBWCWBWCWBVOWCVO AFVOAGIKLVQXIVQBVNDZXIVNBJZBAUNPZRZUIWBVRCZVSWBAVODZXNVOAJZABUNPVSXNVSVRVSV RVSWSVRXAWTQKLMNUJXHOOEOXFOXGOXFXOVQDZOWBXOVQXPUKXQAVNDZVOBDZDZOAVOVNBULXTO ODZOYAXTOXROXSAUMZOBVODZXSBUMZBVOJPUOROUPPPPXGAWBVRDZDZOWBAVRUQYFAODZOYGYFO YEAOWBWBCZDYEWBUMYHVRWBYHWPVRWBWPWRURXBPSPSRAUSZPPTOUGPPPWNWDVTDZWHVTWDJYJW DVQDZWDVSDZEZWHVQWDVSVQXIWDXLWDXIWDWCWDWCWDWCBDWCBWCJWCBFQKLMNVQAVOEZCZVSAB UCVSYOVSYNVSYNVSAYNAVRFZAVOGIKLMNUHYMYLYKEZWHYKYLHYQWHOEZWHYLWHYKOYLBADZWCV RDDZWHBWCAVRULYTYSWCDZYSVRDZDZWHYSWCVRUTUUCYSYSDZWHUUAYSUUBYSUUAYSVODZYSADZ EZYSYSVOAYSBBAVAZLYSWHABAJZABVANZUJUUGYSOEZYSUUGOYSEZUUKUUEOUUFYSUUEYCADZOB AVOVBUUMAYCDZOYCAJUUNYGOYGUUNOYCAYDSRYIPPPUUFBAADZDYSBAAVIUUOABAUPSPTOYSHZP YSVCZPPUUBYSVNDZYSBDZEZYSYSVNBYSAUUJLUUHUJUUTUUKYSUUTUULUUKUUROUUSYSUURBXRD ZOBAVNVIUVABODZOUVBUVAOXRBYBSRBUSZPPUUSBBDZADYSBABVBUVDBABUPUKPTUUPPUUQPPUO UUDYSWHYSUPUUIPPPPYKUVBOYKBWCVQDZDZUVBBWCVQVIUVBUVFOUVEBOWCXIDUVEWCUMXIVQWC XMSPSRPUVCPTWHVCZPPPPTXDYRWHOWHHUVGPPPVDVPVTWEVPBAEZCZVTVPVOVNDZUVIVNVOJUVJ UVHUVHUVJCBAVERVFPVTUVIVTUVHVTUVHVQBVSAVQXJBXKBVNFQYPUFKLMNVPABEZCZWEVPUVKU VKVPCABVERVFWEUVLWEUVKWEUVKWBAWDBWBXOAXPAVOFQXCUFKLMNVGVPWHHVHWJWAWKWFWJVQV PEVSEZWAABVJUVMVTVPEWAVQVPVSVKVTVPHPPWKWBUVJEWDEZWFBAVJUVNWEUVJEZWFWBUVJWDV KUVOWEVPEWFUVJVPWEVOVNJVDWEVPHPPPUOABVLVM $. $( [5-Nov-97] $) $( Kalmbach implication OR builder. $) i3or $p |- ( ( a == b ) ' v ( ( a v c ) ->3 ( b v c ) ) ) = 1 $= ( tb wn wo wi3 wt le1 ka4ot ax-r1 wa i3bi lea bltr lelor lebi ) ABDEZACFZBC FZGZFZHUBIHRSTDZFZUBUDHABCJKUCUARUCUATSGZLZUAUFUCSTMKUAUENOPOQ $. $( [26-Dec-97] $) $( Alternate definition for Kalmbach implication. $) df2i3 $p |- ( a ->3 b ) = ( ( a ' ^ b ' ) v ( ( a ' v b ) ^ ( a v ( a ' ^ b ) ) ) ) $= ( wi3 wn wa wo df-i3 ax-a3 coman1 comcom comcom2 comcom5 comorr fh4 lea leo or12 letr lan ax-r2 df-le2 ancom ax-a2 lor ) ABCADZBEZUEBDEZFAUEBFZEZFZUGUH AUFFZEZFZABGUJUFUGUIFFZUMUFUGUIHUNUGUFUIFZFUMUFUGUIQUOULUGUOUFAFZUFUHFZEZUL AUFUHAUFUEUFUFUEUEBIJKLAUHUEUHUEBMKLNURUPUHEZULUQUHUPUFUHUFUEUHUEBOUEBPRUAS USUHUPEULUPUHUBUPUKUHUFAUCSTTTUDTTT $. $( [7-Nov-97] $) $( Alternate Kalmbach conditional. $) dfi3b $p |- ( a ->3 b ) = ( ( a ' v b ) ^ ( ( a v ( a ' ^ b ' ) ) v ( a ' ^ b ) ) ) $= ( wn wa wo wi3 ax-a2 ax-a3 oridm ax-r1 anidm ran anass ax-r2 lan 2or com2an ancom fh1 3tr1 an12 lea leo letr df2le2 comor1 comcom7 comor2 coman1 coman2 comcom2 fh1r df-i3 com2or ) ACZBDZUOBCZDZEAUOBEZDZEZUSAUREZDZUSUPDZEZABFUSV BUPEDUOUPDZBUPDZEZUSADZUSURDZEZEZVKVHEVAVEVHVKGVAUPURUTEZEVLUPURUTHUPVHVMVK UPUPUPEZVHVNUPUPIJUPVFUPVGUPUOUODZBDVFUOVOBVOUOUOKJLUOUOBMNUPUOBBDZDVGBVPUO VPBBKJOUOBBUANPNVMVJVIEVKURVJUTVIURURUSDZVJVQURURUSURUOUSUOUQUBUOBUCUDUEJUR USRNAUSRPVJVIGNPNVCVKVDVHUSAURUSAUOBUFZUGZUSUOUQVRUSBUOBUHZUKQZSUPUOBUOBUIU OBUJULPTABUMUSVBUPUSAURVSWAUNUSUOBVRVTQST $. $( [6-Aug-01] $) $( Alternate non-tollens conditional. $) dfi4b $p |- ( a ->4 b ) = ( ( a ' v b ) ^ ( ( b ' v ( b ^ a ' ) ) v ( b ^ a ) ) ) $= ( wi4 wn wi3 wo wa i4i3 dfi3b ax-a2 ax-a1 ax-r5 ax-r2 ran lor 2an 2or ax-r1 or32 ) ABCBDZADZEZUABFZTBUAGZFZBAGZFZGZABHUBTDZUAFZTUIUADZGZFUIUAGZFZGZUHTU AIUHUOUCUJUGUNUCBUAFUJUABJBUIUABKZLMUGTUMFZULFUNUEUQUFULUDUMTBUIUAUPNOBUIAU KUPAKPQTUMULSMPRMM $. $( [6-Aug-01] $) $( Equivalence for Kalmbach implication. $) i3n2 $p |- ( a ' ->3 b ' ) = ( ( a ^ b ) v ( ( a v b ' ) ^ ( a ' v ( a ^ b ' ) ) ) ) $= ( wn wi3 wa wo df2i3 ax-a1 2an ax-r5 ran lor 2or ax-r1 ax-r2 ) ACZBCZDPCZQC ZEZRQFZPRQEZFZEZFZABEZAQFZPAQEZFZEZFZPQGUKUEUFTUJUDARBSAHZBHIUGUAUIUCARQULJ UHUBPARQULKLIMNO $. $( [9-Nov-97] $) $( Equivalence for Kalmbach implication. $) ni32 $p |- ( a ->3 b ) ' = ( ( a v b ) ^ ( ( a ^ b ' ) v ( a ' ^ ( a v b ' ) ) ) ) $= ( wi3 wo wn wa df2i3 oran anor1 con2 ax-r1 anor2 lan ax-r4 ax-r2 2an ) ABCZ ABDZABEZFZAEZASDZFZDZFZQUASFZUABDZAUABFZDZFZDZUEEZABGUKUFEZUJEZFZEULUFUJHUO UEUEUORUMUDUNABHUDTEZUCEZFZEUNTUCHURUJUJURUGUPUIUQUPUGTUGABIJKUIUAUHEZFZEUQ AUHHUTUCUSUBUAUHUBABLJMNOPKNOPKNOOJ $. $( [9-Nov-97] $) $( Theorem for Kalmbach implication. $) oi3ai3 $p |- ( ( a ^ b ) v ( a ->3 b ) ' ) = ( ( a v b ) ^ ( a ' ->3 b ' ) ) $= ( wa wo wn wi3 lea leo letr lecom coman1 ancom comcom2 com2an com2or df-le2 bctr fh3 ax-a3 ax-r2 ax-r1 ax-a2 ax-r5 2an ni32 lor i3n1 lan 3tr1 ) ABCZABD ZABEZCZAEZAULDZCZDZCZDZUKUMUJDZUPDZCZUJABFEZDUKUNULFZCUSUJUKDZUJUQDZCVBUJUK UQUJUKUJAUKABGABHIZJUJUMUPUJAULABKZUJBUJBACBABLBAKQMZNUJUNUOUJAVHMUJAULVHVI ONORVEUKVFVAUJUKVGPVFUJUMDZUPDZVAVKVFUJUMUPSUAVJUTUPUJUMUBUCTUDTVCURUJABUEU FVDVAUKABUGUHUI $. $( [9-Nov-97] $) ${ i3lem.1 $e |- ( a ->3 b ) = 1 $. $( Lemma for Kalmbach implication. $) i3lem1 $p |- ( ( a ' ^ b ) v ( a ' ^ b ' ) ) = a ' $= ( wn wa wo wt coman1 comcom comorr comcom3 com2an anass ax-r1 anidm ax-r2 fh1 ran anabs omlan 2or ax-a2 wi3 df2i3 lan an1 ) ADZBEZUGBDZEZFZUGGEZUGU KUGUJUGBFZAUHFZEZFZEZULUQUKUQUGUJEZUGUOEZFZUKUGUJUOUJUGUGUIHIUGUMUNUGBJAU NAUHJKLQUTUJUHFUKURUJUSUHURUGUGEZUIEZUJVBURUGUGUIMNVAUGUIUGORPUSUGUMEZUNE ZUHVDUSUGUMUNMNVDUGUNEUHVCUGUNUGBSRABTPPUAUJUHUBPPNUPGUGUPABUCZGVEUPABUDN CPUEPUGUFP $. $( [7-Nov-97] $) $( Lemma for Kalmbach implication. $) i3lem2 $p |- a C b $= ( wn wa wo i3lem1 ax-r1 df-c1 comcom2 comcom5 ) ABADZBLBLBELBDEFLABCGHIJK $. $( [7-Nov-97] $) $( Lemma for Kalmbach implication. $) i3lem3 $p |- ( ( a ' v b ) ^ b ' ) = ( a ' ^ b ' ) $= ( wn wa omlan ancom ax-a2 ax-a3 ax-r1 i3lem1 lor orabs ax-r2 2or 3tr2 lan wo 3tr1 ) BDZBTADZEZRZEZUBUABRZTEZUATEZBUAFUFTUEEUDUETGUEUCTUEBUARZUCUABH BUABEZUGRZRZBUIRZUGRZUHUCUMUKBUIUGIJUJUABABCKLULBUGUBULBBUAEZRBUIUNBUABGL BUAMNUATGZOPNQNUOS $. $( [7-Nov-97] $) $( Lemma for Kalmbach implication. $) i3lem4 $p |- ( a ' v b ) = 1 $= ( wn wo wa wt i3lem1 ax-r5 ax-r1 omln wi3 df-i3 ax-r2 3tr2 ) ADZAPBEZFZEZ PBFPBDFEZREZQGUASTPRABCHIJABKUAABLZGUBUAABMJCNO $. $( [7-Nov-97] $) $} $( Commutation theorem. $) comi31 $p |- a C ( a ->3 b ) $= ( wn wa wo wi3 coman1 comcom comcom2 comcom5 com2or df-i3 ax-r1 cbtr ) AACZ BDZOBCZDZEZAOBEZDZEZABFZASUAAPRAPOPPOOBGHIJARORROOQGHIJKUAAATGHKUCUBABLMN $. $( [9-Nov-97] $) ${ com2i3.1 $e |- a C b $. com2i3.2 $e |- a C c $. $( Commutation theorem. $) com2i3 $p |- a C ( b ->3 c ) $= ( wn wa wo wi3 comcom2 com2an com2or df-i3 ax-r1 cbtr ) ABFZCGZPCFZGZHZBP CHZGZHZBCIZATUBAQSAPCABDJZEKAPRUEACEJKLABUADAPCUEELKLUDUCBCMNO $. $( [9-Nov-97] $) $} ${ comi32.1 $e |- a C b $. $( Commutation theorem. $) comi32 $p |- a C ( b ->3 a ) $= ( comid com2i3 ) ABACADE $. $( [9-Nov-97] $) $} $( Lemma 4 of Kalmbach p. 240. $) lem4 $p |- ( a ->3 ( a ->3 b ) ) = ( a ' v b ) $= ( wi3 wn wa wo df-i3 lan oridm lecom comcom wf ancom ax-r2 ax-r1 3tr2 orabs lea lor 2or le2or lbtr comcom3 fh1 anass dff df2le2 orordi or32 ax-r5 ax-r4 an0 or0 oran con2 oml2 ax-a3 omln ) AABCZCADZUSEZUTUSDEZFZAUTUSFZEZFZUTBFZA USGVFUTAVGEZFZVGVCUTVEVHVCUTBEZUTBDZEZFZVMDZUTEZFUTVAVMVBVOVAUTVMVHFZEZVMUS VPUTABGZHVQUTVMEZUTVHEZFZVMUTVMVHVMUTVMUTVMUTUTFZUTVJUTVLUTUTBRUTVKRUAUTIZU BZJKAVHVHAVHAAVGRJKUCUDWAVSLFZVMVTLVSUTAEZVGEVGWFEZVTLWFVGMUTAVGUEWGVGLEZLW HWGLWFVGLAUTEWFAUFAUTMNHOVGULNPSWEVSVMVSUMVSVMUTEVMUTVMMVMUTWDUGNNNNNAUSFZD AVMFZDZVBVOWIWJWIAVPFZWJUSVPAVRSWLWJAVHFZFZWJAVMVHUHWNWJAFZWJWMAWJAVGQSWOAA FZVMFWJAVMAUIWPAVMAIUJNNNNUKWIVBAUSUNUOWKUTVNEZVOWJWQAVMUNUOUTVNMNPTVMUTWDU PNVDVGAVDVIVGVDUTVPFZVIUSVPUTVRSWRUTVMFZVHFZVIWTWRUTVMVHUQOWSUTVHWSUTVJFZUT VLFZFZUTUTVJVLUHXCWBUTXAUTXBUTUTBQUTVKQTWCNNUJNNABURZNHTXDNN $. $( [5-Nov-97] $) ${ i0i3.1 $e |- ( a ' v b ) = 1 $. $( Translation to Kalmbach implication. $) i0i3 $p |- ( a ->3 ( a ->3 b ) ) = 1 $= ( wi3 wn wo wt lem4 ax-r2 ) AABDDAEBFGABHCI $. $( [9-Nov-97] $) $} ${ i3i0.1 $e |- ( a ->3 ( a ->3 b ) ) = 1 $. $( Translation from Kalmbach implication. $) i3i0 $p |- ( a ' v b ) = 1 $= ( wn wo wi3 wt lem4 ax-r1 ax-r2 ) ADBEZAABFFZGLKABHICJ $. $( [9-Nov-97] $) $} $( Soundness proof for KA14. $) ska14 $p |- ( ( a ' v b ) ->3 ( a ->3 ( a ->3 b ) ) ) = 1 $= ( wn wo wi3 wt lem4 ax-r1 ri3 i3id ax-r2 ) ACBDZAABEEZEMMEFLMMMLABGHIMJK $. $( [3-Nov-97] $) ${ i3le.1 $e |- ( a ->3 b ) = 1 $. $( L.e. to Kalmbach implication. $) i3le $p |- a =< b $= ( wn wt wa ancom wo i3lem3 i3lem4 ran 3tr2 an1 df2le1 lecon1 ) BABDZADZEP FZPEFPQFZPEPGQBHZPFQPFRSABCITEPABCJKQPGLPMLNO $. $( [7-Nov-97] $) $} $( Biconditional implies Kalmbach implication. $) bii3 $p |- ( ( a == b ) ->3 ( a ->3 b ) ) = 1 $= ( tb wi3 wa i3bi ax-r1 lea bltr lei3 ) ABCZABDZKLBADZEZLNKABFGLMHIJ $. $( [9-Nov-97] $) ${ binr1.1 $e |- ( a ->3 b ) = 1 $. $( Pavicic binary logic ax-r1 analog. $) binr1 $p |- ( b ' ->3 a ' ) = 1 $= ( wn i3le lecon lei3 ) BDADABABCEFG $. $( [7-Nov-97] $) $} ${ binr2.1 $e |- ( a ->3 b ) = 1 $. binr2.2 $e |- ( b ->3 c ) = 1 $. $( Pavicic binary logic ax-r2 analog. $) binr2 $p |- ( a ->3 c ) = 1 $= ( i3le letr lei3 ) ACABCABDFBCEFGH $. $( [7-Nov-97] $) $} ${ binr3.1 $e |- ( a ->3 c ) = 1 $. binr3.2 $e |- ( b ->3 c ) = 1 $. $( Pavicic binary logic axr3 analog. $) binr3 $p |- ( ( a v b ) ->3 c ) = 1 $= ( wo i3le le2or oridm lbtr lei3 ) ABFZCLCCFCACBCACDGBCEGHCIJK $. $( [7-Nov-97] $) $} $( Theorem for Kalmbach implication. $) i31 $p |- ( a ->3 1 ) = 1 $= ( wt wi3 wn wo df-t li3 bina3 ax-r2 ) ABCAAADZEZCBBKAAFGAJHI $. $( [7-Nov-97] $) ${ i3aa.1 $e |- a = 1 $. $( Add antecedent. $) i3aa $p |- ( b ->3 a ) = 1 $= ( wi3 wt i31 li3 bi1 wwbmpr ) BADZBEDZBFJKAEBCGHI $. $( [7-Nov-97] $) $} $( Antecedent absorption. $) i3abs1 $p |- ( a ->3 ( a ->3 ( a ->3 b ) ) ) = ( a ->3 ( a ->3 b ) ) $= ( wn wa wo wi3 orordi orabs 2or oridm ax-r2 ax-r5 ax-a3 omln 3tr2 df-i3 lor lem4 3tr1 ) ACZTBDZTBCZDZEZATBEZDZEZEZUEAAABFZFZFZUJTUDEZUFETUFEUHUEULTUFUL TUAEZTUCEZEZTTUAUCGUOTTETUMTUNTTBHTUBHITJKKLTUDUFMABNOUKTUIEUHAUIRUIUGTABPQ KABRS $. $( [16-Nov-97] $) ${ i3abs2.1 $e |- ( a ->3 ( a ->3 ( a ->3 b ) ) ) = 1 $. $( Antecedent absorption. $) i3abs2 $p |- ( a ->3 ( a ->3 b ) ) = 1 $= ( wi3 i3abs1 bi1 wwbmp ) AAABDDZDZHCIHABEFG $. $( [9-Nov-97] $) $} $( Antecedent absorption. $) i3abs3 $p |- ( ( a ->3 b ) ->3 ( ( a ->3 b ) ->3 a ) ) = ( ( a ->3 b ) ->3 a ) $= ( wi3 wn wo wa wt df-t lan an1 comi31 comcom comcom3 comcom4 fh1 3tr2 ax-r1 wf ax-a2 ax-r2 comid comcom2 dff ax-r5 or0 2or fh4 ancom lem4 df-i3 3tr1 ran ) ABCZDZAEZUNAFUNADZFEZUMUOFZEZUMUMACZCUTUSUOUSUNUMAFZEZUOUQUNURVAUNUQU NGFUNAUPEZFUNUQGVCUNAHIUNJUNAUPUMAAUMABKLZMUMAVDNOPQURUMUNFZVAEZVAUMUNAUMUM UMUAUBZVDORVAEVAREVFVARVASRVEVAUMUCUDVAUEPTUFVBUNUMEZUOFZUOUMUNAVGVDUGVIUOG FZUOVIGUOFVJVHGUOVHUMUNEZGUNUMSGVKUMHQTULGUOUHTUOJTTTQUMAUIUMAUJUK $. $( [19-Nov-97] $) $( Commutative law for conjunction with Kalmbach implication. $) i3orcom $p |- ( ( a v b ) ->3 ( b v a ) ) = 1 $= ( wo wi3 i3id ax-a2 ri3 bi1 wwbmp ) BACZJDZABCZJDZJEKMJLJBAFGHI $. $( [7-Nov-97] $) $( Commutative law for disjunction with Kalmbach implication. $) i3ancom $p |- ( ( a ^ b ) ->3 ( b ^ a ) ) = 1 $= ( wa wi3 i3id ancom ri3 bi1 wwbmp ) BACZJDZABCZJDZJEKMJLJBAFGHI $. $( [7-Nov-97] $) ${ bi3tr.1 $e |- a = b $. bi3tr.2 $e |- ( b ->3 c ) = 1 $. $( Transitive inference. $) bi3tr $p |- ( a ->3 c ) = 1 $= ( wi3 ri3 bi1 wwbmpr ) ACFZBCFZEJKABCDGHI $. $( [7-Nov-97] $) $} ${ i3btr.1 $e |- ( a ->3 b ) = 1 $. i3btr.2 $e |- b = c $. $( Transitive inference. $) i3btr $p |- ( a ->3 c ) = 1 $= ( wi3 li3 bi1 wwbmp ) ABFZACFZDJKBCAEGHI $. $( [7-Nov-97] $) $} ${ i33tr1.1 $e |- ( a ->3 b ) = 1 $. i33tr1.2 $e |- c = a $. i33tr1.3 $e |- d = b $. $( Transitive inference useful for introducing definitions. $) i33tr1 $p |- ( c ->3 d ) = 1 $= ( bi3tr ax-r1 i3btr ) CBDCABFEHDBGIJ $. $( [7-Nov-97] $) $} ${ i33tr2.1 $e |- ( a ->3 b ) = 1 $. i33tr2.2 $e |- a = c $. i33tr2.3 $e |- b = d $. $( Transitive inference useful for eliminating definitions. $) i33tr2 $p |- ( c ->3 d ) = 1 $= ( ax-r1 i33tr1 ) ABCDEACFHBDGHI $. $( [7-Nov-97] $) $} ${ i3con1.1 $e |- ( a ' ->3 b ' ) = 1 $. $( Contrapositive. $) i3con1 $p |- ( b ->3 a ) = 1 $= ( wn binr1 ax-a1 i33tr1 ) BDZDADZDBAIHCEBFAFG $. $( [7-Nov-97] $) $} ${ i3ror.1 $e |- ( a ->3 b ) = 1 $. $( WQL (Weak Quantum Logic) rule. $) i3ror $p |- ( ( a v c ) ->3 ( b v c ) ) = 1 $= ( wo bina3 binr2 bina4 binr3 ) ACBCEZABJDBCFGBCHI $. $( [7-Nov-97] $) $} ${ i3lor.1 $e |- ( a ->3 b ) = 1 $. $( WQL (Weak Quantum Logic) rule. $) i3lor $p |- ( ( c v a ) ->3 ( c v b ) ) = 1 $= ( wo i3orcom i3ror binr2 ) CAEACEZCBEZCAFIBCEJABCDGBCFHH $. $( [7-Nov-97] $) $} ${ i32or.1 $e |- ( a ->3 b ) = 1 $. i32or.2 $e |- ( c ->3 d ) = 1 $. $( WQL (Weak Quantum Logic) rule. $) i32or $p |- ( ( a v c ) ->3 ( b v d ) ) = 1 $= ( wo i3ror i3lor binr2 ) ACGBCGBDGABCEHCDBFIJ $. $( [7-Nov-97] $) $} ${ i3ran.1 $e |- ( a ->3 b ) = 1 $. $( WQL (Weak Quantum Logic) rule. $) i3ran $p |- ( ( a ^ c ) ->3 ( b ^ c ) ) = 1 $= ( wn wo wa binr1 i3ror df-a i33tr1 ) AEZCEZFZEBEZMFZEACGBCGPNOLMABDHIHACJ BCJK $. $( [7-Nov-97] $) $} ${ i3lan.1 $e |- ( a ->3 b ) = 1 $. $( WQL (Weak Quantum Logic) rule. $) i3lan $p |- ( ( c ^ a ) ->3 ( c ^ b ) ) = 1 $= ( wa i3ran ancom i33tr1 ) ACEBCECAECBEABCDFCAGCBGH $. $( [7-Nov-97] $) $} ${ i32an.1 $e |- ( a ->3 b ) = 1 $. i32an.2 $e |- ( c ->3 d ) = 1 $. $( WQL (Weak Quantum Logic) rule. $) i32an $p |- ( ( a ^ c ) ->3 ( b ^ d ) ) = 1 $= ( wa i3ran i3lan binr2 ) ACGBCGBDGABCEHCDBFIJ $. $( [7-Nov-97] $) $} ${ i3ri3.1 $e |- ( a ->3 b ) = 1 $. i3ri3.2 $e |- ( b ->3 a ) = 1 $. $( WQL (Weak Quantum Logic) rule. $) i3ri3 $p |- ( ( a ->3 c ) ->3 ( b ->3 c ) ) = 1 $= ( wi3 i3le lebi ri3 bile lei3 ) ACFZBCFZLMABCABABDGBAEGHIJK $. $( [7-Nov-97] $) $} ${ i3li3.1 $e |- ( a ->3 b ) = 1 $. i3li3.2 $e |- ( b ->3 a ) = 1 $. $( WQL (Weak Quantum Logic) rule. $) i3li3 $p |- ( ( c ->3 a ) ->3 ( c ->3 b ) ) = 1 $= ( wi3 i3le lebi li3 bile lei3 ) CAFZCBFZLMABCABABDGBAEGHIJK $. $( [7-Nov-97] $) $} ${ i32i3.1 $e |- ( a ->3 b ) = 1 $. i32i3.2 $e |- ( b ->3 a ) = 1 $. i32i3.3 $e |- ( c ->3 d ) = 1 $. i32i3.4 $e |- ( d ->3 c ) = 1 $. $( WQL (Weak Quantum Logic) rule. $) i32i3 $p |- ( ( a ->3 c ) ->3 ( b ->3 d ) ) = 1 $= ( wi3 i3le lebi 2i3 bile lei3 ) ACIZBDIZOPABCDABABEJBAFJKCDCDGJDCHJKLMN $. $( [7-Nov-97] $) $} ${ i0i3tr.1 $e |- ( a ->3 ( a ->3 b ) ) = 1 $. i0i3tr.2 $e |- ( b ->3 c ) = 1 $. $( Transitive inference. $) i0i3tr $p |- ( a ->3 ( a ->3 c ) ) = 1 $= ( wn wo i3i0 i3lor skmp3 i0i3 ) ACAFZBGLCGABDHBCLEIJK $. $( [9-Nov-97] $) $} ${ i3i0tr.1 $e |- ( a ->3 b ) = 1 $. i3i0tr.2 $e |- ( b ->3 ( b ->3 c ) ) = 1 $. $( Transitive inference. $) i3i0tr $p |- ( a ->3 ( a ->3 c ) ) = 1 $= ( wn wo i3i0 binr1 i3ror skmp3 i0i3 ) ACBFZCGAFZCGBCEHMNCABDIJKL $. $( [9-Nov-97] $) $} $( Theorem for Kalmbach implication. $) i3th1 $p |- ( a ->3 ( a ->3 ( b ->3 a ) ) ) = 1 $= ( wn wi3 wo wa wt df2i3 lor ax-a3 anor1 ax-a2 anor2 ax-r1 ax-r2 ancom orabs lem4 ax-r5 3tr1 con2 2an oml5 3tr2 df-t ) ACZBADZEUFBCZUFFZUHAEZBUHAFZEZFZE ZEZAAUGDDGUGUNUFBAHIAUGRGUFUIEZUMEZUOUFBEZURCZEZUFUMEZGUQURAUHFZEUFBVBEZEZU TVAUFBVBJVBUSURABKIVDUFUFBFZEZUMEZVAVGVDVGUFVEUMEZEVDUFVEUMJVHVCUFVHVEVECZV CFZEVCUMVJVEUJVIULVCUJAUHEZVIUHALVIVKVEVKABMUANOUKVBBUHAPIUBIUFBVBUCOIONVFU FUMUFBQSOUDURUEUPUFUMUPUFUFUHFZEUFUIVLUFUHUFPIUFUHQOSTUFUIUMJOT $. $( [16-Nov-97] $) $( Theorem for Kalmbach implication. $) i3th2 $p |- ( a ->3 ( b ->3 ( b ->3 a ) ) ) = 1 $= ( wi3 wn wo wt lem4 li3 bina4 ax-r2 ) ABBACCZCABDZAEZCFKMABAGHLAIJ $. $( [7-Nov-97] $) $( Theorem for Kalmbach implication. $) i3th3 $p |- ( a ' ->3 ( a ->3 ( a ->3 b ) ) ) = 1 $= ( wn wi3 wo wt lem4 li3 bina3 ax-r2 ) ACZAABDDZDKKBEZDFLMKABGHKBIJ $. $( [7-Nov-97] $) $( Theorem for Kalmbach implication. $) i3th4 $p |- ( a ->3 ( b ->3 b ) ) = 1 $= ( wt wi3 i31 i3id ax-r1 li3 rbi wed ) ACDZCABBDZDZCAEKMCCLALCBFGHIJ $. $( [7-Nov-97] $) $( Theorem for Kalmbach implication. $) i3th5 $p |- ( ( a ->3 b ) ->3 ( a ->3 ( a ->3 b ) ) ) = 1 $= ( wi3 wn wa wo ax-a2 lea lear le2or bltr oridm lbtr df-i3 lem4 le3tr1 lei3 ) ABCZARCZADZBEZTBDZEZFZATBFZEZFZUERSUGUEUEFUEUDUEUFUEUDUCUAFUEUAUCGUCTUABT UBHTBIJKAUEIJUELMABNABOPQ $. $( [16-Nov-97] $) $( Theorem for Kalmbach implication. $) i3th6 $p |- ( ( a ->3 ( a ->3 ( a ->3 b ) ) ) ->3 ( a ->3 ( a ->3 b ) ) ) = 1 $= ( wi3 tb i3abs1 bi1 bii3 skmp3 ) AAABCCZCZIDJICJIABEFJIGH $. $( [16-Nov-97] $) $( Theorem for Kalmbach implication. $) i3th7 $p |- ( a ->3 ( ( a ->3 b ) ->3 a ) ) = 1 $= ( wi3 wn wo leor lem4 ax-r1 i3abs3 ax-r2 lbtr lei3 ) AABCZACZAMDZAEZNAOFPMN CZNQPMAGHABIJKL $. $( [19-Nov-97] $) $( Theorem for Kalmbach implication. $) i3th8 $p |- ( ( a ->3 b ) ' ->3 ( ( a ->3 b ) ->3 a ) ) = 1 $= ( wi3 wn wo leo lem4 ax-r1 i3abs3 ax-r2 lbtr lei3 ) ABCZDZMACZNNAEZONAFPMOC ZOQPMAGHABIJKL $. $( [19-Nov-97] $) $( Theorem for Kalmbach implication. $) i3con $p |- ( ( a ->3 b ) ->3 ( ( a ->3 b ) ->3 ( b ' ->3 a ' ) ) ) = 1 $= ( wn wo wt ax-a2 com2an com2or fh4 ax-a3 ancom lor orabs ax-r2 comcom3 df-t wa comcom ax-r1 2an wi3 ni32 i3n1 2or comor2 comcom2 or12 lea bltr leo letr comor1 df-le2 comorr or1 ax-r5 or4 coman2 anor1 con2 coman1 anor2 df-a 3tr1 an1 i0i3 ) ABUAZBCZACZUAZVGCZVJDZEEQZEVLABDZAVHQZVIAVHDZQZDZQZBVIQZBAQZDZVH BVIDZQZDZDZVMVKVSVJWEABUBBAUCUDWFWEVSDZVMVSWEFWGWEVNDZWEVRDZQVMVNWEVRVNWBWD VNVTWAVNBVIABUEZVNAABULZUFZGVNBAWJWKGHVNVHWCVNBWJUFZVNBVIWJWLHGHVNVOVQVNAVH WKWMGVNVIVPWLVNAVHWKWMHGHIWHEWIEWHWBWDVNDZDZEWBWDVNJWOWDWBVNDZDZEWBWDVNUGWQ WNEWPVNWDWPVTWAVNDZDZVNVTWAVNJWSVTVNDZVNWRVNVTWAVNWAAVNWAABQABAKABUHUIABUJU KUMLWTVNVTDZVNVTVNFXAABVTDZDVNABVTJXBBABVIMLNNNNLWNVNWDDZEWDVNFXCVNVHDZVNWC DZQZEVHVNWCBVNVNBWJROBWCBVIUNOZIXFVMEXDEXEEXDABVHDZDZEABVHJXIAEDEXHEAEXHBPS LAUONNXEBADZWCDZEVNXJWCABFUPXKBBDZAVIDZDZEBABVIUQXNXLEDEXMEXLEXMAPSLXLUONNN TEVEZNNNNNNWIWBWDVRDZDZEWBWDVRJXQWAVIBQZDZVHVQDZDZEWBXSXPXTWBWAVTDXSVTWAFVT XRWABVIKLNXPWDVODZVQDZXTYCXPWDVOVQJSYBVHVQYBVOWDDZVHWDVOFYDVOVHDZVOWCDZQZVH VHVOWCVOVHAVHURRXGIYGVHEQVHYEVHYFEYEVHVODZVHVOVHFYHVHVHAQZDVHVOYIVHAVHKLVHA MNNYFVOVOCZDZEWCYJVOWCVIBDZYJBVIFYJYLVOYLABUSUTSNLEYKVOPSNTVHVENNNUPNUDYAWA VHDZXRVQDZDZEWAXRVHVQUQYOYMVIDZEYNVIYMYNXRVIDZXRVPDZQZVIVIXRVPXRVIVIBVARAVP AVHUNOIYSVIEQVIYQVIYREYQVIXRDVIXRVIFVIBMNYRXRXRCZDZEVPYTXRYTVPXRVPABVBUTSLE UUAXRPSNTVIVENNLWAVHVIDZDWAWACZDYPEUUBUUCWAUUCUUBWAUUBBAVCUTSLWAVHVIJWAPVDN NNNTNNNXONVF $. $( [9-Nov-97] $) $( Lemma for Kalmbach implication OR builder. $) i3orlem1 $p |- ( ( a v c ) ^ ( ( a v c ) ' v ( b v c ) ) ) =< ( ( a v c ) ->3 ( b v c ) ) $= ( wo wn wa wi3 leor df-i3 ax-r1 lbtr ) ACDZLEZBCDZDFZMNFMNEFDZODZLNGZOPHRQL NIJK $. $( [11-Nov-97] $) $( Lemma for Kalmbach implication OR builder. $) i3orlem2 $p |- ( a ^ b ) =< ( ( a v c ) ->3 ( b v c ) ) $= ( wa wo wi3 leo le2an wn leor ledi letr i3orlem1 ) ABDACEZBCEZDZNOFZANBOACG BCGHPNNIZOEDZQPNRDZPESPTJNROKLABCMLL $. $( [11-Nov-97] $) $( Lemma for Kalmbach implication OR builder. $) i3orlem3 $p |- c =< ( ( a v c ) ->3 ( b v c ) ) $= ( wo wn wi3 ax-a2 lan anabs ax-r2 ax-r1 leor lelor le2an bltr i3orlem1 letr wa ) CACDZSEZBCDZDZRZSUAFCCTCDZRZUCUECUECCTDZRCUDUFCTCGHCTIJKCSUDUBCALCUATC BLMNOABCPQ $. $( [11-Nov-97] $) $( Lemma for Kalmbach implication OR builder. $) i3orlem4 $p |- ( ( a v c ) ' ^ ( b v c ) ) =< ( ( a v c ) ->3 ( b v c ) ) $= ( wo wn wa wi3 leo ler df-i3 ax-r1 lbtr ) ACDZEZBCDZFZPNOEFZDZMNODFZDZMOGZP RSPQHIUATMOJKL $. $( [11-Nov-97] $) $( Lemma for Kalmbach implication OR builder. $) i3orlem5 $p |- ( ( a ' ^ b ' ) ^ c ' ) =< ( ( a v c ) ->3 ( b v c ) ) $= ( wo wn wa wi3 leo anandir oran con2 ax-r1 2an ax-r2 df2i3 le3tr1 ) ACDZEZB CDZEZFZUARSDQRSFDFZDAEZBEZFCEZFZQSGUAUBHUFUCUEFZUDUEFZFUAUCUDUEIUGRUHTRUGQU GACJKLTUHSUHBCJKLMNQSOP $. $( [11-Nov-97] $) $( Lemma for Kalmbach implication OR builder. $) i3orlem6 $p |- ( ( a ->3 b ) ' v ( ( a v c ) ->3 ( b v c ) ) ) = ( ( ( a v b ) ^ ( a ' ->3 b ' ) ) v ( ( a v c ) ->3 ( b v c ) ) ) $= ( wa wi3 wn wo ax-a3 ax-r1 i3orlem2 lerr df-le2 oi3ai3 ax-r5 3tr2 ) ABDZABE FZACGBCGEZGZGZPQGZRGZSABGAFBFEDZRGUBTPQRHIPSPRQABCJKLUAUCRABMNO $. $( [11-Nov-97] $) $( Lemma for Kalmbach implication OR builder. $) i3orlem7 $p |- ( a ^ b ' ) =< ( ( a ->3 b ) ' v ( ( a v c ) ->3 ( b v c ) ) ) $= ( wn wa wo wi3 lea leo letr ler2an ler i3n1 lan comor1 comcom2 com2an ax-r1 com2or lbtr comor2 fh1 ax-r2 i3orlem6 ) ABDZEZABFZADZUEGZEZACFBCFGZFZABGDUK FZUFUJUKUFUGUFABEZFZEZUGUHAUEFZEZEZFZUJUFUPUSUFUGUOUFAUGAUEHABIJUFUNIKLUJUT UJUGUOURFZEUTUIVAUGABMNUGUOURUGUFUNUGAUEABOZUGBABUAZPZQUGABVBVCQSUGUHUQUGAV BPUGAUEVBVDSQUBUCRTLUMULABCUDRT $. $( [11-Nov-97] $) $( Lemma for Kalmbach implication OR builder. $) i3orlem8 $p |- ( ( ( a v b ) ^ ( a v b ' ) ) ^ a ' ) =< ( ( a ->3 b ) ' v ( ( a v c ) ->3 ( b v c ) ) ) $= ( wo wn wa wi3 anass ancom lan ax-r2 leor bltr comor1 comcom2 com2an com2or i3n1 ax-r1 lbtr comor2 fh1 ler i3orlem6 ) ABDZABEZDZFAEZFZUEUHUFGZFZACDBCDG ZDZABGEULDZUIUKULUIUEAUFFZABFZDZFZUEUHUGFZFZDZUKUIUTVAUIUEUGUHFZFUTUEUGUHHV BUSUEUGUHIJKUTURLMUKVAUKUEUQUSDZFVAUJVCUEABRJUEUQUSUEUOUPUEAUFABNZUEBABUAZO ZPUEABVDVEPQUEUHUGUEAVDOUEAUFVDVFQPUBKSTUCUNUMABCUDST $. $( [11-Nov-97] $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Unified disjunction =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( Lemma for unified disjunction. $) ud1lem1 $p |- ( ( a ->1 b ) ->1 ( b ->1 a ) ) = ( a v ( a ' ^ b ' ) ) $= ( wi1 wn wa df-i1 ud1lem0c 2an 2or ancom lor lan coman1 comcom2 coman2 fh3r wo ax-r1 ax-r2 wt or12 comcom comorr comcom5 fh4r orabs df-a df-t an1 ax-a2 ) ABCZBACZCUKDZUKULEZQZAADZBDZEZQZUKULFUOAUPUQQZEZUPABEZQZUQBAEZQZEZQZUSUMV AUNVFABGUKVCULVEABFBAFHIVGVAURVBQZQZUSVFVHVAVFVCUQVBQZEZVHVEVJVCVDVBUQBAJKL VHVKVBUPUQVBAABMZNVBBABONPRSKVIURVAVBQZQZUSVAURVBUAVNURAVBQZUTVBQZEZQZUSVMV QURAVBUTVBAVLUBAUTUPUTUPUQUCNUDUEKVRURAQUSVQAURVQATEAVOAVPTABUFVPUTUTDZQZTV BVSUTABUGKTVTUTUHRSHAUISKURAUJSSSSSS $. $( [23-Nov-97] $) $( Lemma for unified disjunction. $) ud1lem2 $p |- ( ( a v ( a ' ^ b ' ) ) ->1 a ) = ( a v b ) $= ( wn wa wo wi1 df-i1 comid comcom3 comor1 fh3 wt ancom ax-a2 df-t ax-r1 lan ax-r2 oran 3tr an1 ax-r4 con2 ax-r5 oml ) AACZBCDZEZAFUHCZUHADEUIUHEZUIAEZD ZABEZUHAGUIUHAUHUHUHHIUHAAUGJIKULUKUJDUKLDZUMUJUKMUJLUKUJUHUIEZLUIUHNLUOUHO PRQUNUKUFUMDZAEZUMUKUAUIUPAUHUPUHUFUGCZDZCUPCAUGSUSUPURUMUFUMURABSPQUBRUCUD UQAUPEUMUPANABUERTTT $. $( [23-Nov-97] $) $( Lemma for unified disjunction. $) ud1lem3 $p |- ( ( a ->1 b ) ->1 ( a v b ) ) = ( a v b ) $= ( wi1 wo wn wa df-i1 ud1lem0c con3 ran 2or comid comcom2 df-t ax-r1 lan an1 wt comorr ax-r2 comor1 comor2 com2or com2an comcom ancom comcom5 fh4r ax-a2 fh3 or4 lor or1 ax-a3 oridm ax-r5 ) ABCZABDZCUQEZUQURFZDZURUQURGVAAAEZBEZDZ FZVEEZURFZDZURUSVEUTVGABHZUQVFURUQVEVIIJKVHVEVFDZVEURDZFZURVEVFURVEVEVELMUR VEURAVDABUAZURVBVCURAVMMURBABUBMUCUDUEUJVLVKVJFZURVJVKUFVNVKRFZURVJRVKRVJVE NOPVOVKURVKQVKAURDZVDURDZFZURAURVDABSAVDVBVDVBVCSMUGUHVRVPRFZURVQRVPVQURVDD ZRVDURUIVTAVBDZBVCDZDZRABVBVCUKWCWARDRWBRWARWBBNOULWAUMTTTPVSVPURVPQVPAADZB DZURWEVPAABUNOWDABAUOUPTTTTTTTTTT $. $( [23-Nov-97] $) $( Lemma for unified disjunction. $) ud2lem1 $p |- ( ( a ->2 b ) ->2 ( b ->2 a ) ) = ( a v ( a ' ^ b ' ) ) $= ( wi2 wn wa wo df-i2 ud2lem0c 2an 2or wf ancom lor dff oran ax-r1 lan ax-r2 anandir ax-a2 ran or0 ) ABCZBACZCUDUCDZUDDZEZFZAADZBDZEZFZUCUDGUHAUJUIEZFZU JABFZEZUIBAFZEZEZFZULUDUNUGUSBAGUEUPUFURABHBAHIJUTULKFULUNULUSKUMUKAUJUILMK USKUMUQEZUSKUMUMDZEVAUMNVBUQUMUQVBBAOPQRVAUJUQEZUREUSUJUIUQSVCUPURUQUOUJBAT QUARRPJULUBRRR $. $( [22-Nov-97] $) $( Lemma for unified disjunction. $) ud2lem2 $p |- ( ( a v ( a ' ^ b ' ) ) ->2 a ) = ( a v b ) $= ( wn wa wi2 df-i2 oran con2 ax-r1 lor anor2 con3 ax-r2 ran an32 anidm oml wo ) AACZBCDZRZAEAUACZSDZRZABRZUAAFUDASUEDZRUEUCUFAUCUAARZCZUFUHUCUGUCUAAGH ZIUHUCUFUIUCUFSDZUFUBUFSUAUFUAAUECZRZUFCTUKAUKTUETABGHIJULUFUFULCAUEKILMHNU JSSDZUEDUFSUESOUMSUESPNMMMMJABQMM $. $( [23-Nov-97] $) $( Lemma for unified disjunction. $) ud2lem3 $p |- ( ( a ->2 b ) ->2 ( a v b ) ) = ( a v b ) $= ( wi2 wo wn wa df-i2 ud2lem0c ran lor coman2 comcom comid comcom2 fh3 ancom wt df-t ax-r1 ax-r2 2an an1 orabs ) ABCZABDZCUEUDEZUEEZFZDZUEUDUEGUIUEBEZUE FZUGFZDZUEUHULUEUFUKUGABHIJUMUEUKDZUEUGDZFZUEUEUKUGUKUEUJUEKLUEUEUEMNOUPUEU EUJFZDZQFZUEUNURUOQUKUQUEUJUEPJQUOUERSUAUSURUEURUBUEUJUCTTTTT $. $( [23-Nov-97] $) $( Lemma for unified disjunction. $) ud3lem1a $p |- ( ( a ->3 b ) ' ^ ( b ->3 a ) ) = ( a ^ b ' ) $= ( wn wa wo 2an comor2 comor1 com2an comcom2 com2or comcom anass ancom ax-r2 wf lan ax-r1 dff an0 ud3lem0c comanr2 comcom3 coman2 coman1 comanr1 comcom6 wi3 df-i3 fh2 comcom7 ax-a2 anabs lea leo ler2an letr df2le2 an32 oran con3 ran an0r 2or or0 fh2r or0r anor1 ) ABUHCZBAUHZDABCZEZABEZDZACZAVKDZEZDZVKAD ZVKVODZEZBVKAEZDZEZDZVPVIVRVJWDABUABAUIFWEVRWADZVRWCDZEZVPWAVRWCWAVNVQWAVLV MVLWAVLVSVTVLVKAAVKGZAVKHZIVLVKVOWIVLAWJJIKLVMWAVMVSVTVMVKAVMBABGJZABHZIVMV KVOWKVMAWLJIKLIWAVOVPVOWAVOVSVTAVSVKAUBUCVKVOUBKLVPWAVPVSVTVPVKAAVKUDZAVKUE ZIVPVKVOWMVPAWNJZIKLKIWABWBBWABVSVTBVSVKAUFUGBVTVKVOUFUGKLWBWAWBVSVTWBVKAVK AHZVKAGZIWBVKVOWPWBAWQJIKLIUJWHVPPEZVPWFVPWGPWFVRVSDZVRVTDZEZVPVSVRVTVSVNVQ VSVLVMVSAVKVKAUDZVKAUEZKVSABXBVSBXCUKKIVSVOVPVSAXBJZVSAVKXBXCIKIVSVKVOXCXDI UJXAWRVPWSVPWTPWSVNVQVSDZDZVPVNVQVSMXFVNVPDZVPXEVPVNXEVSVQDZVPVQVSNXHVPVPVO EZDVPVSVPVQXIVKANVOVPULZFVPVOUMOOQXGVPVNDVPVNVPNVPVNVPAVNAVKUNAVLVMAVKUOABU OUPUQUROOOWTVNVTDZVQDZPVNVQVTUSXLPVQDPXKPVQXKVLVMVTDZDZPVLVMVTMXNVLPDPXMPVL XMBAEZXOCZDZPVMXOVTXPABULVTXOXOVTCBAUTRVAFPXQXOSROQVLTOOVBVQVCOOVDVPVEZOOWG VNVQWCDZDZPVNVQWCMXTVNPDPXSPVNXSVQBDZWBDZPYBXSVQBWBMRYBBVODZWBDZPYAYCWBYAXI BDZYCVQXIBXJVBYEVPBDZVOBDZEZYCVPBVOVPBWMUKWOVFYHPYCEYCYFPYGYCYFAVKBDZDZPAVK BMYJAPDPYIPAYIBVKDZPVKBNPYKBSROQATOOVOBNVDYCVGOOOVBYDYCYCCZDZPWBYLYCWBYCYCW BCBAVHRVAQPYMYCSROOOQVNTOOVDXROOO $. $( [27-Nov-97] $) $( Lemma for unified disjunction. $) ud3lem1b $p |- ( ( a ->3 b ) ' ^ ( b ->3 a ) ' ) = 0 $= ( wi3 wn wa wo ud3lem0c 2an an32 comor2 comcom7 ancom ax-a2 lan ax-r2 ax-r1 wf dff anass ran an12 comor1 comcom2 com2an fh1 anabs anor1 anidm fh1r oran 2or or0 ) ABCDZBACDZEABDZFZABFZEZADZAUOEZFZEZBUSFZBAFZEZUOBUSEZFZEZEZQUMVBU NVHABGBAGHVIURVHEZVAEZQURVAVHIVKUOVDEZVCEZVAEZQVJVMVAVJUPVHEZUQEZVMUPUQVHIV PUOVCEZVDEZUQEZVMVOVRUQVOVEUPVGEZEZVRUPVEVGUAWAVEUOEZVRVTUOVEVTUPUOEZUPVFEZ FZUOUPUOVFAUOJZUPBUSUPBWFKUPAAUOUBUCUDUEWEUOQFUOWCUOWDQWCUOUOAFZEZUOWCUOUPE WHUPUOLUPWGUOAUOMZNOUOAUFOWDWGWGDZEZQUPWGVFWJWIBAUGHQWKWGRPOUKUOULOONWBUOVE EZVRVEUOLVRWLUOVCVDSPOOOTVSVRVDEZVMUQVDVRABMNWMVQVDVDEZEZVMVQVDVDSWOVRVMWNV DVQVDUHNUOVCVDIOOOOOTVNVLVCVAEZEZQVLVCVASWQVLUSEZQWPUSVLWPUSBFZVAEZUSVCWSVA BUSMTWTVAWSEZUSWSVALXAUSWSEZUTWSEZFZUSWSUSUTUSBUBZWSAUOWSAXEKWSBUSBJUCUDUIX DUSQFUSXBUSXCQUSBUFXCWSUTEZQUTWSLXFWSWSDZEZQUTXGWSABUGNQXHWSRPOOUKUSULOOOON WRUOUSEZVDEZQUOVDUSIXJXIXIDZEZQVDXKXIBAUJNQXLXIRPOOOOOOO $. $( [27-Nov-97] $) $( Lemma for unified disjunction. $) ud3lem1c $p |- ( ( a ->3 b ) ' v ( b ->3 a ) ) = ( a v b ' ) $= ( wn wo wa 2or coman2 coman1 com2or comcom7 com2an comcom ax-a2 ax-r2 ax-a3 wt ax-r1 df-t lor or1 ud3lem0c comorr2 comcom6 comor2 comor1 comorr comcom3 wi3 df-i3 fh4r comcom2 lea lel2or leor letr lear lbtr or12 ancom oran ax-r5 df-le2 or1r 2an an1 fh4 ran an1r anor1 ) ABUHCZBAUHZDABCZDZABDZEZACZAVLEZDZ EZVLAEZVLVPEZDZBVLADZEZDZDZVMVJVSVKWEABUABAUIFWFVOWEDZVRWEDZEZVMVOWEVRVOWBW DVOVTWAVTVOVTVMVNVTAVLVLAGZVLAHZIVTABWJVTBWKJIKLWAVOWAVMVNWAAVLWAAVLVPGJZVL VPHZIWAABWLWABWMJIKLIVOBWCBVOBVMVNBVMAVLUBUCABUBKLWCVOWCVMVNWCAVLVLAUDZVLAU EZIWCABWNWCBWOJZIKLKIVOVPVQVPVOVPVMVNAVMAVLUFUGAVNABUFUGKLVQVOVQVMVNVQAVLAV LHZAVLGZIVQABWQVQBWRJIKLIUJWIVMPEZVMWGVMWHPWGVMWEDZVNWEDZEZVMVMWEVNVMWBWDVM VTWAVMVLAAVLUDZAVLUEZKVMVLVPXCVMAXDUKKIVMBWCVMBXCJZVMVLAXCXDIKIVMABXDXEIUJX BWSVMWTVMXAPWTWEVMDVMVMWEMWEVMWBVMWDWBVLVMVTVLWAVLAULVLVPULUMVLAUNUOWDWCVMB WCUPVLAMUQUMVBNXAWBVNWDDDZPVNWBWDURXFWBVNDZWDDZPXHXFWBVNWDOQXHPWDDPXGPWDXGV TWAVNDZDZPVTWAVNOXJVTPDPXIPVTXIVPVLEZXKCZDZPWAXKVNXLVLVPUSABUTFPXMXKRQNSVTT NNVAWDVCNNNVDVMVEZNNWHWBVRWDDZDZPVRWBWDURXPWBPDPXOPWBXOVQVPDZWCBEZDZPVRXQWD XRVPVQMBWCUSFXSVQVPXRDZDZPVQVPXROYAVQVPBDZDZPXTYBVQXTVPWCDZYBEZYBWCVPBWCAWN UKWPVFYEPYBEYBYDPYBYDWCVPDZPVPWCMYFVLAVPDZDZPVLAVPOYHVLPDPYGPVLPYGARQSVLTNN NVGYBVHNNSYCYBVQDZPVQYBMYIYBYBCZDZPVQYJYBABVISPYKYBRQNNNNNSWBTNNVDXNNNN $. $( [27-Nov-97] $) $( Lemma for unified disjunction. $) ud3lem1d $p |- ( ( a ->3 b ) ^ ( ( a ->3 b ) ' v ( b ->3 a ) ) ) = ( ( a ' ^ b ' ) v ( a ^ ( a ' v b ) ) ) $= ( wi3 wn wo wa df-i3 ud3lem1c 2an comor1 comcom2 comor2 comcom7 com2an fh1r com2or an32 ax-r2 2or wf anabs ran ancom anor2 lan dff ax-r1 lear leor letr df2le2 or0r ax-r5 ) ABCZUNDBACEZFADZBFZUPBDZFZEZAUPBEZFZEZAUREZFZUSVBEZUNVC UOVDABGABHIVEUTVDFZVBVDFZEZVFVDUTVBVDUQUSVDUPBVDAAURJZKZVDBAURLZMZNZVDUPURV KVLNZPVDAVAVJVDUPBVKVMPNOVIUQVDFZUSVDFZEZVBEVFVGVRVHVBVDUQUSVNVOOVHAVDFZVAF VBAVAVDQVSAVAAURUAUBRSVRUSVBVRTUSEUSVPTVQUSVPVDUQFZTUQVDUCVTVDVDDZFZTUQWAVD ABUDUETWBVDUFUGRRUSVDUSURVDUPURUHURAUIUJUKSUSULRUMRRR $. $( [27-Nov-97] $) $( Lemma for unified disjunction. $) ud3lem1 $p |- ( ( a ->3 b ) ->3 ( b ->3 a ) ) = ( a v ( a ' ^ b ' ) ) $= ( wi3 wn wa wo df-i3 wf ud3lem1a ud3lem1b 2or ax-r2 ud3lem1d coman1 comcom2 or0 coman2 wt ax-a2 lor comcom7 com2or fh3 orabs anor1 df-t ax-r1 or12 3tr1 2an an1 ) ABCZBACZCULDZUMEZUNUMDEZFZULUNUMFEZFZAADZBDZEZFZULUMGUSAVAEZVBAUT BFZEZFZFZVCUQVDURVGUQVDHFVDUOVDUPHABIABJKVDPLABMKVBVDVFFZFVBAFVHVCVIAVBVIVD AFZVDVEFZEZAVDAVEAVANZVDUTBVDAVMOVDBAVAQUAUBUCVLAREAVJAVKRVJAVDFAVDASAVAUDL VKVEVDFZRVDVESVNVEVEDZFZRVDVOVEABUETRVPVEUFUGLLUJAUKLLTVDVBVFUHAVBSUILL $. $( [27-Nov-97] $) $( Lemma for unified disjunction. $) ud3lem2 $p |- ( ( a v ( a ' ^ b ' ) ) ->3 a ) = ( a v b ) $= ( wn wa wo wi3 oran ax-r1 con3 lor anor2 ax-r2 ax-a2 wf ran lan dff 2or or0 ancom ud3lem0b df-i3 ax-a3 ax-a1 an32 anidm ax-r5 2an oml comorr fh2r anabs comcom2 anass an0 ) AACZBCDZEZAFUPABEZDZCZAFZUSURVAAURAUSCZEZVAUQVCAUQUSUSU QCABGHIJVDUTUTVDCAUSKHIZLUAVBVACZADZVFUPDZEVAVFAEZDZEZUSVAAUBVKVGVHVJEZEZUS VGVHVJUCVMVLVGEZUSVGVLMVNUSNEUSVLUSVGNVLAUTEZUSVLUTAEZVOVHUTVJAVHUTUPDZUTVQ VHUTVFUPUTUDZOHVQUPUPDZUSDUTUPUSUPUEVSUPUSUPUFOLLVJVDVPDZAVTVJVDVAVPVIVEUTV FAVRUGUHHVTVDUSDZAVPUSVDVPVOUSUTAMZABUIZLPWAAUSDZVCUSDZEZAAUSVCABUJZAUSWGUM UKWFANEAWDAWENABULWEUSVCDZNVCUSTNWHUSQHLRASLLLLRWBLWCLVGAVFDZNVFATWIAUTDZNW JWIUTVFAVRPHWJAUPDZUSDZNWLWJAUPUSUNHWLUSWKDZNWKUSTWMUSNDZNWNWMNWKUSAQPHUSUO LLLLLRUSSLLLLL $. $( [23-Nov-97] $) $( Lemma for unified disjunction. $) ud3lem3a $p |- ( ( a ->3 b ) ' ^ ( a v b ) ) = ( a ->3 b ) ' $= ( wi3 wn wo wa ud3lem0c lea lear letr bltr df2le2 ) ABCDZABEZMABDZEZNFZADAO FEZFZNABGSQNQRHPNIJKL $. $( [27-Nov-97] $) $( Lemma for unified disjunction. $) ud3lem3b $p |- ( ( a ->3 b ) ' ^ ( a v b ) ' ) = 0 $= ( wi3 wn wo wa wf ud3lem0c ran an32 anass dff ax-r1 lan an0 ax-r2 an0r ) AB CDZABEZDZFABDZEZSFZADAUAFEZFZTFZGRUETABHIUFUCTFZUDFZGUCUDTJUHGUDFGUGGUDUGUB STFZFZGUBSTKUJUBGFGUIGUBGUISLMNUBOPPIUDQPPP $. $( [27-Nov-97] $) $( Lemma for unified disjunction. $) ud3lem3c $p |- ( ( a ->3 b ) ' v ( a v b ) ) = ( a v b ) $= ( wi3 wn wo wa ud3lem0c an32 ancom ax-r2 ax-r5 ax-a2 orabs ) ABCDZABEZEOABD ZEZADAPFEZFZFZOEZONTONQOFRFZTABGUBSOFTQORHSOIJJKUAOTEOTOLOSMJJ $. $( [27-Nov-97] $) $( Lemma for unified disjunction. $) ud3lem3d $p |- ( ( a ->3 b ) ^ ( ( a ->3 b ) ' v ( a v b ) ) ) = ( ( a ' ^ b ) v ( a ^ ( a ' v b ) ) ) $= ( wi3 wn wo wa ud3lem3c 2an comor1 comcom2 comor2 com2an com2or fh1r coman1 df-i3 wf letr df2le2 ax-r2 comcom7 coman2 fh2r lear leor oran lan dff ax-r1 2or or0 ax-r5 lea leo lor ) ABCZUPDABEZEZFADZBFZUSBDZFZEZAUSBEZFZEZUQFZUTVE EZUPVFURUQABPABGHVGVCUQFZVEUQFZEZVHUQVCVEUQUTVBUQUSBUQAABIZJZABKZLUQUSVAVMU QBVNJLMUQAVDVLUQUSBVMVNMLNVKUTVJEVHVIUTVJVIUTUQFZVBUQFZEZUTUTUQVBUTABUTAUSB OZUAUSBUBZMUTUSVAVRUTBVSJLUCVQUTQEUTVOUTVPQUTUQUTBUQUSBUDBAUERSVPVBVBDZFZQU QVTVBABUFUGQWAVBUHUITUJUTUKTTULVJVEUTVEUQVEAUQAVDUMABUNRSUOTTT $. $( [27-Nov-97] $) $( Lemma for unified disjunction. $) ud3lem3 $p |- ( ( a ->3 b ) ->3 ( a v b ) ) = ( a v b ) $= ( wi3 wo wn wa ax-r2 2or coman1 comcom7 coman2 comcom2 com2or com2an comcom wf comorr wt ax-r1 lor df-i3 ud3lem3a ud3lem0c ud3lem3b or0 ud3lem3d comor1 comor2 comcom3 fh4r ax-a3 anor2 df-t ax-r5 or1r ax-a2 lear leor letr lel2or lea leo df-le2 2an an1r or12 df-a anor1 ax-r4 or1 an1 ) ABCZABDZCVLEZVMFZVN VMEFZDZVLVNVMDFZDZVMVLVMUAVSABEZDZVMFZAEZAVTFZDZFZWCBFZAWCBDZFZDZDZVMVQWFVR WJVQWFPDWFVOWFVPPVOVNWFABUBABUCGABUDHWFUEGABUFHWKWBWJDZWEWJDZFZVMWBWJWEWBWG WIWGWBWGWAVMWGAVTWGAWCBIJZWGBWCBKZLMWGABWOWPMNOWBAWHAWBAWAVMAVTQZABQZNOWHWB WHWAVMWHAVTWHAWCBUGJZWHBWCBUHZLMWHABWSWTMNONMWBWCWDWCWBWCWAVMAWAWQUIAVMWRUI NOWDWBWDWAVMWDAVTAVTIZAVTKZMWDABXAWDBXBJMNOMUJWNVMRFVMWLVMWMRWLWAWJDZVMWJDZ FZVMWAWJVMWAWGWIWAWCBWAAAVTUGZLZWABAVTUHJZNWAAWHXFWAWCBXGXHMNMWAABXFXHMUJXE RVMFVMXCRXDVMXCWAWGDZWIDZRXJXCWAWGWIUKSXJRWIDRXIRWIXIWAWAEZDZRWGXKWAABULTRX LWAUMSGUNWIUOGGXDWJVMDVMVMWJUPWJVMWGVMWIWGBVMWCBUQBAURUSWIAVMAWHVAABVBUSUTV CGVDVMVEGGWMWGWEWIDZDZRWEWGWIVFXNWGRDRXMRWGXMWEWEEZDZRWIXOWEWIWCWHEZDZEXOAW HVGXRWEXQWDWCWDXQABVHSTVIGTRXPWEUMSGTWGVJGGVDVMVKGGGG $. $( [27-Nov-97] $) $( Lemma for unified disjunction. $) ud4lem1a $p |- ( ( a ->4 b ) ^ ( b ->4 a ) ) = ( ( a ^ b ) v ( a ' ^ b ' ) ) $= ( wa wn wo coman2 comcom com2or coman1 comcom2 com2an comcom3 ancom 2or lan wf dff ax-r1 an0 ax-r2 wi4 df-i4 2an comcom5 fh2r ax-a2 ran fh1 an4 lor fh3 or0 3tr2 an12 an32 anass anor2 con3 fh2 lecon lelan oran anor1 ax-r4 le3tr1 lea con2 le0 lebi leo le2an df2le2 ) ABUAZBAUAZCABCZADZBCZEZVPBEZBDZCZEZBAC ZVTACZEZVTAEZVPCZEZCZVOVPVTCZEZVMWBVNWHABUBBAUBUCWIVRWHCZWAWHCZEWKVRWHWAVRW EWGVRWCWDVRBABVRBVOVQVOBABFZGZVQBVPBFGZHGZAVRAVOVQVOAABIZGZAVQVPVQVQVPVPBIG ZJUDHGZKVRVTAVTVRVTVOVQBVOWOLBVQWPLHGZXAKHVRWFVPVRVTAXBXAHVPVRVPVOVQAVOWSLW THGZKHVRVSVTVRVPBXCWQHVRBWQJZKUEWLVOWMWJWLVOPEZVOWLVRVOAVTCZEZAVTEZVPCZEZCZ XEWHXJVRWEXGWGXIWCVOWDXFBAMVTAMZNWFXHVPVTAUFUGNOXKVRXGCZVRXICZEXEVRXGXIVRVO XFVRABXAWQKVRAVTXAXBKHVRXHVPVRAVTXAXDHXCKUHXMVOXNPVOVQXFCZEXEXMVOXOPVOXOVPA CZBVTCZCZPVPBAVTUIXRXPPCPXQPXPPXQBQROXPSTTUJVOVQXFVOVPBVOAWRJZWNKZVOAVTWRVO BWNJZKUKVOULZUMXNVOXICZVQXICZEZPVOXIVQVOXHVPVOAVTWRYAHXSKXTUEYEPPEPYCPYDPYC XHVOVPCZCZPVOXHVPUNYGXHPCPYFPXHYFAVPCZBCZPABVPUOYIBYHCZPYHBMYJBPCPYHPBPYHAQ ROBSTTTOXHSTTVQXHCZVPCVPYKCZYDPYKVPMVQXHVPUPYLVPPCPYKPVPYKVQVQDZCZPXHYMVQXH VQVQXHDABUQRUROPYNVQQRTOVPSTUMNPULTTNTTYBTWMWAWECZWAWGCZEZWJWEWAWGWEVSVTWEV PBVPWEAWEAWCWDWCABAFGZWDAVTAFGZHZLGBWEBWCWDWCBBAIGZBWDVTWDWDVTVTAIGZJUDHGHV TWEVTWCWDBWCUUALUUBHGZKWEWFVPWEVTAUUCAWEYTGHVPWEVPWCWDAWCYRLAWDYSLHGKUSYQPW JEZWJYOPYPWJYOPWAVSWCDZCZDZCWAWADZCYOPUUGUUHWAWAUUFVTUUEVSWCBBAVFUTVAUTVAWE UUGWAWEWDWCEZUUGWCWDUFUUIWDDZUUECZDUUGWDWCVBUUKUUFUUJVSUUEWDVSWDXFVSDXLABVC TVGUGVDTTOWAQVEYOVHVIYPVSWFCZVTVPCZCZWJVSVTWFVPUIUUNUUMWJUUNUUMUULCZUUMUULU UMMUUOUUMWFVSCZCUUMUULUUPUUMVSWFMOUUMUUPVTWFVPVSVTAVJVPBVJVKVLTTVTVPMTTNUUD WJPEWJPWJUFWJULTTTNTT $. $( [24-Nov-97] $) $( Lemma for unified disjunction. $) ud4lem1b $p |- ( ( a ->4 b ) ' ^ ( b ->4 a ) ) = ( a ^ b ' ) $= ( wn wa wo coman2 comcom2 coman1 com2or comcom com2an comcom5 wf an32 ax-r2 dff ancom an0 2or lan wi4 ud4lem0c df-i4 2an comor2 comor1 comcom3 fh2 df-a ax-a2 ax-r1 ran lea leor letr lear leo ler2an bltr 3tr1 or0 anass fh2r an12 df2le2 anor1 ) ABUACZBAUAZDACZBCZEZAVJEZDZAVJDZBEZDZBADZVJADZEZVJAEZVIDZEZD ZVNVGVPVHWBABUBBAUCUDWCVPVSDZVPWADZEZVNVSVPWAVSVMVOVSVKVLVKVSVKVQVRVQVKVQVI VJVQABAFZGVQBBAHZGZIZJVRVKVRVIVJVRAVJAFZGVJAHZIJIJVLVSVLVQVRVQVLVQAVJWGWIIZ JVLVJAAVJUEAVJUFKIJKVSVNBVNVSVNVQVRVNBAVNBVNVJAVJFZUGLZAVJHZKVNVJAWNWPKIJBV SBVQVRVQBWHJBVRVJVRVRVJWLJGLIJIKVSVTVIVTVSVTVQVRVTBAVTBVTVJVJAUFZUGLVJAUEZK VTVJAWQWRKIJVSAAVSAVQVRVQAWGJVRAWKJIJGKUHWFVNMEZVNWDVNWEMWDVPVQDZVPVRDZEZVN VQVPVRVQVMVOVQVKVLWJWMKVQVNBVQAVJWGWIKWHIKVQVJAWIWGKUHXBWSVNXBMVNEWSWTMXAVN WTVMVQDZVODZMVMVOVQNXDMVODZMXCMVOXCVKVQDZVLDZMVKVLVQNXGMVLDZMXFMVLXFVJVIEZX ICZDZMVKXIVQXJVIVJUJBAUIUDMXKXIPUKOULXHVLMDMMVLQVLROOOULXEVOMDMMVOQVOROOOVR VPDVRXAVNVRVPVRVMVOVRVKVLVRVJVKVJAUMVJVIUNUOVRAVLVJAUPAVJUQUOURVRVNVOVJAQVN BUQUSURVEVPVRQAVJQUTSMVNUJOVNVAZOOWEVMVOWADZDZMVMVOWAVBXNVMMDMXMMVMXMVNWADZ BWADZEZMVNWABVNVTVIVNVJAWNWPIVNAWPGKWOVCXQMMEMXOMXPMXOVTVNVIDZDZMVNVTVIVDXS VTMDMXRMVTXRAVIDZVJDZMAVJVINYAVJXTDZMXTVJQYBVJMDMXTMVJMXTAPUKTVJROOOTVTROOV TBVIDZDVTVTCZDXPMYCYDVTBAVFTBVTVIVDVTPUTSMVAOOTVMROOSXLOOO $. $( [25-Nov-97] $) $( Lemma for unified disjunction. $) ud4lem1c $p |- ( ( a ->4 b ) ' v ( b ->4 a ) ) = ( a v b ' ) $= ( wn wo wa comor2 comcom3 comcom5 comor1 com2an com2or comcom coman1 coman2 comcom2 wt ax-a2 ax-a3 ax-r2 or1 ud4lem0c df-i4 comorr fh4r df-a df-t ax-r1 wi4 2or lor 3tr2 ax-r5 lear lel2or leo letr lea lbtr 2an ancom an1 or32 or4 df-le2 fh4 anor2 con2 3tr1 ) ABUHCZBAUHZDACZBCZDZAVLDZEZAVLEZBDZEZBAEZVLAEZ DZVLADZVKEZDZDZVNVIVRVJWDABUABAUBUIWEVOWDDZVQWDDZEZVNVOWDVQVOWAWCWAVOWAVMVN VMWAVMVSVTVMBAVMBVMVLVKVLFZGHVMAVMVKVKVLIZGHZJVMVLAWIWKJKLVNWAVNVSVTVNBAVNB VNVLAVLFZGHAVLIZJVNVLAWLWMJKLJLVOWBVKWBVOWBVMVNWBVKVLWBAVLAFOZVLAIZKZWBAVLW BAWBVKWNGHWOKJLVKVOVKVMVNVKVLUCAVNAVLUCGJLJKVOVPBVPVOVPVMVNVPVKVLVPAAVLMZOA VLNZKVPAVLWQWRKJLVOBVOVLVLVOVLVMVNVMVLWILVNVLWLLJLGHKUDWHVNPEZVNWFVNWGPWFVM WDDZVNWDDZEZVNVMWDVNVMWAWCVMVSVTVSVMVSVKVLVSABANOVSBBAMOKLVTVMVTVKVLVTAVLAN OVLAMKLKVMWBVKWBVMWPLWJJKVNVMVNVKVLVNAWMOWLKLUDXBPVNEZVNWTPXAVNVMWADZWCDPWC DZWTPXDPWCVMVSDZVTDVTXFDZXDPXFVTQVMVSVTRXGVTPDPXFPVTXFVLVKDZXHCZDZPVMXHVSXI VKVLQBAUEUIPXJXHUFUGSUJVTTSUKULVMWAWCRXEWCPDPPWCQWCTSUKXAWDVNDVNVNWDQWDVNWA VNWCWAAVNVSAVTBAUMVLAUMUNAVLUOUPWCWBVNWBVKUQVLAQURUNVDSUSXCWSVNPVNUTVNVAZSS SWGWDVQDZPVQWDQXLVSVPDZPDZPXLWAVQDZWCDZXNWAWCVQVBXPXMVTBDZDZWCDZXNXOXRWCVSV TVPBVCULXSXMXQWCDZDXNXMXQWCRXTPXMVTBWCDZDVTVTCZDXTPYAYBVTYABWBDZBVKDZEZYBWB BVKWBBWBVLWOGHWNVEYEPYBEZYBYCPYDYBBVLDZADPADZYCPYGPAPYGBUFUGULBVLARYHAPDPPA QATSUKYBYDVTYDBAVFVGUGUSYFYBPEYBPYBUTYBVASSSUJVTBWCRVTUFVHUJSSSXMTSSUSXKSSS $. $( [25-Nov-97] $) $( Lemma for unified disjunction. $) ud4lem1d $p |- ( ( ( a ->4 b ) ' v ( b ->4 a ) ) ^ ( b ->4 a ) ' ) = ( ( ( a ' v b ' ) ^ ( a ' v b ) ) ^ a ) $= ( wi4 wn wo ud4lem1c ud4lem0c 2an an12 ax-a2 comor2 comcom3 comcom5 comcom2 wa comor1 com2an fh1 wf ax-r2 anor1 dff ax-r1 ancom anabs 2or or0 ) ABCDBAC ZEZUHDZOABDZEZUKADZEZBUMEZOZBUMOZAEZOZOZUMUKEZUMBEZOZAOZUIULUJUSABFBAGHUTUP ULUROZOVDULUPURIUPVCVEAUNVAUOVBUKUMJBUMJHVEULUQOZULAOZEZAULUQAULBUMULBULUKA UKKLMULAAUKPZNQVIRVHSAEZAVFSVGAVFUKAEZVKDZOZSULVKUQVLAUKJBAUAHSVMVKUBUCTVGA ULOAULAUDAUKUETUFVJASEASAJAUGTTTHTT $. $( [25-Nov-97] $) $( Lemma for unified disjunction. $) ud4lem1 $p |- ( ( a ->4 b ) ->4 ( b ->4 a ) ) = ( a v ( a ' ^ b ' ) ) $= ( wi4 wa 2or lor coman1 comcom comcom3 com2or comcom2 comcom5 comorr com2an wn wo ax-r2 wt ax-a2 or1 df-i4 ud4lem1a ud4lem1b ud4lem1d ancom fh4 or4 lea ax-a3 lel2or leor letr df-le2 coman2 comor1 or32 df-a con2 ax-r1 df-t ax-r5 comor2 anor1 3tr1 2an an1 ) ABCZBACZCVGVHDZVGOZVHDZPZVJVHPVHODZPZAAOZBOZDZP ZVGVHUAVNABDZVQPZAVPDZPZVOVPPZVOBPZDZADZPZVRVLWBVMWFVIVTVKWAABUBABUCEABUDEW GWBAPZWBWEPZDZVRWGWBAWEDZPWJWFWKWBWEAUEFAWBWEAWBVOWBVOVTWAVOVSVQAVSVSAABGZH IVQVOVOVPGHJAWAWAAAVPGHIJKLAWEVOWEVOWCWDVOVPMVOBMNKLUFQWJVRRDVRWHVRWIRWHVQA PZVRWHVTWAAPPZWMVTWAAUIWNVSWAPZWMPWMVSVQWAAUGWOWMWOAWMVSAWAABUHAVPUHUJAVQUK ULUMQQVQASQWIRRDZRWIWBWCPZWBWDPZDWPWCWBWDWCVTWAWCVSVQVSWCVSVOVPVSAWLKVSBABU NKJHWCVOVPVOVPUOZVOVPVBZNJWCAVPWCAWCVOWSILWTNJWCVOBWSWCBWCVPWTILJUFWQRWRRWQ VTWCPZWAPZRVTWAWCUPXBRWAPZRXARWAXAVSWCPZVQPZRVSVQWCUPXERVQPZRXDRVQXDVSVSOZP ZRWCXGVSXGWCVSWCABUQURUSFRXHVSUTUSQVAXFVQRPRRVQSVQTQQQVAXCWARPRRWASWATQQQWR VTWAWDPZPZRVTWAWDUIXJVTRPRXIRVTWDWAPWDWDOZPXIRWAXKWDABVCFWAWDSWDUTVDFVTTQQV EQRVFQVEVRVFQQQQ $. $( [25-Nov-97] $) $( Lemma for unified disjunction. $) ud4lem2 $p |- ( ( a v ( a ' ^ b ' ) ) ->4 a ) = ( a v b ) $= ( wn wa wo wi4 df-i4 wf ancom anabs ax-r2 oran con2 ran ax-r1 lan 2or ax-r5 con3 wt anass dff an0 or0 lor anor2 comid comorr fh3r or32 oridm df-t ax-a2 comcom2 2an an1 oml ) AACZBCDZEZAFUTADZUTCZADZEZVBAEZURDZEZABEZUTAGVGAURVHD ZEVHVDAVFVIVDAHEAVAAVCHVAAUTDAUTAIAUSJKVCURUSCZDZADZHVBVKAUTVKAUSLMNVLAVKDZ HVKAIVMAURDZVJDZHVOVMAURVJUAOVOVJVNDZHVNVJIVPVJHDZHVQVPHVNVJAUBPOVJUCKKKKKQ AUDKVFURVEDVIVEURIVEVHURVEVIAEZVHVBVIAUTVIUTAVHCZEZVICUSVSAUSVHVHVJABLOSUEV TVIVIVTCAVHUFOSKMRVRURAEZVHAEZDZVHAURVHAAAUGUNABUHUIWCVHTDZVHWCWBWADWDWAWBI WBVHWATWBAAEZBEVHABAUJWEABAUKRKTWATAUREWAAULAURUMKOUOKVHUPKKKPKQABUQKK $. $( [23-Nov-97] $) $( Lemma for unified disjunction. $) ud4lem3a $p |- ( ( a ->4 b ) ' ^ ( a v b ) ) = ( a ->4 b ) ' $= ( wn wo wa wi4 anass lea leror df2le2 lan ax-r2 ud4lem0c ran 3tr1 ) ACBCZDA PDEZAPEZBDZEZABDZEZTABFCZUAEUCUBQSUAEZETQSUAGUDSQSUARABAPHIJKLUCTUAABMZNUEO $. $( [23-Nov-97] $) $( Lemma for unified disjunction. $) ud4lem3b $p |- ( ( a ->4 b ) ' v ( a v b ) ) = ( a v b ) $= ( wi4 wn wo wa ud4lem0c comcom2 com2or com2an fh3r wt ax-a2 or4 ax-r1 ax-r2 lor or1 2an an1 ax-r5 comor1 comor2 df-t lea leror df-le2 ancom ) ABCDZABEZ EADZBDZEZAULEZFZAULFZBEZFZUJEZUJUIURUJABGUAUSUOUJEZUQUJEZFZUJUJUOUQUJUMUNUJ UKULUJAABUBZHUJBABUCZHZIZUJAULVCVEIZJUJUPBUJAULVCVEJVDIKVBLUJFZUJUTLVAUJUTL LFZLUTUMUJEZUNUJEZFVIUJUMUNVFVGKVJLVKLVJUJUMEZLUMUJMVLAUKEZBULEZEZLABUKULNV OVMLEZLVPVOLVNVMBUDZQOVMRPPPVKUJUNEZLUNUJMVRAAEZVNEZLABAULNVTVSLEZLWAVTLVNV SVQQOVSRPPPSPLTPUQUJUPABAULUEUFUGSVHUJLFUJLUJUHUJTPPPP $. $( [23-Nov-97] $) $( Lemma for unified disjunction. $) ud4lem3 $p |- ( ( a ->4 b ) ->4 ( a v b ) ) = ( a v b ) $= ( wi4 wo wa wn df-i4 ud4lem3a lor comid comcom2 comor1 comor2 com2an com2or wf comcom wt ax-r2 ax-r1 bctr fh4r ancom ax-a2 ud4lem3b 2an an1 ran dff 2or df-t or0 ) ABCZABDZCUMUNEZUMFZUNEZDZUPUNDZUNFZEZDZUNUMUNGVBUNPDUNURUNVAPURU OUPDZUNUQUPUOABHIVCUMUPDZUNUPDZEZUNUMUPUNUMUMUMJKUMABEZAFZBEZDZVHBDZBFZEZDZ UNABGUNVNUNVJVMUNVGVIUNABABLZABMZNUNVHBUNAVOKZVPNOUNVKVLUNVHBVQVPOUNBVPKNOQ UAUBVFVEVDEZUNVDVEUCVRUNREUNVEUNVDRVEUSUNUNUPUDABUEZSRVDUMUKTUFUNUGSSSSVAUN UTEZPUSUNUTVSUHPVTUNUITSUJUNULSS $. $( [23-Nov-97] $) $( Lemma for unified disjunction. $) ud5lem1a $p |- ( ( a ->5 b ) ^ ( b ->5 a ) ) = ( ( a ^ b ) v ( a ' ^ b ' ) ) $= ( wa wo lan coman2 comcom2 coman1 com2an comcom com2or wf anass ax-r1 ancom fh1r an0 ax-r2 2or or0 wi5 wn df-i5 2an ax-a2 fh2 comcom3 comcom5 dff anidm an12 lor ran ) ABUAZBAUAZCABCZAUBZBCZDZUQBUBZCZDZBACZUTACZDZUTUQCZDZCZUPVAD ZUNVBUOVGABUCBAUCUDVHVBVFVEDZCZVIVGVJVBVEVFUEEVKVBVFCZVBVECZDZVIVFVBVEVFUSV AVFUPURUPVFUPUTUQUPBABFGZUPAABHZGIJZURVFURUTUQURBUQBFGUQBHIJZKVFUQUTUTUQFZU TUQHZIZKVFVCVDVCVFVCUTUQVCBBAHZGZVCABAFZGZIJVDVFVDUTUQUTAHZVDAUTAFZGZIJKUFV NVAUPDVIVLVAVMUPVLUSVFCZVAVFCZDZVAVFUSVAVFUPURVFABVFAVFUQVSUGUHVFBVFUTVTUGU HZIVFUQBVSWLIKWAPWKLVADZVAWILWJVAWIUPVFCZURVFCZDZLVFUPURVQVRPWPLLDZLWNLWOLW NABVFCZCZLABVFMWSABUTCZUQCZCZLWRXAAXAWRBUTUQMNZEXBALCZLXALAXAUQWTCZLWTUQOXE UQLCZLWTLUQLWTBUINZEUQQZRRZEAQZRRRWOUQWRCZLUQBVFMXKUQXACZLWRXAUQXCEXLXFLXAL UQXIEXHRRRSLTZRRWJVAVACVAVFVAVAUTUQOEVAUJRSWMVALDVALVAUEVATRRRVMVBVCCZVBVDC ZDZUPVCVBVDVCUSVAVCUPURVCABWDWBIZVCUQBWEWBIZKZVCUQUTWEWCIZKVCUTAWCWDIUFXPUS VCCZUSVDCZDZUPXNYAXOYBXNYAVAVCCZDZYAVCUSVAXSXTPYEYALDZYAYDLYAYDUQUTVCCZCZLU QUTVCMYHXFLYGLUQYGBVDCZLYIYGBUTAUKNYIWTACZLYJYIBUTAMNYJAWTCZLWTAOYKXDLWTLAX GEXJRRRZREXHRRULYATZRRXOYBVAVDCZDZYBVDUSVAVDUPURVDABWGVDBVDUTWFUGUHZIVDUQBW HYPIZKVDUQUTWHWFIPYOYBLDYBYNLYBYNVDVACZLVAVDOYRUTAVACZCZLUTAVAMYTUTLCZLYSLU TYSAUQCZUTCZLUUCYSAUQUTMNUUCUTUUBCZLUUBUTOUUDUUALUUBLUTLUUBAUINZEUTQZRRREUU FRRRULYBTRRSYCYFUPYBLYAYBUPVDCZURVDCZDZLVDUPURUPVDUPUTAVOVPIJYQPUUIWQLUUGLU UHLUUGAYICZLABVDMUUJXDLYILAYLEXJRRUUHUQYICZLUQBVDMUUKXFLYILUQYLEXHRRSXMRRUL YFYAUPYMYAUPVCCZURVCCZDZUPVCUPURXQXRPUUNUPLDUPUULUPUUMLUULUPUPCUPVCUPUPBAOE UPUJRUUMVCURCZLURVCOUUOBAURCZCZLBAURMUUQBLCZLUUPLBUUPUURLUUPUUBBCZUURUUSUUP AUQBMNUUSLBCUURUUBLBUUEUMLBORRBQZREUUTRRRSUPTRRRRRRSVAUPUERRRR $. $( [27-Nov-97] $) $( Lemma for unified disjunction. $) ud5lem1b $p |- ( ( a ->5 b ) ' ^ ( b ->5 a ) ) = ( a ^ b ' ) $= ( wi5 wn wa wo ax-a2 ax-r2 2an coman2 coman1 com2or comcom7 com2an wf ax-r1 fh2 dff comcom2 an32 ud5lem0c df-i5 anass oran con3 lan an0 df-a ran ler2an an0r lea leor letr lear leo df2le2 ancom 3tr1 2or or0r ) ABCDZBACZEADZBDZFZ AVEFZEZABFZEZVEVDEZBAEZVEAEZFZFZEZAVEEZVBVJVCVOABUAVCVNVKFVOBAUBVNVKGHIVPVJ VKEZVJVNEZFZVQVKVJVNVKVHVIVKVFVGVKVDVEVEVDJZVEVDKZLVKAVEVKAWAMZWBLNVKABWCVK BWBMZLNVKVLVMVKBAWDWCNVKVEAWBWCNLQVTOVQFZVQVROVSVQVRVHVIVKEZEZOVHVIVKUCWGVH OEOWFOVHWFBAFZWHDZEZOVIWHVKWIABGVKWHWHVKDBAUDPUEIOWJWHRPHUFVHUGHHVSVJVLEZVJ VMEZFZVQVLVJVMVLVHVIVLVFVGVLVDVEVLABAJZSVLBBAKZSZLVLAVEWNWPLNVLABWNWOLNVLVE AWPWNNQWMWEVQWKOWLVQWKVHVLEZVIEZOVHVIVLTWROVIEOWQOVIWQVFVLEZVGEZOVFVGVLTWTO VGEOWSOVGWSVEVDFZXADZEZOVFXAVLXBVDVEGBAUHIOXCXARPHUIVGUKHHUIVIUKHHVMVJEVMWL VQVMVJVMVHVIVMVEVHVEAULVEVFVGVEVDUMVEAUMUJUNVMAVIVEAUOABUPUNUJUQVJVMURAVEUR USUTVQVAZHHUTXDHHH $. $( [27-Nov-97] $) $( Lemma for unified disjunction. $) ud5lem1c $p |- ( ( a ->5 b ) ' ^ ( b ->5 a ) ' ) = ( ( ( a v b ) ^ ( a v b ' ) ) ^ ( ( a ' v b ) ^ ( a ' v b ' ) ) ) $= ( wi5 wn wa wo ud5lem0c ax-a2 2an ax-r2 an4 ancom anidm ran anass ax-r1 ) A BCDZBACDZEADZBDZFZATFZEZABFZEZUASBFZEZUDEZEZUDUBEUFUAEZEZQUERUHABGRTSFZBSFZ EZBAFZEUHBAGUNUGUOUDULUAUMUFTSHBSHIBAHIJIUIUCUGEZUDUDEZEZUKUCUDUGUDKURUQUPE ZUKUPUQLUSUDUBUJEZEZUKUQUDUPUTUDMUPUAUAEZUBUFEZEZUTUAUBUAUFKVDVCUAEZUTVDUAV CEVEVBUAVCUAMNUAVCLJUBUFUAOJJIUKVAUDUBUJOPJJJJ $. $( [26-Nov-97] $) $( Lemma for unified disjunction. $) ud5lem1 $p |- ( ( a ->5 b ) ->5 ( b ->5 a ) ) = ( a v b ' ) $= ( wa wn wo coman1 coman2 com2or comcom2 com2an comcom comcom7 comor1 comor2 wi5 fh4 wt lor ax-r1 ax-r2 df-i5 ud5lem1a ud5lem1b ud5lem1c or32 ax-a3 oran 2or df-t or1 ax-r5 or1r lea leo letr lear leor lel2or df-le2 2an an1r anor1 con3 df-a an1 ) ABOZBAOZOVFVGCZVFDZVGCZEZVIVGDCZEZABDZEZVFVGUAVMABCZADZVNCZ EZAVNCZEZABEZVOCZVQBEZVQVNEZCZCZEZVOVKWAVLWGVHVSVJVTABUBABUCUHABUDUHWHWAWCE ZWAWFEZCZVOWCWAWFWCVSVTWCVPVRVPWCVPWBVOVPABABFZABGZHVPAVNWLVPBWMIHJKVRWCVRW BVOVRABVRAVQVNFLZVRBVQVNGZLHVRAVNWNWOHJKHVTWCVTWBVOVTABAVNFZVTBAVNGZLHVTAVN WPWQHJKHWCWDWEWDWCWDWBVOWDABWDAVQBMZLZVQBNZHWDAVNWSWDBWTIZHJKWEWCWEWBVOWEAB WEAVQVNMLZWEBVQVNNZLHWEAVNXBXCHJKJPWKVOQCVOWIVOWJQWIWAWBEZWAVOEZCZVOWBWAVOW BVSVTWBVPVRWBABABMZABNZJWBVQVNWBAXGIWBBXHIZJHWBAVNXGXIJHWBAVNXGXIHPXFQVOCVO XDQXEVOXDVSWBEZVTEZQVSVTWBUEXKQVTEZQXJQVTXJVPVRWBEZEZQVPVRWBUFXNVPQEQXMQVPX MVRVRDZEZQWBXOVRABUGRQXPVRUISTRVPUJTTUKVTULZTTWAVOVSVOVTVPVOVRVPAVOABUMAVNU NZUOVRVNVOVQVNUPVNAUQUOURVTAVOAVNUMXRUOURUSUTVOVATTWJWAWDEZWAWEEZCZQWDWAWEW DVSVTWDVPVRWDABWSWTJWDVQVNWRXAJHWDAVNWSXAJHWDVQVNWRXAHPYAQQCQXSQXTQXSVSVTWD EZEZQVSVTWDUFYCVSQEQYBQVSYBVTVTDZEZQWDYDVTWDVTVTWDDABVBSVCRQYEVTUISTRVSUJTT XTVSWEEZVTEZQVSVTWEUEYGXLQYFQVTYFVPWEEZVREZQVPVRWEUEYIQVREQYHQVRYHVPVPDZEZQ WEYJVPWEVPVPWEDABVDSVCRQYKVPUISTUKVRULTTUKXQTTUTQVETTUTVOVETTTT $. $( [27-Nov-97] $) $( Lemma for unified disjunction. $) ud5lem2 $p |- ( ( a v b ' ) ->5 a ) = ( a v ( a ' ^ b ) ) $= ( wn wo wi5 wa df-i5 ax-a3 ancom anabs ax-r2 ax-a2 wf anor2 ax-r1 ran anidm an32 dff 2or lan an0 or0 ) ABCZDZAEUEAFZUECZAFZDUGACZFZDZAUIBFZDZUEAGUKUFUH UJDZDUMUFUHUJHUFAUNULUFAUEFAUEAIAUDJKUNUJUHDZULUHUJLUOULMDULUJULUHMUJULUIFZ ULUGULUIULUGABNOZPUPUIUIFZBFULUIBUIRURUIBUIQPKKUHULAFZMUGULAUQPUSUIAFZBFZMU IBARVABUTFZMUTBIVBBMFMUTMBUTAUIFZMUIAIMVCASOKUABUBKKKKTULUCKKTKK $. $( [10-Apr-2012] $) $( Lemma for unified disjunction. $) ud5lem3a $p |- ( ( a ->5 b ) ^ ( a v ( a ' ^ b ) ) ) = ( ( a ^ b ) v ( a ' ^ b ) ) $= ( wn wa wo ran comanr1 comcom6 com2or fh1r ax-r2 ancom anass ax-r1 dff an0r wf 2or or0 com2an wi5 df-i5 fh2 an32 anidm coman1 comcom7 comcom2 ax-a2 lan coman2 anabs an4 an0 lor ) ABUAZAACZBDZEZDABDZUREZUQBCZDZEZUSDZVAUPVDUSABUB FVEVDADZVDURDZEZVAAVDURAVAVCAUTURABGZAURUQBGHZIZAVCUQVBGHZIVJUCVHUTVAURDZVC URDZEZEVAVFUTVGVOVFVAADZVCADZEZUTAVAVCVKVLJVRUTQEZUTVPUTVQQVPUTADZURADZEZUT AUTURVIVJJWBVSUTVTUTWAQVTAADZBDUTABAUDWCABAUEFKWAAURDZQURALWDAUQDZBDZQWFWDA UQBMNWFQBDQWEQBQWEAONZFBPKKKRUTSZKKVQAVCDZQVCALWIWEVBDZQWJWIAUQVBMNWJQVBDQW EQVBWGFVBPKKKRWHKKURVAVCURUTURURABURAUQBUFZUGUQBUKZTURUQBWKWLTIURUQVBWKURBW LUHTJRVOURUTVOURQEURVMURVNQVMURVADZURVAURLWMURURUTEZDURVAWNURUTURUIUJURUTUL KKVNUQUQDZVBBDZDZQUQVBUQBUMWQWOQDQWPQWOWPBVBDZQVBBLQWRBONKUJWOUNKKRURSKUOKK K $. $( [27-Nov-97] $) $( Lemma for unified disjunction. $) ud5lem3b $p |- ( ( a ->5 b ) ' ^ ( a v ( a ' ^ b ) ) ) = ( a ^ ( a ' v b ' ) ) $= ( wi5 wn wa wo ud5lem0c ran comorr comcom6 com2an comanr1 anass ancom anabs fh2 wf ax-r2 lan an32 anor2 dff ax-r1 an0 an0r 2or or0 ) ABCDZAADZBEZFZEUIB DZFZAULFZEZABFZEZUKEZAUMEZUHUQUKABGHURUQAEZUQUJEZFZUSAUQUJAUOUPAUMUNAUMUIUL IJAULIKABIKAUJUIBLJPVBUSQFUSUTUSVAQUTUOUPAEZEZUSUOUPAMVDUOAEZUSVCAUOVCAUPEA UPANABORSVEUMUNAEZEZUSUMUNAMVGUMAEUSVFAUMVFAUNEAUNANAULORSUMANRRRRVAUOUJEZU PEZQUOUPUJTVIQUPEQVHQUPVHUMUNUJEZEZQUMUNUJMVKUMQEQVJQUMVJUNUNDZEZQUJVLUNABU ASQVMUNUBUCRSUMUDRRHUPUERRUFUSUGRRR $. $( [26-Nov-97] $) $( Lemma for unified disjunction. $) ud5lem3c $p |- ( ( a ->5 b ) ' ^ ( a v ( a ' ^ b ) ) ' ) = ( ( ( a v b ) ^ ( a v b ' ) ) ^ a ' ) $= ( wi5 wn wa wo ud5lem0c oran con2 anor2 lan ax-r2 2an an4 ancom anabs anidm an32 ran anass ax-r1 ) ABCDZAADZBEZFZDZEUCBDZFZAUGFZEZABFZEZUCUIEZEZUKUIEUC EZUBULUFUMABGUFUCUDDZEZUMUEUQAUDHIUPUIUCUDUIABJIKLMUNUJUMEZUKEZUOUJUKUMRUSU KUIUCEZEZUOUSUTUKEVAURUTUKURUHUCEZUIUIEZEZUTUHUIUCUINVDUMUTVBUCVCUIVBUCUHEU CUHUCOUCUGPLUIQMUCUIOLLSUTUKOLUOVAUKUIUCTUALLL $. $( [26-Nov-97] $) $( Lemma for unified disjunction. $) ud5lem3 $p |- ( ( a ->5 b ) ->5 ( a v ( a ' ^ b ) ) ) = ( a v b ) $= ( wi5 wn wa wo 2or fh4 ax-a2 orabs ax-r2 ax-r1 con3 lor df-t 2an an1 com2or wt comcom2 df-i5 ud5lem3a ud5lem3b ud5lem3c or4 comanr1 comorr comcom6 df-a ax-a3 coman1 comcom7 coman2 com2an fh3 comor1 comor2 fh3r oridm ancom anabs or12 anor2 oml ) ABCZAADZBEZFZCVEVHEZVEDZVHEZFZVJVHDEZFZABFZVEVHUAVNABEZVGF ZAVFBDZFZEZFZVOAVRFZEZVFEZFZVOVLWAVMWDVIVQVKVTABUBABUCGABUDGWEVQVTWDFFZVOVQ VTWDUJWFVPVTFZVGWDFZFZVOVPVGVTWDUEWIAVFVOEZFVOWGAWHWJWGVPAFZVPVSFZEZAAVPVSA BUFAVSVFVRUGUHHWMASEAWKAWLSWKAVPFAVPAIABJKWLVPVPDZFZSVSWNVPVSVPVPVSDABUILMN SWOVPOLKPAQKKWHVGWCFZVGVFFZEZWJVGWCVFVGVOWBVGABVGAVFBUKZULZVFBUMZRVGAVRWTVG BXATRUNWSUOWRVOVFEWJWPVOWQVFWPVGVOFZVGWBFZEZVOVOVGWBVOVFBVOAABUPZTZABUQZUNV OAVRXEVOBXGTRHXDVOSEVOXBVOXCSXBVFVOFZBVOFZEZVOVOVFBXFXGURXJVOVFFZVOEZVOXHXK XIVOVFVOIXIABBFZFVOBABVBXMBABUSNKPXLVOXKEVOXKVOUTVOVFVAKKKXCVGVGDZFZSWBXNVG WBVGVGWBDABVCLMNSXOVGOLKPVOQKKWQVFVGFVFVGVFIVFBJKPVOVFUTKKGABVDKKKKK $. $( [26-Nov-97] $) $( Unified disjunction for Sasaki implication. $) ud1 $p |- ( a v b ) = ( ( a ->1 b ) ->1 ( ( ( a ->1 b ) ->1 ( b ->1 a ) ) ->1 a ) ) $= ( wi1 wo wn wa ud1lem1 ud1lem0b ud1lem2 ax-r2 ud1lem0a ud1lem3 ax-r1 ) ABCZ NBACCZACZCZABDZQNRCRPRNPAAEBEFDZACROSAABGHABIJKABLJM $. $( [23-Nov-97] $) $( Unified disjunction for Dishkant implication. $) ud2 $p |- ( a v b ) = ( ( a ->2 b ) ->2 ( ( ( a ->2 b ) ->2 ( b ->2 a ) ) ->2 a ) ) $= ( wi2 wo wn wa ud2lem1 ud2lem0b ud2lem2 ax-r2 ud2lem0a ud2lem3 ax-r1 ) ABCZ NBACCZACZCZABDZQNRCRPRNPAAEBEFDZACROSAABGHABIJKABLJM $. $( [23-Nov-97] $) $( Unified disjunction for Kalmbach implication. $) ud3 $p |- ( a v b ) = ( ( a ->3 b ) ->3 ( ( ( a ->3 b ) ->3 ( b ->3 a ) ) ->3 a ) ) $= ( wi3 wo wn wa ud3lem1 ud3lem0b ud3lem2 ax-r2 ud3lem0a ud3lem3 ax-r1 ) ABCZ NBACCZACZCZABDZQNRCRPRNPAAEBEFDZACROSAABGHABIJKABLJM $. $( [23-Nov-97] $) $( Unified disjunction for non-tollens implication. $) ud4 $p |- ( a v b ) = ( ( a ->4 b ) ->4 ( ( ( a ->4 b ) ->4 ( b ->4 a ) ) ->4 a ) ) $= ( wi4 wo wn wa ud4lem1 ud4lem0b ud4lem2 ax-r2 ud4lem0a ud4lem3 ax-r1 ) ABCZ NBACCZACZCZABDZQNRCRPRNPAAEBEFDZACROSAABGHABIJKABLJM $. $( [23-Nov-97] $) $( Unified disjunction for relevance implication. $) ud5 $p |- ( a v b ) = ( ( a ->5 b ) ->5 ( ( ( a ->5 b ) ->5 ( b ->5 a ) ) ->5 a ) ) $= ( wi5 wo wn wa ud5lem1 ud5lem0b ud5lem2 ax-r2 ud5lem0a ud5lem3 ax-r1 ) ABCZ NBACCZACZCZABDZQNAAEBFDZCRPSNPABEDZACSOTAABGHABIJKABLJM $. $( [23-Nov-97] $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Lemmas for unified implication study =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( Lemma for Sasaki implication study. Equation 4.10 of [MegPav2000] p. 23. This is the second part of the equation. $) u1lemaa $p |- ( ( a ->1 b ) ^ a ) = ( a ^ b ) $= ( wi1 wa wn wo df-i1 ran comid comcom2 comanr1 fh1r ax-a2 anidm ax-r2 ancom wf an32 dff ax-r1 2or or0 ) ABCZADAEZABDZFZADZUEUCUFAABGHUGUDADZUEADZFZUEAU DUEAAAIJABKLUJUEQFZUEUJUIUHFUKUHUIMUIUEUHQUIAADZBDUEABARULABANHOUHAUDDZQUDA PQUMASTOUAOUEUBOOO $. $( [14-Dec-97] $) $( Lemma for Dishkant implication study. $) u2lemaa $p |- ( ( a ->2 b ) ^ a ) = ( a ^ b ) $= ( wi2 wa wn wo df-i2 ran ax-a2 coman1 comcom7 coman2 fh2r ancom anass ax-r1 wf dff lan ax-r2 an0 2or or0 ) ABCZADBAEZBEZDZFZADZABDZUDUHAABGHUIUGBFZADZU JUHUKABUGIHULUGADZBADZFZUJUGABUGAUEUFJKUGBUEUFLKMUOUNUMFZUJUMUNIUPUJQFUJUNU JUMQBANUMAUGDZQUGANUQAUEDZUFDZQUSUQAUEUFOPUSUFURDZQURUFNUTUFQDQURQUFQURARPS UFUATTTTUBUJUCTTTTT $. $( [14-Dec-97] $) $( Lemma for Kalmbach implication study. $) u3lemaa $p |- ( ( a ->3 b ) ^ a ) = ( a ^ ( a ' v b ) ) $= ( wi3 wa wn wo df-i3 ran comanr1 comcom6 wf ancom anass ax-r1 lan an0 ax-r2 fh1r 2or or0 com2or comid comorr com2an dff an32 anidm ax-a2 ) ABCZADAEZBDZ UJBEZDZFZAUJBFZDZFZADZUPUIUQAABGHURUNADZUPADZFZUPAUNUPAUKUMAUKUJBIJZAUMUJUL IJZUAAAUOAUBAUOUJBUCJUDRVAKUPFZUPUSKUTUPUSUKADZUMADZFZKAUKUMVBVCRVGKKFKVEKV FKVEAUKDZKUKALVHAUJDZBDZKVJVHAUJBMNVJBVIDZKVIBLVKBKDKVIKBKVIAUENZOBPQQQQVFA UMDZKUMALVMVIULDZKVNVMAUJULMNVNULVIDZKVIULLVOULKDKVIKULVLOULPQQQQSKTQQUTAAD ZUODUPAUOAUFVPAUOAUGHQSVDUPKFUPKUPUHUPTQQQQ $. $( [14-Dec-97] $) $( Lemma for non-tollens implication study. $) u4lemaa $p |- ( ( a ->4 b ) ^ a ) = ( a ^ b ) $= ( wi4 wa wn wo df-i4 ran comanr1 com2or comcom comanr2 wf ax-r2 ancom anass ax-r1 dff lan 2or comcom6 comcom3 comcom2 com2an fh2r fh1r an32 anidm anor1 an0 or0 ) ABCZADABDZAEZBDZFZUNBFZBEZDZFZADZUMULUTAABGHVAUPADZUSADZFZUMUPAUS AUPAUMUOABIZAUOUNBIZUAZJKUPUQURUPUNBUNUPUNUMUOAUMVEUBVFJKBUPBUMUOABLUNBLJKZ JUPBVHUCUDUEVDUMMFZUMVBUMVCMVBUMADZUOADZFZUMAUMUOVEVGUFVLVIUMVJUMVKMVJAADZB DUMABAUGVMABAUHHNVKAUODZMUOAOVNAUNDZBDZMVPVNAUNBPQVPBVODZMVOBOVQBMDMVOMBMVO ARQSBUJNNNNTUMUKZNNVCUQURADZDZMUQURAPVTUQUQEZDZMVSWAUQVSAURDWAURAOABUINSMWB UQRQNNTVRNNN $. $( [14-Dec-97] $) $( Lemma for relevance implication study. $) u5lemaa $p |- ( ( a ->5 b ) ^ a ) = ( a ^ b ) $= ( wi5 wa wn wo df-i5 ran comanr1 comcom6 fh1r wf an32 ax-r2 ancom ax-r1 lan an0 2or anass com2or anidm dff or0 fh4 ax-a2 orabs fh1 ) ABCZADABDZAEZBDZFZ UKBEZDZFZADZUJUIUPAABGHUQUMADZUOADZFZUJAUMUOAUJULABIZAULUKBIJZUAAUOUKUNIJZK UTUJAUODZFZUJURUJUSVDURUJADZULADZFZUJAUJULVAVBKVHUJLFZUJVFUJVGLVFAADZBDZUJA BAMVJABAUBHZNVGUKADZBDZLUKBAMVNBVMDZLVMBOVOBLDLVMLBVMAUKDZLVPVMAUKOPLVPAUCZ PNQBRNNNSUJUDZNNUOAOSVEUJAFZUJUOFZDZUJAUJUOVAVCUEWAAVTDZUJVSAVTVSAUJFAUJAUF ABUGNHWBAUJDZVDFZUJAUJUOVAVCUHWDVIUJWCUJVDLWCVKUJVKWCAABTPVLNVDVPUNDZLWEVDA UKUNTPWEUNVPDZLVPUNOWFUNLDZLWGWFLVPUNVQQPUNRNNNSVRNNNNNNN $. $( [14-Dec-97] $) $( Lemma for Sasaki implication study. $) u1lemana $p |- ( ( a ->1 b ) ^ a ' ) = a ' $= ( wi1 wn wa wo df-i1 ran ancom anabs ax-r2 ) ABCZADZEMABEZFZMEZMLOMABGHPMOE MOMIMNJKK $. $( [14-Dec-97] $) $( Lemma for Dishkant implication study. $) u2lemana $p |- ( ( a ->2 b ) ^ a ' ) = ( ( a ' ^ b ) v ( a ' ^ b ' ) ) $= ( wi2 wn wa wo df-i2 ran ax-a2 coman1 coman2 comcom7 fh2r anidm ax-r2 ancom an32 2or ) ABCZADZEBTBDZEZFZTEZTBEZUBFZSUCTABGHUDUBBFZTEZUFUCUGTBUBIHUHUBTE ZBTEZFZUFUBTBTUAJUBBTUAKLMUKUBUEFUFUIUBUJUEUITTEZUAEUBTUATQULTUATNHOBTPRUBU EIOOOO $. $( [14-Dec-97] $) $( Lemma for Kalmbach implication study. $) u3lemana $p |- ( ( a ->3 b ) ^ a ' ) = ( ( a ' ^ b ) v ( a ' ^ b ' ) ) $= ( wi3 wn wa wo df-i3 ran comanr1 com2or comid comcom3 comorr com2an fh1r wf lea lel2or df2le2 ax-r2 an32 ancom dff ax-r1 lan an0 2or or0 ) ABCZADZEUJBE ZUJBDZEZFZAUJBFZEZFZUJEZUNUIUQUJABGHURUNUJEZUPUJEZFZUNUJUNUPUJUKUMUJBIUJULI JUJAUOAAAKLUJBMNOVAUNPFUNUSUNUTPUNUJUKUJUMUJBQUJULQRSUTAUJEZUOEZPAUOUJUAVCU OVBEZPVBUOUBVDUOPEPVBPUOPVBAUCUDUEUOUFTTTUGUNUHTTT $. $( [14-Dec-97] $) $( Lemma for non-tollens implication study. $) u4lemana $p |- ( ( a ->4 b ) ^ a ' ) = ( ( a ' ^ b ) v ( a ' ^ b ' ) ) $= ( wi4 wn wa wo df-i4 comanr1 comcom3 com2or comcom comor1 com2an comanr2 wf ran an32 ancom ax-r2 2or comcom7 comor2 fh2r fh1r dff ax-r1 lan anidm ax-a2 an0 or0 leo df2le2 id ) ABCZADZEABEZUPBEZFZUPBFZBDZEZFZUPEZURUPVAEZFZUOVCUP ABGPVDUSUPEZVBUPEZFZVFUSUPVBUPUSUPUQURAUQABHIZUPBHZJKUSUTVAUTUSUTUQURUTABUT AUPBLZUAUPBUBZMUTUPBVLVMMJKVAUSVAUQURBUQABNIBURUPBNIJKMUCVIVFVFVGURVHVEVGUQ UPEZURUPEZFZURUPUQURVJVKUDVPOURFZURVNOVOURVNAUPEZBEZOABUPQVSBVREZOVRBRVTBOE OVROBOVRAUEUFUGBUJSSSVOUPUPEZBEURUPBUPQWAUPBUPUHPSTVQUROFUROURUIURUKSSSVHUT UPEZVAEVEUTVAUPQWBUPVAWBUPUTEUPUTUPRUPUTUPBULUMSPSTVFUNSSS $. $( [14-Dec-97] $) $( Lemma for relevance implication study. $) u5lemana $p |- ( ( a ->5 b ) ^ a ' ) = ( ( a ' ^ b ) v ( a ' ^ b ' ) ) $= ( wi5 wn wa wo df-i5 ran comanr1 comcom3 com2or fh1r ax-a2 an32 anidm ax-r2 wf ancom dff 2or lan ax-r1 an0 or0 ) ABCZADZEABEZUFBEZFZUFBDZEZFZUFEZUHUKFZ UEULUFABGHUMUIUFEZUKUFEZFUNUFUIUKUFUGUHAUGABIJZUFBIZKUFUJILUOUHUPUKUOUGUFEZ UHUFEZFZUHUFUGUHUQURLVAUTUSFZUHUSUTMVBUHQFUHUTUHUSQUTUFUFEZBEUHUFBUFNVCUFBU FOZHPUSAUFEZBEZQABUFNVFBVEEZQVEBRVGBQEZQVHVGQVEBASUAUBBUCPPPTUHUDPPPUPVCUJE UKUFUJUFNVCUFUJVDHPTPP $. $( [14-Dec-97] $) $( Lemma for Sasaki implication study. Equation 4.10 of [MegPav2000] p. 23. This is the second part of the equation. $) u1lemab $p |- ( ( a ->1 b ) ^ b ) = ( ( a ^ b ) v ( a ' ^ b ) ) $= ( wi1 wa wn wo df-i1 ran ax-a2 coman2 coman1 comcom2 fh2r ax-r2 anass anidm lan ax-r5 ) ABCZBDAEZABDZFZBDZUATBDZFZSUBBABGHUCUABDZUDFZUEUCUATFZBDUGUBUHB TUAIHUABTABJUAAABKLMNUFUAUDUFABBDZDUAABBOUIBABPQNRNN $. $( [14-Dec-97] $) $( Lemma for Dishkant implication study. $) u2lemab $p |- ( ( a ->2 b ) ^ b ) = b $= ( wi2 wa wn wo df-i2 ran ancom anabs ax-r2 ) ABCZBDBAEBEDZFZBDZBLNBABGHOBND BNBIBMJKK $. $( [14-Dec-97] $) $( Lemma for Kalmbach implication study. $) u3lemab $p |- ( ( a ->3 b ) ^ b ) = ( ( a ^ b ) v ( a ' ^ b ) ) $= ( wi3 wa wn wo df-i3 comanr2 com2or comcom coman1 comcom7 coman2 com2an lan wf anass ax-r2 2or ax-a2 ran comcom6 fh2r fh1r anidm an32 dff ax-r1 an0 or0 ancom anabs ) ABCZBDAEZBDZUNBEZDZFZAUNBFZDZFZBDZABDZUOFZUMVABABGUAVBURBDZUT BDZFZVDURBUTBURBUOUQUNBHZBUQUNUPHUBZIJUTURUTUOUQUOUTUOAUSUOAUNBKZLUOUNBVJUN BMINJUQUTUQAUSUQAUNUPKZLUQUNBVKUQBUNUPMLINJIJUCVGUOVCFVDVEUOVFVCVEUOBDZUQBD ZFZUOBUOUQVHVIUDVNUOPFUOVLUOVMPVLUNBBDZDUOUNBBQVOBUNBUEORVMUOUPDZPUNUPBUFVP UNBUPDZDZPUNBUPQVRUNPDPVQPUNPVQBUGUHOUNUIRRRSUOUJRRVFAUSBDZDVCAUSBQVSBAVSBU SDZBUSBUKVTBBUNFZDBUSWABUNBTOBUNULRRORSUOVCTRRR $. $( [14-Dec-97] $) $( Lemma for non-tollens implication study. $) u4lemab $p |- ( ( a ->4 b ) ^ b ) = ( ( a ^ b ) v ( a ' ^ b ) ) $= ( wi4 wa wn wo df-i4 comanr2 com2or comcom6 fh1r wf lear lel2or df2le2 an32 ran anass dff ax-r2 lan ax-r1 an0 2or or0 ) ABCZBDABDZAEZBDZFZUHBFZBEZDZFZB DZUJUFUNBABGQUOUJBDZUMBDZFZUJBUJUMBUGUIABHUHBHIBUMUKULHJKURUJLFUJUPUJUQLUJB UGBUIABMUHBMNOUQUKBDULDZLUKULBPUSUKBULDZDZLUKBULRVAUKLDZLVBVALUTUKBSUAUBUKU CTTTUDUJUETTT $. $( [14-Dec-97] $) $( Lemma for relevance implication study. $) u5lemab $p |- ( ( a ->5 b ) ^ b ) = ( ( a ^ b ) v ( a ' ^ b ) ) $= ( wi5 wa wn wo df-i5 comanr2 com2or comcom6 fh1r wf lear lel2or df2le2 an32 ran anass dff ax-r2 lan ax-r1 an0 2or or0 ) ABCZBDABDZAEZBDZFZUHBEZDZFZBDZU JUFUMBABGQUNUJBDZULBDZFZUJBUJULBUGUIABHUHBHIBULUHUKHJKUQUJLFUJUOUJUPLUJBUGB UIABMUHBMNOUPUIUKDZLUHUKBPURUHBUKDZDZLUHBUKRUTUHLDZLVAUTLUSUHBSUAUBUHUCTTTU DUJUETTT $. $( [14-Dec-97] $) $( Lemma for Sasaki implication study. $) u1lemanb $p |- ( ( a ->1 b ) ^ b ' ) = ( a ' ^ b ' ) $= ( wi1 wn wa wo df-i1 ran ax-a2 coman2 comcom2 coman1 wf anass dff lan ax-r1 fh2r an0 ax-r2 lor or0 ) ABCZBDZEADZABEZFZUDEZUEUDEZUCUGUDABGHUHUFUEFZUDEZU IUGUJUDUEUFIHUKUFUDEZUIFZUIUFUDUEUFBABJKUFAABLKRUMUIULFZUIULUIIUNUIMFUIULMU IULABUDEZEZMABUDNUPAMEZMUQUPMUOABOPQASTTUAUIUBTTTTT $. $( [14-Dec-97] $) $( Lemma for Dishkant implication study. $) u2lemanb $p |- ( ( a ->2 b ) ^ b ' ) = ( a ' ^ b ' ) $= ( wi2 wn wa wo df-i2 ran comid comcom3 comanr2 fh1r ax-a2 anass anidm ax-r2 wf lan dff ax-r1 2or or0 ) ABCZBDZEBADZUDEZFZUDEZUFUCUGUDABGHUHBUDEZUFUDEZF ZUFUDBUFBBBIJUEUDKLUKUJUIFZUFUIUJMULUFQFUFUJUFUIQUJUEUDUDEZEUFUEUDUDNUMUDUE UDORPQUIBSTUAUFUBPPPP $. $( [14-Dec-97] $) $( Lemma for Kalmbach implication study. $) u3lemanb $p |- ( ( a ->3 b ) ^ b ' ) = ( a ' ^ b ' ) $= ( wn wa wo comanr2 com2or comcom coman1 comcom7 coman2 com2an fh2r wf anass lan ax-r2 dff ax-r1 2or wi3 df-i3 ran comcom3 comcom2 ax-a2 anidm an0 ancom or0 an32 anor1 ) ABUAZBCZDACZBDZUOUNDZEZAUOBEZDZEZUNDZUQUMVAUNABUBUCVBURUND ZUTUNDZEZUQURUNUTUNURUNUPUQBUPUOBFUDUOUNFGHUTURUTUPUQUPUTUPAUSUPAUOBIZJUPUO BVFUOBKZGLHUQUTUQAUSUQAUOUNIZJUQUOBVHUQBUOUNKJGLHGHMVEUQNEZUQVCUQVDNVCUPUND ZUQUNDZEZUQUPUNUQUPBVGUEZUPUOUNVFVMLMVLVKVJEZUQVJVKUFVNVIUQVKUQVJNVKUOUNUND ZDUQUOUNUNOVOUNUOUNUGPQVJUOBUNDZDZNUOBUNOVQUONDZNVRVQNVPUOBRPSUOUHQQTUQUJZQ QQVDAUNDZUSDZNAUSUNUKWAUSVTDZNVTUSUIWBUSUSCZDZNVTWCUSABULPNWDUSRSQQQTVSQQQ $. $( [14-Dec-97] $) $( Lemma for non-tollens implication study. $) u4lemanb $p |- ( ( a ->4 b ) ^ b ' ) = ( ( a ' v b ) ^ b ' ) $= ( wi4 wn wa wo df-i4 ran comanr2 comcom3 com2or fh1r wf anass lan ax-r2 an0 ax-r1 2or or0 comorr2 comid com2an ax-a2 anidm dff ) ABCZBDZEABEZADZBEZFZUJ BFZUHEZFZUHEZUNUGUOUHABGHUPULUHEZUNUHEZFZUNUHULUNUHUIUKBUIABIJZBUKUJBIJZKUH UMUHBUMUJBUAJUHUBUCLUSURUQFZUNUQURUDVBUNMFUNURUNUQMURUMUHUHEZEUNUMUHUHNVCUH UMUHUEOPUQUIUHEZUKUHEZFZMUHUIUKUTVALVFMMFMVDMVEMVDABUHEZEZMABUHNVHAMEZMVIVH MVGABUFZORAQPPVEUJVGEZMUJBUHNVKUJMEZMVLVKMVGUJVJORUJQPPSMTPPSUNTPPPP $. $( [14-Dec-97] $) $( Lemma for relevance implication study. $) u5lemanb $p |- ( ( a ->5 b ) ^ b ' ) = ( a ' ^ b ' ) $= ( wi5 wn wa wo df-i5 ran comanr2 comcom3 com2or fh1r wf anass lan ax-r2 an0 ax-r1 2or or0 ax-a2 anidm dff ) ABCZBDZEABEZADZBEZFZUGUEEZFZUEEZUJUDUKUEABG HULUIUEEZUJUEEZFZUJUEUIUJUEUFUHBUFABIJZBUHUGBIJZKUGUEILUOUNUMFZUJUMUNUAURUJ MFUJUNUJUMMUNUGUEUEEZEUJUGUEUENUSUEUGUEUBOPUMUFUEEZUHUEEZFZMUEUFUHUPUQLVBMM FMUTMVAMUTABUEEZEZMABUENVDAMEZMVEVDMVCABUCZORAQPPVAUGVCEZMUGBUENVGUGMEZMVHV GMVCUGVFORUGQPPSMTPPSUJTPPPP $. $( [14-Dec-97] $) $( Lemma for Sasaki implication study. $) u1lemoa $p |- ( ( a ->1 b ) v a ) = 1 $= ( wi1 wo wn wa wt df-i1 ax-r5 ax-a2 ax-a3 ax-r1 df-t lor or1 ax-r2 ) ABCZAD AEZABFZDZADZGQTAABHIUAATDZGTAJUBARDZSDZGUDUBARSKLUDSUCDZGUCSJUESGDZGUFUEGUC SAMNLSOPPPPP $. $( [14-Dec-97] $) $( Lemma for Dishkant implication study. $) u2lemoa $p |- ( ( a ->2 b ) v a ) = 1 $= ( wi2 wo wn wa wt df-i2 ax-r5 ax-a2 ax-a3 ax-r1 oran lor df-t ax-r2 ) ABCZA DBAEBEFZDZADZGQSAABHITASDZGSAJUAABDZRDZGUCUAABRKLUCRUBDZGUBRJUDRREZDZGUBUER ABMNGUFROLPPPPP $. $( [14-Dec-97] $) $( Lemma for Kalmbach implication study. $) u3lemoa $p |- ( ( a ->3 b ) v a ) = ( a v ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) $= ( wi3 wo wn wa df-i3 ax-r5 ax-a3 lea df-le2 lor ax-a2 ax-r2 ) ABCZADAEZBFPB EFDZAPBDZFZDZADZAQDZOTAABGHUAQSADZDZUBQSAIUDQADUBUCAQSAARJKLQAMNNN $. $( [15-Dec-97] $) $( Lemma for non-tollens implication study. $) u4lemoa $p |- ( ( a ->4 b ) v a ) = 1 $= ( wi4 wo wa wn df-i4 ax-r5 ax-a3 comor1 comcom7 comor2 ax-a2 df-t ax-r2 lor wt ax-r1 or1 ancom comcom2 fh4r or32 ran an1 anor1 ) ABCZADABEZAFZBEZDZUIBD ZBFZEZDZADZQUGUOAABGHUPUKUNADZDZQUKUNAIURUKUMADZDZQUQUSUKUQULADZUSEZUSULAUM ULAUIBJKULBUIBLUAUBVBQUSEZUSVAQUSVAUIADZBDZQUIBAUCVEBVDDZQVDBMVFBQDZQVGVFQV DBQAUIDVDANAUIMOPRBSOOOUDVCUSQEUSQUSTUSUEOOOPUTUHUJUSDZDZQUHUJUSIVIUHQDQVHQ UHVHUSUJDZQUJUSMVJUSUSFZDZQUJVKUSUJBUIEVKUIBTBAUFOPQVLUSNROOPUHSOOOOO $. $( [15-Dec-97] $) $( Lemma for relevance implication study. $) u5lemoa $p |- ( ( a ->5 b ) v a ) = ( a v ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) $= ( wi5 wo wa wn df-i5 ax-r5 ax-a2 ax-a3 lor ax-r1 orabs ax-r2 ) ABCZADABEZAF ZBEZDQBFEZDZADZARSDZDZOTAABGHUAATDZUCTAIUDAPUBDZDZUCTUEAPRSJKUFAPDZUBDZUCUH UFAPUBJLUGAUBABMHNNNN $. $( [15-Dec-97] $) $( Lemma for Sasaki implication study. $) u1lemona $p |- ( ( a ->1 b ) v a ' ) = ( a ' v ( a ^ b ) ) $= ( wi1 wn wo wa df-i1 ax-r5 or32 oridm ax-r2 ) ABCZADZEMABFZEZMEZOLOMABGHPMM EZNEOMNMIQMNMJHKK $. $( [15-Dec-97] $) $( Lemma for Dishkant implication study. $) u2lemona $p |- ( ( a ->2 b ) v a ' ) = ( a ' v b ) $= ( wi2 wn wo wa df-i2 ax-r5 ax-a3 ax-a2 lea df-le2 ax-r2 ) ABCZADZEBOBDZFZEZ OEZOBEZNROABGHSBQOEZEZTBQOIUBUABETBUAJUAOBQOOPKLHMMM $. $( [15-Dec-97] $) $( Lemma for Kalmbach implication study. $) u3lemona $p |- ( ( a ->3 b ) v a ' ) = ( a ' v b ) $= ( wi3 wn wo wa df-i3 ax-r5 or32 lea lel2or df-le2 omln ax-r2 ) ABCZADZEPBFZ PBDZFZEZAPBEZFZEZPEZUAOUCPABGHUDTPEZUBEZUATUBPIUFPUBEUAUEPUBTPQPSPBJPRJKLHA BMNNN $. $( [15-Dec-97] $) $( Lemma for non-tollens implication study. $) u4lemona $p |- ( ( a ->4 b ) v a ' ) = ( a ' v b ) $= ( wi4 wn wo wa df-i4 ax-r5 ax-a3 lea df-le2 lor ax-r2 comor1 comcom7 comor2 or32 com2an wt ax-r1 com2or comcom2 fh4 lear leor letr leo lel2or df-a con3 df-t 2an an1 ) ABCZADZEABFZUOBFZEZUOBEZBDZFZEZUOEZUSUNVBUOABGHVCURUOEZVAEZU SURVAUOQVEUPUOEZVAEZUSVDVFVAVDUPUQUOEZEVFUPUQUOIVHUOUPUQUOUOBJKLMHVGVFUSEZV FUTEZFZUSUSVFUTUSUPUOUSABUSAUOBNZOUOBPZRVLUAUSBVMUBUCVKUSSFUSVIUSVJSVFUSUPU SUOUPBUSABUDBUOUEUFUOBUGUHKVJUPUOUTEZEZSUPUOUTIVOUPUPDZEZSVNVPUPVNUPUPVNDAB UITUJLSVQUPUKTMMULUSUMMMMMM $. $( [15-Dec-97] $) $( Lemma for relevance implication study. $) u5lemona $p |- ( ( a ->5 b ) v a ' ) = ( a ' v ( a ^ b ) ) $= ( wi5 wn wo wa df-i5 ax-r5 ax-a3 lea lel2or df-le2 lor ax-a2 ax-r2 ) ABCZAD ZEABFZQBFZEQBDZFZEZQEZQREZPUBQABGHUCRSUAEZEZQEZUDUBUFQRSUAIHUGRUEQEZEZUDRUE QIUIRQEUDUHQRUEQSQUAQBJQTJKLMRQNOOOO $. $( [15-Dec-97] $) $( Lemma for Sasaki implication study. $) u1lemob $p |- ( ( a ->1 b ) v b ) = ( a ' v b ) $= ( wi1 wo wn wa df-i1 ax-r5 or32 ax-a2 lear leor letr df-le2 ax-r2 ) ABCZBDA EZABFZDZBDZQBDZPSBABGHTUARDZUAQRBIUBRUADUAUARJRUARBUAABKBQLMNOOO $. $( [15-Dec-97] $) $( Lemma for Dishkant implication study. $) u2lemob $p |- ( ( a ->2 b ) v b ) = ( ( a ' ^ b ' ) v b ) $= ( wi2 wo wn wa df-i2 ax-r5 or32 ax-a2 oridm lor ax-r2 ) ABCZBDBAEBEFZDZBDZO BDZNPBABGHQBBDZODZRBOBITOSDRSOJSBOBKLMMM $. $( [15-Dec-97] $) $( Lemma for Kalmbach implication study. $) u3lemob $p |- ( ( a ->3 b ) v b ) = ( a ' v b ) $= ( wi3 wo wn wa df-i3 ax-r5 or32 lear df-le2 ax-r2 2or comor2 comor1 comcom2 ancom wt lor ax-r1 com2an com2or comcom7 fh4 or12 oridm ax-a2 lea letr oran leo con2 df-t 2an an1 ) ABCZBDAEZBFZUQBEZFZDZAUQBDZFZDZBDZVBUPVDBABGHVEVABD ZVCDZVBVAVCBIVGBUTDZVBAFZDZVBVFVHVCVIVFURBDZUTDVHURUTBIVKBUTURBUQBJKHLAVBQM VJVHVBDZVHADZFZVBVBVHAVBBUTUQBNZVBUQUSUQBOZVBBVOPUAUBVBAVPUCUDVNVBRFVBVLVBV MRVLBVBDZUTDZVBBUTVBIVRVBUTDZVBVQVBUTVQUQBBDZDVBBUQBUEVTBUQBUFSLHVSUTVBDVBV BUTUGUTVBUTUQVBUQUSUHUQBUKUIKLLLVMBADZUTDZRBUTAIWBWAWAEZDZRUTWCWAUTUSUQFZWC UQUSQWCWEWAWEBAUJULTLSRWDWAUMTLLUNVBUOLLLLL $. $( [15-Dec-97] $) $( Lemma for non-tollens implication study. $) u4lemob $p |- ( ( a ->4 b ) v b ) = ( a ' v b ) $= ( wi4 wo wa wn df-i4 ax-r5 or32 lear lel2or df-le2 comorr2 comid comcom2 wt fh3 or12 oridm ax-r2 lor df-t ax-r1 2an an1 ) ABCZBDABEZAFZBEZDZUHBDZBFZEZD ZBDZUKUFUNBABGHUOUJBDZUMDZUKUJUMBIUQBUMDZUKUPBUMUJBUGBUIABJUHBJKLHURBUKDZBU LDZEZUKBUKULUHBMBBBNOQVAUKPEUKUSUKUTPUSUHBBDZDUKBUHBRVBBUHBSUATPUTBUBUCUDUK UETTTTT $. $( [15-Dec-97] $) $( Lemma for relevance implication study. $) u5lemob $p |- ( ( a ->5 b ) v b ) = ( ( a ' ^ b ' ) v b ) $= ( wi5 wo wa wn df-i5 ax-r5 ax-a3 lear lel2or leor letr df-le2 ax-r2 ) ABCZB DABEZAFZBEZDZRBFEZDZBDZUABDZPUBBABGHUCTUDDUDTUABITUDTBUDQBSABJRBJKBUALMNOO $. $( [15-Dec-97] $) $( Lemma for Sasaki implication study. $) u1lemonb $p |- ( ( a ->1 b ) v b ' ) = 1 $= ( wi1 wn wo wa wt df-i1 ax-r5 or32 df-a lor df-t ax-r1 ax-r2 ) ABCZBDZEADZA BFZEZQEZGPTQABHIUARQEZSEZGRSQJUCUBUBDZEZGSUDUBABKLGUEUBMNOOO $. $( [15-Dec-97] $) $( Lemma for Dishkant implication study. $) u2lemonb $p |- ( ( a ->2 b ) v b ' ) = 1 $= ( wi2 wn wo wa wt df-i2 ax-r5 or32 ax-a2 df-t lor ax-r1 or1 ax-r2 ) ABCZBDZ EBADRFZEZREZGQTRABHIUABREZSEZGBSRJUCSUBEZGUBSKUDSGEZGUEUDGUBSBLMNSOPPPP $. $( [15-Dec-97] $) $( Lemma for Kalmbach implication study. $) u3lemonb $p |- ( ( a ->3 b ) v b ' ) = 1 $= ( wi3 wn wo wa df-i3 ax-r5 or32 ax-a3 lear df-le2 lor ax-r2 ancom 2or ax-r1 wt df-t or1 comor1 comor2 com2an comcom2 com2or comcom7 fh4 ax-a2 anor1 2an con2 an1 ) ABCZBDZEADZBFZUOUNFZEZAUOBEZFZEZUNEZRUMVAUNABGHVBURUNEZUTEZRURUT UNIVDUPUNEZUSAFZEZRVCVEUTVFVCUPUQUNEZEVEUPUQUNJVHUNUPUQUNUOUNKLMNAUSOPVGVEU SEZVEAEZFZRUSVEAUSUPUNUSUOBUOBUAZUOBUBZUCUSBVMUDUEUSAVLUFUGVKRRFRVIRVJRVIUP UNUSEZEZRUPUNUSJVOUPRERVNRUPVNUSUNEZRUNUSUHVPUOBUNEZEZRUOBUNJVRUORERVQRUORV QBSQMUOTNNNMUPTNNVJUPUNAEZEZRUPUNAJVTUPUPDZEZRVSWAUPWAVSUPVSUPBUOFVSDUOBOBA UINUKQMRWBUPSQNNUJRULNNNNN $. $( [15-Dec-97] $) $( Lemma for non-tollens implication study. $) u4lemonb $p |- ( ( a ->4 b ) v b ' ) = ( ( ( a ^ b ) v ( a ' ^ b ) ) v b ' ) $= ( wi4 wn wo wa df-i4 ax-r5 ax-a3 lear df-le2 lor ax-r2 ) ABCZBDZEABFADZBFEZ PBEZOFZEZOEZQOEZNTOABGHUAQSOEZEUBQSOIUCOQSOROJKLMM $. $( [15-Dec-97] $) $( Lemma for relevance implication study. $) u5lemonb $p |- ( ( a ->5 b ) v b ' ) = ( ( ( a ^ b ) v ( a ' ^ b ) ) v b ' ) $= ( wi5 wn wo wa df-i5 ax-r5 ax-a3 lear df-le2 lor ax-r2 ) ABCZBDZEABFADZBFEZ POFZEZOEZQOEZNSOABGHTQROEZEUAQROIUBOQROPOJKLMM $. $( [15-Dec-97] $) $( Lemma for Sasaki implication study. $) u1lemnaa $p |- ( ( a ->1 b ) ' ^ a ) = ( a ^ ( a ' v b ' ) ) $= ( wi1 wn wa wo anor2 u1lemona ax-r4 df-a lor ax-r1 ax-r2 ) ABCZDAENADZFZDZA OBDFZEZNAGQOABEZFZDZSPUAABHISUBSORDZFZDZUBARJUBUEUAUDTUCOABJKILMLMM $. $( [15-Dec-97] $) $( Lemma for Dishkant implication study. $) u2lemnaa $p |- ( ( a ->2 b ) ' ^ a ) = ( a ^ b ' ) $= ( wi2 wn wa wo anor2 u2lemona ax-r4 ax-r2 anor1 ax-r1 ) ABCZDAEZADZBFZDZABD EZNMOFZDQMAGSPABHIJRQABKLJ $. $( [15-Dec-97] $) $( Lemma for Kalmbach implication study. $) u3lemnaa $p |- ( ( a ->3 b ) ' ^ a ) = ( a ^ b ' ) $= ( wi3 wn wa wo anor2 anor1 u3lemona ax-r4 ax-r1 ax-r2 ) ABCZDAEMADZFZDZABDE ZMAGQPQNBFZDZPABHPSORABIJKLKL $. $( [15-Dec-97] $) $( Lemma for non-tollens implication study. $) u4lemnaa $p |- ( ( a ->4 b ) ' ^ a ) = ( a ^ b ' ) $= ( wi4 wn wa wo anor2 u4lemona ax-r4 anor1 ax-r1 ax-r2 ) ABCZDAEMADZFZDZABDE ZMAGPNBFZDZQORABHIQSABJKLL $. $( [15-Dec-97] $) $( Lemma for relevance implication study. $) u5lemnaa $p |- ( ( a ->5 b ) ' ^ a ) = ( a ^ ( a ' v b ' ) ) $= ( wi5 wn wa wo anor2 u5lemona ax-r4 anor1 ax-r1 df-a con2 lan ax-r2 ) ABCZD AEPADZFZDZAQBDFZEZPAGSQABEZFZDZUARUCABHIUDAUBDZEZUAUFUDAUBJKUETAUBTABLMNOOO $. $( [15-Dec-97] $) $( Lemma for Sasaki implication study. $) u1lemnana $p |- ( ( a ->1 b ) ' ^ a ' ) = 0 $= ( wi1 wn wa wt wf wo anor3 u1lemoa ax-r4 ax-r2 df-f ax-r1 ) ABCZDADEZFDZGPO AHZDQOAIRFABJKLGQMNL $. $( [15-Dec-97] $) $( Lemma for Dishkant implication study. $) u2lemnana $p |- ( ( a ->2 b ) ' ^ a ' ) = 0 $= ( wi2 wn wa wt wf wo anor3 u2lemoa ax-r4 ax-r2 df-f ax-r1 ) ABCZDADEZFDZGPO AHZDQOAIRFABJKLGQMNL $. $( [15-Dec-97] $) $( Lemma for Kalmbach implication study. $) u3lemnana $p |- ( ( a ->3 b ) ' ^ a ' ) = ( a ' ^ ( ( a v b ) ^ ( a v b ' ) ) ) $= ( wi3 wn wa wo u3lemoa ax-a2 anor3 anor2 2or oran3 ax-r2 lor oran 3tr2 con1 oran1 ) ABCZDADZEZTABFZABDZFZEZEZSAFZAUEDZFZUADUFDUGATBEZTUCEZFZFUIABGULUHA ULUKUJFZUHUJUKHUMUBDZUDDZFUHUKUNUJUOABIABJKUBUDLMMNMSAOAUERPQ $. $( [16-Dec-97] $) $( Lemma for non-tollens implication study. $) u4lemnana $p |- ( ( a ->4 b ) ' ^ a ' ) = 0 $= ( wi4 wn wa wt wf wo anor3 u4lemoa ax-r4 ax-r2 df-f ax-r1 ) ABCZDADEZFDZGPO AHZDQOAIRFABJKLGQMNL $. $( [15-Dec-97] $) $( Lemma for relevance implication study. $) u5lemnana $p |- ( ( a ->5 b ) ' ^ a ' ) = ( a ' ^ ( ( a v b ) ^ ( a v b ' ) ) ) $= ( wi5 wn wa wo u5lemoa ax-a2 anor3 anor2 2or oran3 ax-r2 lor oran 3tr2 con1 oran1 ) ABCZDADZEZTABFZABDZFZEZEZSAFZAUEDZFZUADUFDUGATBEZTUCEZFZFUIABGULUHA ULUKUJFZUHUJUKHUMUBDZUDDZFUHUKUNUJUOABIABJKUBUDLMMNMSAOAUERPQ $. $( [16-Dec-97] $) $( Lemma for Sasaki implication study. $) u1lemnab $p |- ( ( a ->1 b ) ' ^ b ) = 0 $= ( wi1 wn wa wf wo wt u1lemonb oran1 df-f con2 ax-r1 3tr2 con1 ) ABCZDBEZFPB DGHQDFDZABIPBJRHFHKLMNO $. $( [16-Dec-97] $) $( Lemma for Dishkant implication study. $) u2lemnab $p |- ( ( a ->2 b ) ' ^ b ) = 0 $= ( wi2 wn wa wf wo wt u2lemonb oran1 df-f con2 ax-r1 3tr2 con1 ) ABCZDBEZFPB DGHQDFDZABIPBJRHFHKLMNO $. $( [16-Dec-97] $) $( Lemma for Kalmbach implication study. $) u3lemnab $p |- ( ( a ->3 b ) ' ^ b ) = 0 $= ( wi3 wn wa wf wo wt u3lemonb oran1 df-f con2 ax-r1 3tr2 con1 ) ABCZDBEZFPB DGHQDFDZABIPBJRHFHKLMNO $. $( [16-Dec-97] $) $( Lemma for non-tollens implication study. $) u4lemnab $p |- ( ( a ->4 b ) ' ^ b ) = ( ( ( a v b ' ) ^ ( a ' v b ' ) ) ^ b ) $= ( wi4 wn wa u4lemonb ax-a2 anor2 df-a 2or oran3 ax-r2 ax-r5 oran1 3tr2 con1 wo ) ABCZDBEZABDZQZADZTQZEZBEZRTQZUDDZTQZSDUEDUFABEZUBBEZQZTQUHABFUKUGTUKUJ UIQZUGUIUJGULUADZUCDZQUGUJUMUIUNABHABIJUAUCKLLMLRBNUDBKOP $. $( [16-Dec-97] $) $( Lemma for relevance implication study. $) u5lemnab $p |- ( ( a ->5 b ) ' ^ b ) = ( ( ( a v b ' ) ^ ( a ' v b ' ) ) ^ b ) $= ( wi5 wn wa u5lemonb ax-a2 anor2 df-a 2or oran3 ax-r2 ax-r5 oran1 3tr2 con1 wo ) ABCZDBEZABDZQZADZTQZEZBEZRTQZUDDZTQZSDUEDUFABEZUBBEZQZTQUHABFUKUGTUKUJ UIQZUGUIUJGULUADZUCDZQUGUJUMUIUNABHABIJUAUCKLLMLRBNUDBKOP $. $( [16-Dec-97] $) $( Lemma for Sasaki implication study. $) u1lemnanb $p |- ( ( a ->1 b ) ' ^ b ' ) = ( a ^ b ' ) $= ( wi1 wn wa wo u1lemob oran oran2 3tr2 con1 ) ABCZDBDZEZAMEZLBFADBFNDODABGL BHABIJK $. $( [16-Dec-97] $) $( Lemma for Dishkant implication study. $) u2lemnanb $p |- ( ( a ->2 b ) ' ^ b ' ) = ( ( a v b ) ^ b ' ) $= ( wi2 wn wa wo u2lemob anor3 ax-r5 ax-r2 oran oran2 3tr2 con1 ) ABCZDBDZEZA BFZPEZOBFZRDZBFZQDSDTADPEZBFUBABGUCUABABHIJOBKRBLMN $. $( [16-Dec-97] $) $( Lemma for Kalmbach implication study. $) u3lemnanb $p |- ( ( a ->3 b ) ' ^ b ' ) = ( a ^ b ' ) $= ( wi3 wn wa wo u3lemob oran oran2 3tr2 con1 ) ABCZDBDZEZAMEZLBFADBFNDODABGL BHABIJK $. $( [16-Dec-97] $) $( Lemma for non-tollens implication study. $) u4lemnanb $p |- ( ( a ->4 b ) ' ^ b ' ) = ( a ^ b ' ) $= ( wi4 wn wa wo u4lemob oran oran2 3tr2 con1 ) ABCZDBDZEZAMEZLBFADBFNDODABGL BHABIJK $. $( [16-Dec-97] $) $( Lemma for relevance implication study. $) u5lemnanb $p |- ( ( a ->5 b ) ' ^ b ' ) = ( ( a v b ) ^ b ' ) $= ( wi5 wn wa wo u5lemob anor3 ax-r5 ax-r2 oran oran2 3tr2 con1 ) ABCZDBDZEZA BFZPEZOBFZRDZBFZQDSDTADPEZBFUBABGUCUABABHIJOBKRBLMN $. $( [16-Dec-97] $) $( Lemma for Sasaki implication study. $) u1lemnoa $p |- ( ( a ->1 b ) ' v a ) = a $= ( wi1 wn wo wa anor1 ax-r1 u1lemana ax-r2 con1 ) ABCZDAEZAMDZLADZFZOPNLAGHA BIJK $. $( [16-Dec-97] $) $( Lemma for Dishkant implication study. $) u2lemnoa $p |- ( ( a ->2 b ) ' v a ) = ( ( a v b ) ^ ( a v b ' ) ) $= ( wi2 wn wo wa u2lemana ax-a2 anor3 anor2 2or ax-r2 anor1 oran3 3tr2 con1 ) ABCZDAEZABEZABDZEZFZQADZFZSDZUADZEZRDUBDUDUCBFZUCTFZEZUGABGUJUIUHEUGUHUIHUI UEUHUFABIABJKLLQAMSUANOP $. $( [16-Dec-97] $) $( Lemma for Kalmbach implication study. $) u3lemnoa $p |- ( ( a ->3 b ) ' v a ) = ( ( a v b ) ^ ( a v b ' ) ) $= ( wi3 wn wo wa u3lemana ax-a2 anor3 anor2 2or ax-r2 anor1 oran3 3tr2 con1 ) ABCZDAEZABEZABDZEZFZQADZFZSDZUADZEZRDUBDUDUCBFZUCTFZEZUGABGUJUIUHEUGUHUIHUI UEUHUFABIABJKLLQAMSUANOP $. $( [16-Dec-97] $) $( Lemma for non-tollens implication study. $) u4lemnoa $p |- ( ( a ->4 b ) ' v a ) = ( ( a v b ) ^ ( a v b ' ) ) $= ( wi4 wn wo wa u4lemana ax-a2 anor3 anor2 2or ax-r2 anor1 oran3 3tr2 con1 ) ABCZDAEZABEZABDZEZFZQADZFZSDZUADZEZRDUBDUDUCBFZUCTFZEZUGABGUJUIUHEUGUHUIHUI UEUHUFABIABJKLLQAMSUANOP $. $( [16-Dec-97] $) $( Lemma for relevance implication study. $) u5lemnoa $p |- ( ( a ->5 b ) ' v a ) = ( ( a v b ) ^ ( a v b ' ) ) $= ( wi5 wn wo wa u5lemana ax-a2 anor3 anor2 2or ax-r2 anor1 oran3 3tr2 con1 ) ABCZDAEZABEZABDZEZFZQADZFZSDZUADZEZRDUBDUDUCBFZUCTFZEZUGABGUJUIUHEUGUHUIHUI UEUHUFABIABJKLLQAMSUANOP $. $( [16-Dec-97] $) $( Lemma for Sasaki implication study. $) u1lemnona $p |- ( ( a ->1 b ) ' v a ' ) = ( a ' v b ' ) $= ( wi1 wn wo wa u1lemaa df-a 3tr2 con1 ) ABCZDADZEZLBDEZKAFABFMDNDABGKAHABHI J $. $( [16-Dec-97] $) $( Lemma for Dishkant implication study. $) u2lemnona $p |- ( ( a ->2 b ) ' v a ' ) = ( a ' v b ' ) $= ( wi2 wn wo wa u2lemaa df-a 3tr2 con1 ) ABCZDADZEZLBDEZKAFABFMDNDABGKAHABHI J $. $( [16-Dec-97] $) $( Lemma for Kalmbach implication study. $) u3lemnona $p |- ( ( a ->3 b ) ' v a ' ) = ( a ' v ( a ^ b ' ) ) $= ( wi3 wn wo wa u3lemaa oran2 lan ax-r2 df-a anor1 3tr2 con1 ) ABCZDADZEZPAB DFZEZOAFZARDZFZQDSDTAPBEZFUBABGUCUAAABHIJOAKARLMN $. $( [16-Dec-97] $) $( Lemma for non-tollens implication study. $) u4lemnona $p |- ( ( a ->4 b ) ' v a ' ) = ( a ' v b ' ) $= ( wi4 wn wo wa u4lemaa df-a 3tr2 con1 ) ABCZDADZEZLBDEZKAFABFMDNDABGKAHABHI J $. $( [16-Dec-97] $) $( Lemma for relevance implication study. $) u5lemnona $p |- ( ( a ->5 b ) ' v a ' ) = ( a ' v b ' ) $= ( wi5 wn wo wa u5lemaa df-a 3tr2 con1 ) ABCZDADZEZLBDEZKAFABFMDNDABGKAHABHI J $. $( [16-Dec-97] $) $( Lemma for Sasaki implication study. $) u1lemnob $p |- ( ( a ->1 b ) ' v b ) = ( a v b ) $= ( wi1 wn wo wa u1lemanb anor1 anor3 3tr2 con1 ) ABCZDBEZABEZLBDZFADOFMDNDAB GLBHABIJK $. $( [16-Dec-97] $) $( Lemma for Dishkant implication study. $) u2lemnob $p |- ( ( a ->2 b ) ' v b ) = ( a v b ) $= ( wi2 wn wo wa u2lemanb anor1 anor3 3tr2 con1 ) ABCZDBEZABEZLBDZFADOFMDNDAB GLBHABIJK $. $( [16-Dec-97] $) $( Lemma for Kalmbach implication study. $) u3lemnob $p |- ( ( a ->3 b ) ' v b ) = ( a v b ) $= ( wi3 wn wo wa u3lemanb anor1 anor3 3tr2 con1 ) ABCZDBEZABEZLBDZFADOFMDNDAB GLBHABIJK $. $( [16-Dec-97] $) $( Lemma for non-tollens implication study. $) u4lemnob $p |- ( ( a ->4 b ) ' v b ) = ( ( a ^ b ' ) v b ) $= ( wi4 wn wo wa u4lemanb oran2 ran ax-r2 anor1 anor3 3tr2 con1 ) ABCZDBEZABD ZFZBEZOQFZRDZQFZPDSDTADBEZQFUBABGUCUAQABHIJOBKRBLMN $. $( [16-Dec-97] $) $( Lemma for relevance implication study. $) u5lemnob $p |- ( ( a ->5 b ) ' v b ) = ( a v b ) $= ( wi5 wn wo wa u5lemanb anor1 anor3 3tr2 con1 ) ABCZDBEZABEZLBDZFADOFMDNDAB GLBHABIJK $. $( [16-Dec-97] $) $( Lemma for Sasaki implication study. $) u1lemnonb $p |- ( ( a ->1 b ) ' v b ' ) = ( ( a v b ' ) ^ ( a ' v b ' ) ) $= ( wi1 wn wo wa u1lemab ax-a2 anor2 df-a 2or ax-r2 oran3 3tr2 con1 ) ABCZDBD ZEZAQEZADZQEZFZPBFZSDZUADZEZRDUBDUCABFZTBFZEZUFABGUIUHUGEUFUGUHHUHUDUGUEABI ABJKLLPBJSUAMNO $. $( [16-Dec-97] $) $( Lemma for Dishkant implication study. $) u2lemnonb $p |- ( ( a ->2 b ) ' v b ' ) = b ' $= ( wi2 wn wo wa df-a ax-r1 u2lemab ax-r2 con3 ) ABCZDBDEZBMDZLBFZBONLBGHABIJ K $. $( [16-Dec-97] $) $( Lemma for Kalmbach implication study. $) u3lemnonb $p |- ( ( a ->3 b ) ' v b ' ) = ( ( a v b ' ) ^ ( a ' v b ' ) ) $= ( wi3 wn wo wa u3lemab ax-a2 anor2 df-a 2or ax-r2 oran3 3tr2 con1 ) ABCZDBD ZEZAQEZADZQEZFZPBFZSDZUADZEZRDUBDUCABFZTBFZEZUFABGUIUHUGEUFUGUHHUHUDUGUEABI ABJKLLPBJSUAMNO $. $( [16-Dec-97] $) $( Lemma for non-tollens implication study. $) u4lemnonb $p |- ( ( a ->4 b ) ' v b ' ) = ( ( a v b ' ) ^ ( a ' v b ' ) ) $= ( wi4 wn wo wa u4lemab ax-a2 anor2 df-a 2or ax-r2 oran3 3tr2 con1 ) ABCZDBD ZEZAQEZADZQEZFZPBFZSDZUADZEZRDUBDUCABFZTBFZEZUFABGUIUHUGEUFUGUHHUHUDUGUEABI ABJKLLPBJSUAMNO $. $( [16-Dec-97] $) $( Lemma for relevance implication study. $) u5lemnonb $p |- ( ( a ->5 b ) ' v b ' ) = ( ( a v b ' ) ^ ( a ' v b ' ) ) $= ( wi5 wn wo wa u5lemab ax-a2 anor2 df-a 2or ax-r2 oran3 3tr2 con1 ) ABCZDBD ZEZAQEZADZQEZFZPBFZSDZUADZEZRDUBDUCABFZTBFZEZUFABGUIUHUGEUFUGUHHUHUDUGUEABI ABJKLLPBJSUAMNO $. $( [16-Dec-97] $) $( Commutation theorem for Sasaki implication. $) u1lemc1 $p |- a C ( a ->1 b ) $= ( wn wa wo wi1 comid comcom2 comanr1 com2or df-i1 ax-r1 cbtr ) AACZABDZEZAB FZANOAAAGHABIJQPABKLM $. $( [14-Dec-97] $) $( Commutation theorem for Dishkant implication. $) u2lemc1 $p |- b C ( a ->2 b ) $= ( wn wa wo wi2 comid comanr2 comcom6 com2or df-i2 ax-r1 cbtr ) BBACZBCZDZEZ ABFZBBPBGBPNOHIJRQABKLM $. $( [14-Dec-97] $) $( Commutation theorem for Kalmbach implication. $) u3lemc1 $p |- a C ( a ->3 b ) $= ( comi31 ) ABC $. $( [14-Dec-97] $) $( Commutation theorem for non-tollens implication. $) u4lemc1 $p |- b C ( a ->4 b ) $= ( wa wn wo wi4 comanr2 com2or comorr2 comid comcom2 com2an df-i4 ax-r1 cbtr ) BABCZADZBCZEZQBEZBDZCZEZABFZBSUBBPRABGQBGHBTUAQBIBBBJKLHUDUCABMNO $. $( [14-Dec-97] $) $( Commutation theorem for relevance implication. $) u5lemc1 $p |- a C ( a ->5 b ) $= ( wa wn wo wi5 comanr1 comcom6 com2or df-i5 ax-r1 cbtr ) AABCZADZBCZEZNBDZC ZEZABFZAPRAMOABGAONBGHIARNQGHITSABJKL $. $( [14-Dec-97] $) $( Commutation theorem for relevance implication. $) u5lemc1b $p |- b C ( a ->5 b ) $= ( wa wn wo wi5 comanr2 com2or comcom6 df-i5 ax-r1 cbtr ) BABCZADZBCZEZNBDZC ZEZABFZBPRBMOABGNBGHBRNQGIHTSABJKL $. $( [14-Dec-97] $) ${ ulemc2.1 $e |- a C b $. ulemc2.2 $e |- a C c $. $( Commutation theorem for Sasaki implication. $) u1lemc2 $p |- a C ( b ->1 c ) $= ( wn wa wo wi1 comcom2 com2an com2or df-i1 ax-r1 cbtr ) ABFZBCGZHZBCIZAPQ ABDJABCDEKLSRBCMNO $. $( [14-Dec-97] $) $( Commutation theorem for Dishkant implication. $) u2lemc2 $p |- a C ( b ->2 c ) $= ( wn wa wo wi2 comcom2 com2an com2or df-i2 ax-r1 cbtr ) ACBFZCFZGZHZBCIZA CREAPQABDJACEJKLTSBCMNO $. $( [14-Dec-97] $) $( Commutation theorem for Kalmbach implication. $) u3lemc2 $p |- a C ( b ->3 c ) $= ( com2i3 ) ABCDEF $. $( [14-Dec-97] $) $( Commutation theorem for non-tollens implication. $) u4lemc2 $p |- a C ( b ->4 c ) $= ( wa wn wo wi4 com2an comcom2 com2or df-i4 ax-r1 cbtr ) ABCFZBGZCFZHZQCHZ CGZFZHZBCIZASUBAPRABCDEJAQCABDKZEJLATUAAQCUEELACEKJLUDUCBCMNO $. $( [14-Dec-97] $) $( Commutation theorem for relevance implication. $) u5lemc2 $p |- a C ( b ->5 c ) $= ( wa wn wo wi5 com2an comcom2 com2or df-i5 ax-r1 cbtr ) ABCFZBGZCFZHZQCGZ FZHZBCIZASUAAPRABCDEJAQCABDKZEJLAQTUDACEKJLUCUBBCMNO $. $( [14-Dec-97] $) $} ${ ulemc3.1 $e |- a C b $. $( Commutation theorem for Sasaki implication. $) u1lemc3 $p |- a C ( b ->1 a ) $= ( comid u1lemc2 ) ABACADE $. $( [14-Dec-97] $) $( Commutation theorem for Dishkant implication. $) u2lemc3 $p |- a C ( b ->2 a ) $= ( u2lemc1 ) BAD $. $( [14-Dec-97] $) $( Commutation theorem for Kalmbach implication. $) u3lemc3 $p |- a C ( b ->3 a ) $= ( comi32 ) ABCD $. $( [14-Dec-97] $) $( Commutation theorem for non-tollens implication. $) u4lemc3 $p |- a C ( b ->4 a ) $= ( u4lemc1 ) BAD $. $( [14-Dec-97] $) $( Commutation theorem for relevance implication. $) u5lemc3 $p |- a C ( b ->5 a ) $= ( u5lemc1b ) BAD $. $( [14-Dec-97] $) $( Commutation theorem for Sasaki implication. $) u1lemc5 $p |- a C ( a ->1 b ) $= ( u1lemc1 ) ABD $. $( [11-Jan-98] $) $( Commutation theorem for Dishkant implication. $) u2lemc5 $p |- a C ( a ->2 b ) $= ( comid u2lemc2 ) AABADCE $. $( [11-Jan-98] $) $( Commutation theorem for Kalmbach implication. $) u3lemc5 $p |- a C ( a ->3 b ) $= ( comi31 ) ABD $. $( [11-Jan-98] $) $( Commutation theorem for non-tollens implication. $) u4lemc5 $p |- a C ( a ->4 b ) $= ( comid u4lemc2 ) AABADCE $. $( [11-Jan-98] $) $( Commutation theorem for relevance implication. $) u5lemc5 $p |- a C ( a ->5 b ) $= ( u5lemc1 ) ABD $. $( [11-Jan-98] $) $( Lemma for Sasaki implication study. $) u1lemc4 $p |- ( a ->1 b ) = ( a ' v b ) $= ( wi1 wn wa wo df-i1 comid comcom2 fh4 ancom wt ax-a2 ax-r1 ax-r2 lan an1 df-t ) ABDAEZABFGZTBGZABHUATAGZUBFZUBATBAAAIJCKUDUBUCFZUBUCUBLUEUBMFUBUCM UBUCATGZMTANMUFASOPQUBRPPPP $. $( [24-Dec-97] $) $( Lemma for Dishkant implication study. $) u2lemc4 $p |- ( a ->2 b ) = ( a ' v b ) $= ( wi2 wn wa wo df-i2 comcom3 comcom4 fh4 ax-a2 df-t ax-r1 2an an1 ax-r2 wt ) ABDBAEZBEZFGZSBGZABHUABSGZBTGZFZUBSBTABCIABCJKUEUBRFUBUCUBUDRBSLRUDB MNOUBPQQQ $. $( [24-Dec-97] $) $( Lemma for Kalmbach implication study. $) u3lemc4 $p |- ( a ->3 b ) = ( a ' v b ) $= ( wi3 wn wa wo df-i3 comcom3 comcom4 fh1 ax-r1 df-t lan ax-r2 comid ax-a2 wt an1 wf comcom2 dff lor or0 2or fh4 ancom ) ABDAEZBFUHBEZFGZAUHBGZFZGZU KABHUMUHABFZGZUKUJUHULUNUJUHBUIGZFZUHUQUJUHBUIABCIABCJKLUQUHRFUHUPRUHRUPB MLNUHSOOULAUHFZUNGZUNAUHBAAAPUAZCKUSUNURGZUNURUNQVAUNTGUNURTUNTURAUBLUCUN UDOOOUEUOUHAGZUKFZUKAUHBUTCUFVCUKVBFZUKVBUKUGVDUKRFUKVBRUKVBAUHGZRUHAQRVE AMLONUKSOOOOO $. $( [24-Dec-97] $) $( Lemma for non-tollens implication study. $) u4lemc4 $p |- ( a ->4 b ) = ( a ' v b ) $= ( wi4 wa wn wo df-i4 comid comcom2 fh2r ax-r1 ancom wt df-t lan an1 ax-r2 comcom4 wf comcom3 dff lor or0 2or fh4 ax-a2 2an ) ABDABEAFZBEGZUIBGZBFZE ZGZUKABHUNBUIULEZGZUKUJBUMUOUJAUIGZBEZBURUJABUICAAAIJKLURBUQEZBUQBMUSBNEB UQNBNUQAOLPBQRRRUMUOBULEZGZUOUIULBABCSZABCUAZKVAUOTGUOUTTUOTUTBUBLUCUOUDR RUEUPBUIGZBULGZEZUKUIBULVCVBUFVFUKNEUKVDUKVENBUIUGNVEBOLUHUKQRRRR $. $( [24-Dec-97] $) $( Lemma for relevance implication study. $) u5lemc4 $p |- ( a ->5 b ) = ( a ' v b ) $= ( wi5 wa wn wo df-i5 comid comcom2 fh2r ax-r1 ancom wt df-t lan an1 ax-r2 ax-r5 comcom3 comcom4 fh4 ax-a2 2an ) ABDABEAFZBEGZUEBFZEZGZUEBGZABHUIBUH GZUJUFBUHUFAUEGZBEZBUMUFABUECAAAIJKLUMBULEZBULBMUNBNEBULNBNULAOLPBQRRRSUK BUEGZBUGGZEZUJUEBUGABCTABCUAUBUQUJNEUJUOUJUPNBUEUCNUPBOLUDUJQRRRR $. $( [24-Dec-97] $) $} $( Commutation theorem for Sasaki implication. $) u1lemc6 $p |- ( a ->1 b ) C ( a ' ->1 b ) $= ( wi1 wn wo wa lea ax-a1 lbtr leo letr ud1lem0c df-i1 le3tr1 lecom comcom6 ) ABCZADZBCZQDZSARBDEZFZRDZRBFZEZTSUBUCUEUBAUCAUAGAHIUCUDJKABLRBMNOP $. $( [19-Mar-99] $) $( Commutation theorem for ` ->1 ` and ` ->2 ` . $) comi12 $p |- ( a ->1 b ) C ( c ->2 a ) $= ( wi1 wn wa wo wi2 df-i1 lea leo letr lecom comcom anor3 cbtr comcom7 df-i2 ax-r1 bctr ) ABDAEZABFZGZCAHZABIUCACEUAFZGZUDUCUFUCUAUEEZFZUFEUHUCUHUCUHUAU CUAUGJUAUBKLMNAUEOPQUDUFCARSPT $. $( [5-Jul-00] $) ${ i1com.1 $e |- b =< ( a ->1 b ) $. $( Commutation expressed with ` ->1 ` . $) i1com $p |- a C b $= ( wi1 wa wn wo ancom df2le2 u1lemab 2or ax-r2 3tr2 df-c1 comcom ) BABABAB DZEPBEZBBAEZBAFZEZGZBPHBPCIQABEZSBEZGUAABJUBRUCTABHSBHKLMNO $. $( [1-Dec-99] $) $} ${ comi1.1 $e |- a C b $. $( Commutation expressed with ` ->1 ` . $) comi1 $p |- b =< ( a ->1 b ) $= ( wa wn wo wi1 ancom ax-r5 ax-a2 ax-r2 lear leror bltr comcom df-c2 df-i1 le3tr1 ) BADZBAEZDZFZTABDZFZBABGUBUAUCFZUDUBUCUAFUESUCUABAHIUCUAJKUATUCBT LMNBAABCOPABQR $. $( [1-Dec-99] $) $} ${ ulemle1.1 $e |- a =< b $. $( L.e. to Sasaki implication. $) u1lemle1 $p |- ( a ->1 b ) = 1 $= ( wi1 wn wo wt lecom u1lemc4 sklem ax-r2 ) ABDAEBFGABABCHIABCJK $. $( [11-Jan-98] $) $( L.e. to Dishkant implication. $) u2lemle1 $p |- ( a ->2 b ) = 1 $= ( wi2 wn wo wt lecom u2lemc4 sklem ax-r2 ) ABDAEBFGABABCHIABCJK $. $( [11-Jan-98] $) $( L.e. to Kalmbach implication. $) u3lemle1 $p |- ( a ->3 b ) = 1 $= ( wi3 wn wo wt lecom u3lemc4 sklem ax-r2 ) ABDAEBFGABABCHIABCJK $. $( [11-Jan-98] $) $( L.e. to non-tollens implication. $) u4lemle1 $p |- ( a ->4 b ) = 1 $= ( wi4 wn wo wt lecom u4lemc4 sklem ax-r2 ) ABDAEBFGABABCHIABCJK $. $( [11-Jan-98] $) $( L.e. to relevance implication. $) u5lemle1 $p |- ( a ->5 b ) = 1 $= ( wi5 wn wo wt lecom u5lemc4 sklem ax-r2 ) ABDAEBFGABABCHIABCJK $. $( [11-Jan-98] $) $} ${ u1lemle2.1 $e |- ( a ->1 b ) = 1 $. $( Sasaki implication to l.e. $) u1lemle2 $p |- a =< b $= ( wa wf wo wt wn anidm ran ax-r1 anass ax-r2 dff 2or ax-a2 coman1 comcom2 lan fh2 wi1 df-i1 or0 an1 3tr2 df2le1 ) ABABDZEFZAGDZUGAUHAAHZUGFZDZUIUHA UGDZAUJDZFZULUGUMEUNUGAADZBDZUMUQUGUPABAIJKAABLMANOULUOULAUGUJFZDUOUKURAU JUGPSUGAUJABQZUGAUSRTMKMUKGAUKABUAZGUTUKABUBKCMSMUGUCAUDUEUF $. $( [11-Jan-98] $) $} ${ u2lemle2.1 $e |- ( a ->2 b ) = 1 $. $( Dishkant implication to l.e. $) u2lemle2 $p |- a =< b $= ( wa wf wo wt ax-a2 lan coman1 comcom7 coman2 fh2 ancom anass ax-r1 ax-r2 wn dff 3tr2 an0 ax-r5 wi2 df-i2 or0 an1 df2le1 ) ABABDZEFZAGDZUHAUIABARZB RZDZFZDZUJUOUIUOAUMBFZDZUIUNUPABUMHIUQAUMDZUHFZUIUMABUMAUKULJKUMBUKULLKMU SEUHFUIUREUHAUKDZULDULUTDZUREUTULNAUKULOVAULEDEUTEULEUTASPIULUAQTUBEUHHQQ QPUNGAUNABUCZGVBUNABUDPCQIQUHUEAUFTUG $. $( [11-Jan-98] $) $} ${ u3lemle2.1 $e |- ( a ->3 b ) = 1 $. $( Kalmbach implication to l.e. $) u3lemle2 $p |- a =< b $= ( i3le ) ABCD $. $( [11-Jan-98] $) $} ${ u4lemle2.1 $e |- ( a ->4 b ) = 1 $. $( Non-tollens implication to l.e. $) u4lemle2 $p |- a =< b $= ( wa wn wo wt ax-r1 ax-r2 comanr1 com2or comcom com2an comanr2 comcom3 wf lan anass dff 3tr2 wi4 df-i4 comcom6 comor1 comcom7 fh2 fh1 anidm ran an0 comor2 ancom 2or or0 anor1 an12 3tr1 an1 df2le1 ) ABAABDZAEZBDZFZVABFZBEZ DZFZDZAGDUTAVGGAVGABUAZGVIVGABUBHCIQVHAVCDZAVFDZFZUTVCAVFAVCAUTVBABJZAVBV ABJUCZKLVCVDVEVDVCVDUTVBVDABVDAVABUDZUEVABUKZMVDVABVOVPMKLVEVCVEUTVBBUTAB NOBVBVABNOKLMUFVLUTPFZUTVJUTVKPVJAUTDZAVBDZFZUTAUTVBVMVNUGVTVQUTVQVTUTVRP VSUTAADZBDZVRWBUTWAABAUHUIHAABRIPAVADZBDZVSBPDBWCDPWDPWCBASQBUJBWCULTAVAB RIUMHUTUNZIIVDAVEDZDVDVDEZDVKPWFWGVDABUOQAVDVEUPVDSUQUMWEIIAURTUS $. $( [11-Jan-98] $) $} ${ u5lemle2.1 $e |- ( a ->5 b ) = 1 $. $( Relevance implication to l.e. $) u5lemle2 $p |- a =< b $= ( wa wn wo wt wi5 ax-r1 ax-r2 lan comanr1 comcom6 fh1 wf anass ancom 3tr2 an0 2or df-i5 com2or anidm ran dff or0 an1 df2le1 ) ABAABDZAEZBDZFZUJBEZD ZFZDZAGDUIAUOGAUOABHZGUQUOABUAICJKUPAULDZAUNDZFZUIAULUNAUIUKABLZAUKUJBLMZ UBAUNUJUMLMNUTUIOFZUIURUIUSOURAUIDZAUKDZFZUIAUIUKVAVBNVFVCUIVDUIVEOVDAADZ BDZUIVHVDAABPIVGABAUCUDJAUJDZBDBVIDZVEOVIBQAUJBPVJBODOVIOBOVIAUEZIKBSJRTU IUFZJJVIUMDUMVIDZUSOVIUMQAUJUMPVMUMODZOVNVMOVIUMVKKIUMSJRTVLJJAUGRUH $. $( [11-Jan-98] $) $} $( Sasaki implication and biconditional. $) u1lembi $p |- ( ( a ->1 b ) ^ ( b ->1 a ) ) = ( a == b ) $= ( wn wa wo wi1 tb ax-a2 2an coman1 comcom2 coman2 fh3 ax-r1 ax-r2 df-i1 lor ancom dfb 3tr1 ) ACZABDZEZBCZUBEZDZUBUAUDDEZABFZBAFZDABGUFUBUAEZUBUDEZDZUGU CUJUEUKUAUBHUDUBHIUGULUBUAUDUBAABJKUBBABLKMNOUHUCUIUEABPUIUDBADZEUEBAPUMUBU DBARQOIABST $. $( [17-Jan-98] $) $( Dishkant implication and biconditional. $) u2lembi $p |- ( ( a ->2 b ) ^ ( b ->2 a ) ) = ( a == b ) $= ( wn wa wo wi2 tb ancom coman1 comcom7 coman2 ax-r1 ax-r2 df-i2 lor 2an dfb fh3r 3tr1 ) BACZBCZDZEZAUBEZDZABDUBEZABFZBAFZDABGUEUDUCDZUFUCUDHUFUIUBABUBA TUAIJUBBTUAKJRLMUGUCUHUDABNUHAUATDZEUDBANUJUBAUATHOMPABQS $. $( [17-Jan-98] $) $( Dishkant implication expressed with biconditional. $) i2bi $p |- ( a ->2 b ) = ( b v ( a == b ) ) $= ( wi2 tb wo wn wa leor lelor df-i2 dfb lor le3tr1 leo lbtr u2lembi lea bltr ax-r1 lel2or lebi ) ABCZBABDZEZBAFBFGZEZBABGZUEEZEUBUDUEUHBUEUGHIABJZUCUHBA BKLMBUBUCBUFUBBUENUBUFUISOUCUBBACZGZUBUKUCABPSUBUJQRTUA $. $( [20-Nov-98] $) $( Kalmbach implication and biconditional. $) u3lembi $p |- ( ( a ->3 b ) ^ ( b ->3 a ) ) = ( a == b ) $= ( i3bi ) ABC $. $( [17-Jan-98] $) $( Non-tollens implication and biconditional. $) u4lembi $p |- ( ( a ->4 b ) ^ ( b ->4 a ) ) = ( a == b ) $= ( wi4 wa wn wo tb ud4lem1a dfb ax-r1 ax-r2 ) ABCBACDABDAEBEDFZABGZABHMLABIJ K $. $( [17-Jan-98] $) $( Relevance implication and biconditional. $) u5lembi $p |- ( ( a ->5 b ) ^ ( b ->5 a ) ) = ( a == b ) $= ( wi5 wa wn wo tb u5lemc1b comcom com2an comcom2 wf ancom df-i5 ax-r2 anabs fh1 2an lan 2or u5lemc1 com2or ax-a3 u5lemanb u5lemaa an4 dff ax-r1 an0 or0 anandi ax-a2 id dfb 3tr1 ) ABCZBADZBEZADZFZURAEZDZFZDZABDZVAURDZFZUPBACZDAB GVDUPUTDZUPVBDZFZVGUPUTVBUPUQUSUPBABUPABHIZAUPABUAIZJZUPURAUPBVLKZVMJZUBUPU RVAVOUPAVMKJQVKVGVGVIVEVJVFVIUPUQDZUPUSDZFZVEUPUQUSVNVPQVSVELFVEVQVEVRLVQUQ UPDZVEUPUQMVTVEVEVABDZVFFZFZDVEUQVEUPWCBAMUPVEWAFZVFFZWCABNZVEWAVFUCORVEWBP OOVRUPURDZUPADZDZLUPURAUKWIVFVEDZLWGVFWHVEABUDABUERWJVEVFDZLVFVEMWKAVADZBUR DZDZLABVAURUFWNWLLDLWMLWLLWMBUGUHSWLUIOOOOOTVEUJOOVJVBUPDZVFUPVBMWOVFVFWDFZ DVFVBVFUPWPURVAMUPWEWPWFWDVFULORVFWDPOOTVGUMOOVHVCUPBANSABUNUO $. $( [17-Jan-98] $) $( Sasaki/Dishkant implication and biconditional. Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 1, and j is set to 2. $) u12lembi $p |- ( ( a ->1 b ) ^ ( b ->2 a ) ) = ( a == b ) $= ( wi1 wn wa wo wi2 tb u1lemc1 comcom lear leo df-i1 ax-r1 lbtr letr u1lemaa lecom fh1 lan an12 u1lemana ancom 3tr 2or ax-r2 df-i2 dfb 3tr1 ) ABCZABDZAD ZEZFZEZABEZULUKEZFZUJBAGZEABHUOUJAEZUJUMEZFURUJAUMAUJABIJUMUJUMUJUMULUJUKUL KULULUPFZUJULUPLUJVBABMNOPRJSUTUPVAUQABQVAUKUJULEZEUMUQUJUKULUAVCULUKABUBTU KULUCUDUEUFUSUNUJBAUGTABUHUI $. $( [2-Mar-00] $) $( Dishkant/Sasaki implication and biconditional. $) u21lembi $p |- ( ( a ->2 b ) ^ ( b ->1 a ) ) = ( a == b ) $= ( wi2 wn wa wo wi1 u2lemc1 comcom3 comanr1 fh2 u2lemanb u2lemab anass ancom tb ran 3tr2 2or ax-a2 3tr df-i1 lan dfb 3tr1 ) ABCZBDZBAEZFZEZABEZADUGEZFZU FBAGZEABPUJUFUGEZUFUHEZFULUKFUMUGUFUHBUFABHIBUHBAJIKUOULUPUKABLUFBEZAEUHUPU KUQBAABMQUFBANBAORSULUKTUAUNUIUFBAUBUCABUDUE $. $( [3-Mar-00] $) $( Commutation theorem for biimplication. $) ublemc1 $p |- a C ( a == b ) $= ( combi ) ABC $. $( [19-Sep-98] $) $( Commutation theorem for biimplication. $) ublemc2 $p |- b C ( a == b ) $= ( tb ublemc1 bicom cbtr ) BBACABCBADBAEF $. $( [19-Sep-98] $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Some proofs contributed by Josiah Burroughs =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( This theorem continues the line of proofs such as ~ u1lemnaa , ~ ud1lem0b , ~ u1lemnanb , etc. (Contributed by Josiah Burroughs 26-May-04.) $) u1lemn1b $p |- ( a ->1 b ) = ( ( a ->1 b ) ' ->1 b ) $= ( wi1 wf wo wn wa ax-a1 u1lemnab ax-r1 2or or0 df-i1 3tr1 ) ABCZDEZOFZFZQBG ZEOQBCORDSOHSDABIJKPOOLJQBMN $. $( [26-May-04] $) $( A 3-variable formula. (Contributed by Josiah Burroughs 26-May-04.) $) u1lem3var1 $p |- ( ( ( a ->1 c ) ^ ( b ->1 c ) ) ' v ( ( ( a ->1 c ) ' ->1 c ) ^ ( ( b ->1 c ) ' ->1 c ) ) ) = 1 $= ( wi1 wa wn wo wt ax-a2 u1lemn1b 2an ax-r1 lor df-t 3tr1 ) ACDZBCDZEZFZRGRS GSPFCDZQFCDZEZGHSRIUBRSRUBPTQUAACJBCJKLMRNO $. $( [26-May-04] $) ${ oi3oa3lem1.1 $e |- 1 = ( b == a ) $. $( An attempt at the OA3 conjecture, which is true if ` ( a == b ) = 1 ` . (Contributed by Josiah Burroughs 27-May-04.) $) oi3oa3lem1 $p |- ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v ( a ^ b ) ) = 1 $= ( wi1 wa wo wt r3a ud1lem0b lan 2or anidm u1lemoa 3tr ) ACEZBCEZFZABFZGPP FZAAFZGPAGHRTSUAQPPBACBADIZJKBAAUBKLTPUAAPMAMLACNO $. $( [27-May-04] $) $} ${ oi3oa3.1 $e |- 1 = ( b == a ) $. $( An attempt at the OA3 conjecture, which is true if ` ( a == b ) = 1 ` . (Contributed by Josiah Burroughs 27-May-04.) $) oi3oa3 $p |- ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v ( ( ( ( a ->1 c ) ^ ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v ( a ^ b ) ) ) ->1 c ) ^ ( ( ( b ->1 c ) ^ ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v ( a ^ b ) ) ) ->1 c ) ) ) = 1 $= ( wi1 wa wo oi3oa3lem1 lan an1 ax-r2 ud1lem0b 2an lor ax-a2 r3a 1bi 3tr wt ) ACEZBCEZFZTUBABFGZFZCEZUAUCFZCEZFZGUBTCEZUACEZFZGUKUBGSUHUKUBUEUIUGU JUDTCUDTSFTUCSTABCDHZITJKLUFUACUFUASFUAUCSUAULIUAJKLMNUBUKOTUACUATBACBADP LQHR $. $( [27-May-04] $) $} $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= More lemmas for unified implication =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( u1lem0 $p |- ( b ' ->1 a ' ) = ( a ->2 b ) $= ?$. u2lem0 $p |- ( b ' ->2 a ' ) = ( a ->1 b ) $= ?$. u3lem0 $p |- ( b ' ->3 a ' ) = ( a ->4 b ) $= ?$. u4lem0 $p |- ( b ' ->4 a ' ) = ( a ->3 b ) $= ?$. u5lem0 $p |- ( b ' ->5 a ' ) = ( a ->5 b ) $= ?$. $) $( Lemma for unified implication study. $) u1lem1 $p |- ( ( a ->1 b ) ->1 a ) = a $= ( wi1 wn wo u1lemc1 comcom u1lemc4 u1lemnoa ax-r2 ) ABCZACKDAEAKAAKABFGHABI J $. $( [14-Dec-97] $) $( Lemma for unified implication study. $) u2lem1 $p |- ( ( a ->2 b ) ->2 a ) = a $= ( wi2 wn wa wo df-i2 wf ud2lem0c ran an32 ax-a2 ax-r2 lan dff ax-r1 lor or0 oran ) ABCZACATDZADZEZFZATAGUDAHFAUCHAUCBDZABFZEZUBEZHUAUGUBABIJUHUEUBEZUFE ZHUEUFUBKUJUIUIDZEZHUFUKUIUFBAFUKABLBASMNHULUIOPMMMQARMM $. $( [14-Dec-97] $) $( Lemma for unified implication study. $) u3lem1 $p |- ( ( a ->3 b ) ->3 a ) = ( ( a v b ) ^ ( a v b ' ) ) $= ( wi3 wn wo wa comi31 comcom u3lemc4 u3lemnoa ax-r2 ) ABCZACLDAEABEABDEFLAA LABGHIABJK $. $( [14-Dec-97] $) $( Lemma for unified implication study. $) u4lem1 $p |- ( ( a ->4 b ) ->4 a ) = ( ( ( ( a ^ b ) v ( a ^ b ' ) ) v a ' ) ^ ( ( a v b ) ^ ( a v b ' ) ) ) $= ( wi4 wa wn wo u4lemaa 2or comanr1 com2or comcom3 comorr com2an fh4 lea leo df-i4 letr df-le2 ax-r2 u4lemnaa ran ancom lor comor1 comor2 comcom2 lel2or u4lemnoa 2an lan id ) ABCZACUMADZUMEZADZFZUOAFZAEZDZFZABDZABEZDZFZUSFZABFZA VCFZDZDZUMAQVAVEVIUSDZFZVJUQVEUTVKUNVBUPVDABGABUAHURVIUSABUIUBHVLVEUSVIDZFZ VJVKVMVEVIUSUCUDVNVFVEVIFZDZVJUSVEVIAVEAVBVDABIAVCIJKAVIAVGVHABLAVCLMKNVPVJ VJVOVIVFVOVEVGFZVEVHFZDVIVGVEVHVGVBVDVGABABUEZABUFZMVGAVCVSVGBVTUGZMJVGAVCV SWAJNVQVGVRVHVEVGVEAVGVBAVDABOAVCOUHZABPRSVEVHVEAVHWBAVCPRSUJTUKVJULTTTTT $. $( [16-Dec-97] $) $( Lemma for unified implication study. $) u5lem1 $p |- ( ( a ->5 b ) ->5 a ) = ( ( a v b ) ^ ( a v b ' ) ) $= ( wi5 wn wo wa u5lemc1 comcom u5lemc4 u5lemnoa ax-r2 ) ABCZACLDAEABEABDEFLA ALABGHIABJK $. $( [16-Dec-97] $) $( Lemma for unified implication study. $) u1lem1n $p |- ( ( a ->1 b ) ->1 a ) ' = a ' $= ( wi1 u1lem1 ax-r4 ) ABCACAABDE $. $( [16-Dec-97] $) $( Lemma for unified implication study. $) u2lem1n $p |- ( ( a ->2 b ) ->2 a ) ' = a ' $= ( wi2 u2lem1 ax-r4 ) ABCACAABDE $. $( [16-Dec-97] $) $( Lemma for unified implication study. $) u3lem1n $p |- ( ( a ->3 b ) ->3 a ) ' = ( ( a ' ^ b ) v ( a ' ^ b ' ) ) $= ( wi3 wn wa wo u3lem1 ancom df-a anor2 anor3 2or ax-r4 ax-r1 ax-r2 con2 ) A BCACZADZBEZRBDZEZFZQABFZATFZEZUBDZABGUEUDUCEZUFUCUDHUGUDDZUCDZFZDZUFUDUCIUF UKUBUJSUHUAUIABJABKLMNOOOP $. $( [16-Dec-97] $) $( Lemma for unified implication study. $) u4lem1n $p |- ( ( a ->4 b ) ->4 a ) ' = ( ( ( ( a ' v b ) ^ ( a ' v b ' ) ) ^ a ) v ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) $= ( wa wn wo wi4 oran1 df-a anor1 2or ax-r4 ax-r1 ax-r2 ancom ran anor2 anor3 2an u4lem1 oran 3tr1 ) ABCZABDZCZEZADZEZABEZAUCEZCZCZDUFBEZUFUCEZCZACZDZUFB CZUFUCCZEZDZCZDABFAFZDUOUSEUKVAUGUPUJUTUGUEDZACZDUPUEAGVDUOVCUNAVCUMULCZUNV CUMDZULDZEZDZVEUEVHUBVFUDVGABHABIJKVEVIUMULHLMUMULNMOKMUJUIUHCZUTUHUINVJUID ZUHDZEZDZUTUIUHHUTVNUSVMUQVKURVLABPABQJKLMMRKVBUKABSKUOUSTUA $. $( [16-Dec-97] $) $( Lemma for unified implication study. $) u5lem1n $p |- ( ( a ->5 b ) ->5 a ) ' = ( ( a ' ^ b ) v ( a ' ^ b ' ) ) $= ( wi5 wn wa wo u5lem1 ancom df-a anor2 anor3 2or ax-r4 ax-r1 ax-r2 con2 ) A BCACZADZBEZRBDZEZFZQABFZATFZEZUBDZABGUEUDUCEZUFUCUDHUGUDDZUCDZFZDZUFUDUCIUF UKUBUJSUHUAUIABJABKLMNOOOP $. $( [16-Dec-97] $) $( Lemma for unified implication study. $) u1lem2 $p |- ( ( ( a ->1 b ) ->1 a ) ->1 a ) = 1 $= ( wi1 wn wa wo wt df-i1 u1lem1n u1lem1 ran anidm ax-r2 2or ax-a2 df-t ax-r1 ) ABCACZACRDZRAEZFZGRAHUAADZAFZGSUBTAABITAAEARAAABJKALMNUCAUBFZGUBAOGUDAPQM MM $. $( [16-Dec-97] $) $( Lemma for unified implication study. $) u2lem2 $p |- ( ( ( a ->2 b ) ->2 a ) ->2 a ) = 1 $= ( wi2 wn wa wo wt df-i2 u2lem1n ran anidm ax-r2 lor df-t ax-r1 ) ABCACZACAP DZADZEZFZGPAHTARFZGSRASRRERQRRABIJRKLMGUAANOLL $. $( [16-Dec-97] $) $( Lemma for unified implication study. $) u3lem2 $p |- ( ( ( a ->3 b ) ->3 a ) ->3 a ) = ( a v ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) $= ( wi3 wn wo comi31 comid u3lemc2 comcom u3lemc4 u3lem1n ax-r5 ax-a2 ax-r2 wa ) ABCZACZACQDZAEZAADZBOTBDOEZEZQAAQAPAABFAGHIJSUAAEUBRUAAABKLUAAMNN $. $( [24-Dec-97] $) $( Lemma for unified implication study. $) u4lem2 $p |- ( ( ( a ->4 b ) ->4 a ) ->4 a ) = ( a v ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) $= ( wn wo wa u4lemc1 comcom u4lemc4 u4lem1n ax-r5 ax-a3 lear leor letr df-le2 wi4 ax-a2 ax-r2 ) ABPZAPZAPTCZADZAACZBEUCBCZEDZDZTAATSAFGHUBUCBDUCUDDEZAEZU EDZADZUFUAUIAABIJUJUHUEADZDZUFUHUEAKULUKUFUHUKUHAUKUGALAUEMNOUEAQRRRR $. $( [24-Dec-97] $) $( Lemma for unified implication study. $) u5lem2 $p |- ( ( ( a ->5 b ) ->5 a ) ->5 a ) = ( a v ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) $= ( wi5 wn wo wa u5lemc1b comcom u5lemc4 u5lem1n ax-r5 ax-a2 ax-r2 ) ABCZACZA CODZAEZAADZBFRBDFEZEZOAAONAGHIQSAETPSAABJKSALMM $. $( [24-Dec-97] $) $( Lemma for unified implication study. $) u1lem3 $p |- ( a ->1 ( b ->1 a ) ) = ( a ' v ( ( a ^ b ) v ( a ^ b ' ) ) ) $= ( wi1 wn wa wo df-i1 ancom 2or u1lemab ax-r1 ax-r2 lor id ) ABACZCADZAOEZFZ PABEZABDZEZFZFZAOGRUCUCQUBPUBQUBOAEZQUBBAEZTAEZFZUDSUEUAUFABHATHIUDUGBAJKLO AHLKMUCNLL $. $( [17-Dec-97] $) $( Lemma for unified implication study. $) u2lem3 $p |- ( a ->2 ( b ->2 a ) ) = 1 $= ( wi2 wn wa wo wt df-i2 u2lemc1 comcom3 comcom4 fh4 u2lemonb df-t ax-r1 2an an1 ax-r2 ) ABACZCSADZSDZEFZGASHUBSTFZSUAFZEZGTSUAASBAIZJASUFKLUEGGEGUCGUDG BAMGUDSNOPGQRRR $. $( [17-Dec-97] $) $( Lemma for unified implication study. $) u3lem3 $p |- ( a ->3 ( b ->3 a ) ) = ( a v ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) $= ( wi3 wn wa df-i3 ancom u3lemanb ax-r2 u3lemnanb 2or ax-a2 u3lemonb lan an1 wo wt ) ABACZCADZREZSRDZEZPZASRPZEZPZASBEZSBDZEZPZPZARFUFUJAPUKUCUJUEAUCUHS EZBSEZPZUJTULUBUMTRSEULSRGBAHIUBUASEUMSUAGBAJIKUNUIUGPUJULUIUMUGUHSGBSGKUIU GLIIUEAQEAUDQAUDRSPQSRLBAMINAOIKUJALII $. $( [17-Dec-97] $) $( Lemma for unified implication study. $) u4lem3 $p |- ( a ->4 ( b ->4 a ) ) = ( a ' v ( ( a ^ b ) v ( a ^ b ' ) ) ) $= ( wi4 wn wo wa u4lemc1 u4lemc4 ax-a2 u4lemonb ancom 2or ax-r5 ax-r2 ) ABACZ CADZOEZPABFZABDZFZEZEZAOBAGHQOPEZUBPOIUCBAFZSAFZEZPEZUBBAJUGUAPEUBUFUAPUDRU ETBAKSAKLMUAPINNNN $. $( [17-Dec-97] $) $( Lemma for unified implication study. $) u5lem3 $p |- ( a ->5 ( b ->5 a ) ) = ( a ' v ( ( a ^ b ) v ( a ^ b ' ) ) ) $= ( wi5 wn wo wa u5lemc1b u5lemc4 ax-a2 u5lemonb ancom 2or ax-r5 ax-r2 ) ABAC ZCADZOEZPABFZABDZFZEZEZAOBAGHQOPEZUBPOIUCBAFZSAFZEZPEZUBBAJUGUAPEUBUFUAPUDR UETBAKSAKLMUAPINNNN $. $( [17-Dec-97] $) $( Lemma for unified implication study. $) u3lem3n $p |- ( a ->3 ( b ->3 a ) ) ' = ( a ' ^ ( ( a v b ) ^ ( a v b ' ) ) ) $= ( wi3 wn wo wa u3lem3 ax-a2 anor3 anor2 2or oran3 ax-r2 lor oran1 con2 ) AB ACCZADZABEZABDZEZFZFZQARBFZRTFZEZEZUCDZABGUGAUBDZEUHUFUIAUFUEUDEZUIUDUEHUJS DZUADZEUIUEUKUDULABIABJKSUALMMNAUBOMMP $. $( [17-Dec-97] $) $( Lemma for unified implication study. $) u4lem3n $p |- ( a ->4 ( b ->4 a ) ) ' = ( a ^ ( ( a ' v b ) ^ ( a ' v b ' ) ) ) $= ( wi4 wn wo wa u4lem3 ax-a2 anor1 df-a 2or oran3 ax-r2 lor con2 ) ABACCZAAD ZBEZQBDZEZFZFZPQABFZASFZEZEZUBDZABGUFQUADZEUGUEUHQUEUDUCEZUHUCUDHUIRDZTDZEU HUDUJUCUKABIABJKRTLMMNAUALMMO $. $( [17-Dec-97] $) $( Lemma for unified implication study. $) u5lem3n $p |- ( a ->5 ( b ->5 a ) ) ' = ( a ^ ( ( a ' v b ) ^ ( a ' v b ' ) ) ) $= ( wi5 wn wo wa u5lem3 ax-a2 anor1 df-a 2or oran3 ax-r2 lor con2 ) ABACCZAAD ZBEZQBDZEZFZFZPQABFZASFZEZEZUBDZABGUFQUADZEUGUEUHQUEUDUCEZUHUCUDHUIRDZTDZEU HUDUJUCUKABIABJKRTLMMNAUALMMO $. $( [17-Dec-97] $) $( Lemma for unified implication study. $) u1lem4 $p |- ( a ->1 ( a ->1 ( b ->1 a ) ) ) = ( a ->1 ( b ->1 a ) ) $= ( wi1 wn wa wo df-i1 comid comcom2 u1lemc1 fh4 wt ax-a2 df-t ax-r1 u1lemona ax-r2 ancom lor lan u1lem3 coman1 coman2 fh2 anass anidm ran ax-r5 2an an1 ) AABACZCZCADZAULEFZULAULGUNUMAFZUMULFZEZULAUMULAAAHIAUKJKUQLULEZULUOLUPULU OAUMFZLUMAMLUSANOQUPULUMFZULUMULMUTUMAUKEZFZULAUKPVBUMABDZABEZFZEZFZULVAVFU MUKVEAUKVCBAEZFVEBAGVHVDVCBARSQTSULVGULUMVDAVCEZFZFVGABUAVJVFUMVFVJVFAVDVCF ZEZVJVEVKAVCVDMTVLAVDEZVIFVJVDAVCABUBVDBABUCIUDVMVDVIVMAAEZBEZVDVOVMAABUEOV NABAUFUGQUHQQOSQOQQQUIURULLEULLULRULUJQQQQ $. $( [11-Jan-98] $) $( Lemma for unified implication study. $) u3lem4 $p |- ( a ->3 ( a ->3 ( b ->3 a ) ) ) = 1 $= ( wi3 wn wo wt lem4 ax-a2 u3lemonb ax-r2 ) AABACZCCADZKEZFAKGMKLEFLKHBAIJJ $. $( [21-Jan-98] $) $( Lemma for unified implication study. $) u4lem4 $p |- ( a ->4 ( a ->4 ( b ->4 a ) ) ) = ( a ->4 ( b ->4 a ) ) $= ( wi4 wa wn wo df-i4 comid comcom2 comanr1 com2or comcom ax-r1 df-t lan an1 wt ax-r2 wf ax-r5 u4lem3 bctr fh2r comcom4 comcom3 fh1r dff lor or0 2or fh3 ancom or32 oridm ) AABACCZCAUODAEZUODFZUPUOFUOEZDZFZUOAUOGUTUOUPURDZFZUOUQU OUSVAUQAUPFZUODZUOVDUQAUOUPUOAUOUPABDZABEZDZFZFZAABUAZAVIAUPVHAAAHIZAVEVGAB JAVFJKKLUBZLVKUCMVDUOVCDZUOVCUOULVMUOQDUOVCQUOQVCANMOUOPRRRUSVAUOURDZFZVAUR UPUOUOAVLUDUOUOUOHZUEUFVOVASFVAVNSVASVNUOUGMUHVAUIRRUJVBUOUPFZUOVBVQUOURFZD ZVQUOUPURUOAVLIUOUOVPIUKVSVQQDVQVRQVQQVRUONMOVQPRRVQVIUPFZUOUOVIUPVJTVTUPUP FZVHFZUOUPVHUPUMWBVIUOWAUPVHUPUNTUOVIVJMRRRRRR $. $( [18-Dec-97] $) $( Lemma for unified implication study. $) u5lem4 $p |- ( a ->5 ( a ->5 ( b ->5 a ) ) ) = ( a ->5 ( b ->5 a ) ) $= ( wi5 wn wo u5lemc1 u5lemc4 wa u5lem3 lor ax-a3 ax-r1 oridm ax-r5 ax-r2 ) A ABACZCZCADZQEZQAQAPFGSRRABHABDHEZEZEZQQUARABIZJUBRREZTEZQUEUBRRTKLUEUAQUDRT RMNQUAUCLOOOO $. $( [24-Dec-97] $) $( Lemma for unified implication study. $) u1lem5 $p |- ( a ->1 ( a ->1 b ) ) = ( a ->1 b ) $= ( wi1 wn wa wo df-i1 ancom u1lemaa ax-r2 lor ax-r1 ) AABCZCADZAMEZFZMAMGPNA BEZFZMOQNOMAEQAMHABIJKMRABGLJJ $. $( [20-Dec-97] $) $( Lemma for unified implication study. $) u2lem5 $p |- ( a ->2 ( a ->2 b ) ) = ( a ->2 b ) $= ( wi2 wn wa wo df-i2 wf ancom u2lemnana ax-r2 lor or0 ) AABCZCNADZNDZEZFZNA NGRNHFNQHNQPOEHOPIABJKLNMKK $. $( [20-Dec-97] $) $( Lemma for unified implication study. $) u3lem5 $p |- ( a ->3 ( a ->3 b ) ) = ( a ' v b ) $= ( wi3 wn wo comi31 u3lemc4 ax-a2 u3lemona ax-r2 ) AABCZCADZKEZLBEZAKABFGMKL ENLKHABIJJ $. $( [24-Dec-97] $) $( Lemma for unified implication study. $) u4lem5 $p |- ( a ->4 ( a ->4 b ) ) = ( ( a ' ^ b ' ) v b ) $= ( wi4 wa wn wo ancom ax-r2 2or ax-a3 ax-r1 ax-a2 2an comcom7 com2an comanr2 wf com2or wt lor df-i4 u4lemaa u4lemana u4lemona ud4lem0c anass comor1 fh1r comor2 comcom2 leor df2le2 lan dff or0 comcom6 comorr2 fh4 or32 lear lel2or oran2 df-le2 ax-r5 or4 oran3 df-t or1 oran1 an1 ) AABCZCAVKDZAEZVKDZFZVMVKF ZVKEZDZFZVMBEZDZBFZAVKUAVSABDZVMBDZFZWAFZBVMVTFZAVTFZDZDZFZWBVOWFVRWJVOWCWD WAFZFZWFVLWCVNWLVLVKADWCAVKGABUBHVNVKVMDWLVMVKGABUCHIWFWMWCWDWAJKHVRVMBFZWI AVTDZBFZDZDZWJVPWNVQWQVPVKVMFWNVMVKLABUDHABUEMWRWQWNDZWJWNWQGWSWIWPWNDZDZWJ WIWPWNUFXAWIBDWJWTBWIWTWOWNDZBWNDZFZBWNWOBWNAVTWNAVMBUGNWNBVMBUIZUJOXEUHXDX CXBFZBXBXCLXFBQFBXCBXBQBWNBVMUKULXBWOWOEZDZQWNXGWOABVBUMQXHWOUNKHIBUOHHHUMW IBGHHHHIWKWFBFZWFWIFZDZWBBWFWIBWEWABWCWDABPVMBPRBWAVMVTPUPRBWIVTWGWHVMVTUQA VTUQOUPURXKBWAFZSDZWBXIXLXJSXIWEBFZWAFXLWEWABUSXNBWAWEBWCBWDABUTVMBUTVAVCVD HXJWFWGFZWFWHFZDZSWGWFWHWGWEWAWGWCWDWGABWGAVMVTUGZNZWGBVMVTUIZNZOWGVMBXRYAO RWGVMVTXRXTORWGAVTXSXTRURXQSSDSXOSXPSXOWEWGFWAFZSWEWAWGUSYBWEWGWAFFZSWEWGWA JYCWCWGFZWLFZSWCWDWGWAVEYEWLYDFZSYDWLLYFWLSFSYDSWLYDWCWCEZFZSWGYGWCABVFTSYH WCVGKHTWLVHHHHHHXPWEWAWHFFZSWEWAWHJYIWCWAFZWDWHFZFZSWCWDWAWHVEYLYJSFSYKSYJY KWDWDEZFZSWHYMWDABVITSYNWDVGKHTYJVHHHHMSVJHHMXMXLWBXLVJBWALHHHHH $. $( [26-Dec-97] $) $( Lemma for unified implication study. $) u5lem5 $p |- ( a ->5 ( a ->5 b ) ) = ( a ' v ( a ^ b ) ) $= ( wi5 wa wn wo df-i5 u5lemc1 comcom comcom2 fh1r ax-r1 ancom df-t lan ax-r2 wt an1 ax-r5 comcom3 comcom4 fh4 u5lemona ) AABCZCAUDDAEZUDDFZUEUDEZDZFZUEA BDFZAUDGUIUDUHFZUJUFUDUHUFAUEFZUDDZUDUMUFUDAUEAUDABHZIZUDAUOJKLUMUDULDZUDUL UDMUPUDQDUDULQUDQULANLOUDRPPPSUKUDUEFZUDUGFZDZUJUEUDUGAUDUNTAUDUNUAUBUSUQQD ZUJURQUQQURUDNLOUTUQUJUQRABUCPPPPP $. $( [20-Dec-97] $) $( Lemma for unified implication study. $) u4lem5n $p |- ( a ->4 ( a ->4 b ) ) ' = ( ( a v b ) ^ b ' ) $= ( wi4 wo wn wa u4lem5 anor3 ax-r5 ax-r2 oran2 con2 ) AABCCZABDZBEZFZMNEZBDZ PEMAEOFZBDRABGSQBABHIJNBKJL $. $( [20-Dec-97] $) $( Lemma for unified implication study. $) u3lem6 $p |- ( a ->3 ( a ->3 ( a ->3 b ) ) ) = ( a ->3 ( a ->3 b ) ) $= ( wi3 wn wo comi31 u3lemc4 u3lem5 lor ax-a3 ax-r1 oridm ax-r5 ax-r2 ) AAABC ZCZCADZPEZPAPAOFGRQQBEZEZPPSQABHZITQQEZBEZPUCTQQBJKUCSPUBQBQLMPSUAKNNNN $. $( [24-Dec-97] $) $( Lemma for unified implication study. $) u4lem6 $p |- ( a ->4 ( a ->4 ( a ->4 b ) ) ) = ( a ->4 b ) $= ( wi4 wa wn wo lan comcom7 fh2 ax-a2 ancom ax-r1 ax-r2 lor ax-r5 2an com2an wf wt com2or df-i4 u4lem5 coman1 coman2 anass dff an0 3tr2 or0 anidm ran id 2or or12 comor1 comcom2 fh3r ax-a3 oridm df-t or1 an1 u4lem5n fh4 lear leor comor2 letr lea lel2or leo df-le2 or32 anor3 comorr2 comcom3 comanr2 df2le2 3tr1 ) AAABCZCZCAWADZAEZWADZFZWCWAFZWAEZDZFZVTAWAUAWIABDZWCBEZDZWCBDZFZFZWC BFZABFZWKDZDZFZVTWEWOWHWSWEWOWOWBWJWDWNWBAWLBFZDZWJWAXAAABUBZGXBAWLDZWJFZWJ WLABWLAWCWKUCZHWLBWCWKUDHZIXEWJXDFZWJXDWJJXHWJRFWJXDRWJAWCDZWKDWKXIDZXDRXIW KKAWCWKUEXJWKRDRXIRWKRXIAUFLGWKUGMUHNWJUIMMMMWDWCXADZWNWAXAWCXCGXKWCWLDZWMF WNWLWCBXFXGIXLWLWMXLWCWCDZWKDZWLXNXLWCWCWKUELXMWCWKWCUJUKMOMMUMWOULMWHWSWSW FWPWGWRWFWCXAFZWPWAXAWCXCNXOWLWPFZWPWCWLBUNXPWCWPFZWKWPFZDZWPWPWCWKWCBUOZWP BWCBVGZUPZUQXSWPSDWPXQWPXRSXQWCWCFZBFZWPYDXQWCWCBURLYCWCBWCUSOMXRWCWKBFZFZS WKWCBUNYFWCSFSYESWCYEBWKFZSWKBJSYGBUTLMNWCVAMMPWPVBMMMMABVCPWSULMUMWTWOWPFZ WOWRFZDZVTWPWOWRWPWJWNWPABWPAXTHZYAQWPWLWMWPWCWKXTYBQWPWCBXTYAQTTWPWQWKWPAB YKYATYBQVDYJWPWKWJWMFZFZDZVTYHWPYIYMWOWPWJWPWNWJBWPABVEZBWCVFZVHWNWCWPWLWCW MWCWKVIWCBVIVJWCBVKVHVJVLYIWOWQFZWOWKFZDZYMWQWOWKWQWJWNWQABABUOZABVGZQWQWLW MWQWCWKWQAYTUPZWQBUUAUPZQWQWCBUUBUUAQTTUUCVDYSSYMDZYMYQSYRYMYQWJWQFZWNFZSWJ WNWQVMUUEWLFZWMFSWMFZUUFSUUGSWMUUGWJWQWLFZFZSWJWQWLURUUJWJSFSUUISWJUUIWQWQE ZFZSWLUUKWQABVNNSUULWQUTLMNWJVAMMOUUEWLWMURUUHWMSFSSWMJWMVAMUHMYRWLYLFZWKFZ YMWOUUMWKWJWLWMUNOWLWKFZYLFYMUUNYMUUOWKYLWLWKWCWKVEVLOWLYLWKVMYMULVSMPUUDYM SDYMSYMKYMVBMMMPYNWPWKDZWPYLDZFZVTWKWPYLBWPWCBVOVPBYLBWJWMABVQWCBVQTVPIUUPY LFYLUUPFUURVTUUPYLJUUQYLUUPUUQYLWPDYLWPYLKYLWPYLBWPWJBWMYOWCBVEVJYPVHVRMNAB UAVSMMMMM $. $( [26-Dec-97] $) $( Lemma for unified implication study. $) u5lem6 $p |- ( a ->5 ( a ->5 ( a ->5 b ) ) ) = ( a ->5 ( a ->5 b ) ) $= ( wi5 wa wn wo df-i5 ancom u5lemc1 comcom comcom2 fh1r df-t ax-r1 lan ax-r2 wt an1 3tr2 ax-r5 comcom3 comcom4 fh4 u5lem5 oridm or32 3tr1 ) AAABCZCZCAUI DAEZUIDFZUJUIEZDZFZUIAUIGUNUIUMFZUIUKUIUMAUJFZUIDUIUPDZUKUIUPUIHUIAUJAUIAUH IZJZUIAUSKLUQUIQDUIUPQUIQUPAMNOUIRPSTUOUIUJFZUIULFZDZUIUJUIULAUIURUAAUIURUB UCVBUTQDZUIVAQUTQVAUIMNOVCUTUIUTRUTUJABDZFZUJFZUIUIVEUJABUDZTUJUJFZVDFVEVFU IVHUJVDUJUETUJVDUJUFVGUGPPPPPP $. $( [20-Dec-97] $) $( Lemma for unified implication study. $) u24lem $p |- ( ( a ->2 b ) ^ ( a ->4 b ) ) = ( a ->5 b ) $= ( wi2 wi4 wa wn wo wi5 df-i2 u4lemc1 comanr2 comcom6 fh2r ancom ax-r2 anass ran ax-r1 2or id u4lemanb lan anabs comanr1 com2or fh1 u4lemab ax-r5 df2le2 fh4r leor ax-a3 lear df-le2 lor df-i5 ) ABCZABDZEBAFZBFZEZGZUREZABHZUQVBURA BIQVCBUREZVAUREZGZVDBURVAABJZBVAUSUTKLMVGVEUTUSEZGZVDVEVEVFVIVEURBEZVEBURNZ URBNOVFUSUTUREZEZVIUSUTURPVNUSUSBGZUTEZEZVIVMVPUSVMURUTEVPUTURNABUAOUBVQUSV OEZUTEZVIVSVQUSVOUTPRVSVAVIVRUSUTUSBUCQUSUTNOOOOSVJBVIGURVIGZEZVDBVIURBVIUT USUDLZVHUJWABVTEZVIVTEZGZVDBVTVIBURVIVHWBUEWBMWEABEUSBEGZBVIEZGZVIGZVDWCWHW DVIWCVEWGGZWHBURVIVHWBUFWJWHWHVEWFWGVEVKWFVLABUGOUHWHTOOVIVTVIURUKUISWIWFWG VIGZGZVDWFWGVIULWLWFVAGZVDWKVAWFWKVIVAWGVIBVIUMUNUTUSNOUOWMVDVDVDWMABUPRVDT OOOOOOOOO $. $( [20-Dec-97] $) $( Implication lemma. $) u12lem $p |- ( ( a ->1 b ) v ( a ->2 b ) ) = ( a ->0 b ) $= ( wi1 wn wa wo wi2 wi0 orordi u1lemob df-i1 ax-r5 or32 orabs ax-r2 2or bile id lear lelor lel2or leo lebi df-i2 lor df-i0 3tr1 ) ABCZBADZBDZEZFZFZUIBFZ UHABGZFABHUMUHBFZUHUKFZFZUNUHBUKIURUNUIABEZFZFZUNUPUNUQUTABJUQUTUKFZUTUHUTU KABKLVBUIUKFZUSFUTUIUSUKMVCUIUSUIUJNLOOPVAUNUNUNUTUNUNUNRQUSBUIABSTUAUNUTUB UCOOUOULUHABUDUEABUFUG $. $( [17-Nov-98] $) $( Lemma for unified implication study. $) u1lem7 $p |- ( a ->1 ( a ' ->1 b ) ) = 1 $= ( wn wi1 wa wo wt df-i1 ax-a1 ran ancom u1lemana ax-r2 lor df-t ax-r1 ) AAC ZBDZDQAREZFZGARHTQQCZFZGSUAQSUAREZUAAUARAIJUCRUAEUAUARKQBLMMNGUBQOPMM $. $( [24-Dec-97] $) $( Lemma for unified implication study. $) u2lem7 $p |- ( a ->2 ( a ' ->2 b ) ) = ( ( ( a ^ b ' ) v ( a ' ^ b ' ) ) v b ) $= ( wn wi2 wa df-i2 ax-a1 ax-r1 ran lor ax-r2 ancom u2lemnaa 2or ax-a3 ax-a2 wo ) AACZBDZDSRSCZEZQZABCZEZRUCEZQZBQZASFUBBUDQZUEQZUGSUHUAUESBRCZUCEZQUHRB FUKUDBUJAUCAUJAGHIJKUATREUERTLRBMKNUIBUFQUGBUDUEOBUFPKKK $. $( [24-Dec-97] $) $( Lemma for unified implication study. $) u3lem7 $p |- ( a ->3 ( a ' ->3 b ) ) = ( a ' v ( ( a ^ b ) v ( a ^ b ' ) ) ) $= ( wn wi3 wo comi31 comcom6 u3lemc4 df-i3 lor or12 ax-a1 ran 2or ax-r1 orabs wa ax-a2 ax-r2 ) AACZBDZDTUAEZTABQZABCZQZEZEZAUAAUATBFGHUBTTCZBQZUHUDQZEZTU HBEZQZEZEZUGUAUNTTBIJUOUKTUMEZEZUGTUKUMKUQUFTEUGUKUFUPTUFUKUCUIUEUJAUHBALZM AUHUDURMNOTULPNUFTRSSSS $. $( [24-Dec-97] $) $( Lemma for unified implication study. $) u2lem7n $p |- ( a ->2 ( a ' ->2 b ) ) ' = ( ( ( a v b ) ^ ( a ' v b ) ) ^ b ' ) $= ( wn wi2 wo wa u2lem7 ax-a2 anor3 anor1 2or ax-r2 oran3 ax-r5 oran2 con2 ) AACZBDDZABEZQBEZFZBCZFZRAUBFZQUBFZEZBEZUCCZABGUGUACZBEUHUFUIBUFSCZTCZEZUIUF UEUDEULUDUEHUEUJUDUKABIABJKLSTMLNUABOLLP $. $( [24-Dec-97] $) $( Lemma used in study of orthoarguesian law. $) u1lem8 $p |- ( ( a ->1 b ) ^ ( a ' ->1 b ) ) = ( ( a ^ b ) v ( a ' ^ b ) ) $= ( wi1 wn wa df-i1 ax-a1 ax-r5 ax-r1 2an comor1 comcom2 coman1 coman2 com2an wo ax-r2 com2or comcom fh1r omlan lea leo letr df2le2 2or ax-a2 3tr ) ABCZA DZBCZEUJABEZPZAUJBEZPZEUJUOEZULUOEZPZULUNPZUIUMUKUOABFUKUJDZUNPZUOUJBFUOVAA UTUNAGHIQJUOUJULUOAAUNKLULUOULAUNABMZULUJBULAVBLABNORSTURUNULPUSUPUNUQULABU AULUOULAUOABUBAUNUCUDUEUFUNULUGQUH $. $( [27-Dec-98] $) $( Lemma used in study of orthoarguesian law. Equation 4.11 of [MegPav2000] p. 23. This is the first part of the inequality. $) u1lem9a $p |- ( a ' ->1 b ) ' =< a ' $= ( wn wi1 wa wo df-i1 ax-r4 anor1 ax-r1 ax-r2 lea bltr ) ACZBDZCZNNBEZCZEZNP NCQFZCZSOTNBGHSUANQIJKNRLM $. $( [28-Dec-98] $) $( Lemma used in study of orthoarguesian law. Equation 4.11 of [MegPav2000] p. 23. This is the second part of the inequality. $) u1lem9b $p |- a ' =< ( a ->1 b ) $= ( wn wa wo wi1 leo df-i1 ax-r1 lbtr ) ACZKABDZEZABFZKLGNMABHIJ $. $( [27-Dec-98] $) $( Lemma used in study of orthoarguesian law. $) u1lem9ab $p |- ( a ' ->1 b ) ' =< ( a ->1 b ) $= ( wn wi1 u1lem9a u1lem9b letr ) ACZBDCHABDABEABFG $. $( [27-Dec-98] $) $( Lemma used in study of orthoarguesian law. $) u1lem11 $p |- ( ( a ' ->1 b ) ->1 b ) = ( a ->1 b ) $= ( wn wi1 wa ud1lem0c ax-a1 ax-r1 ax-r5 lan 3tr comanr1 com2or comcom com2an wo ax-r2 wt lor df-i1 u1lemab ran 2or comcom3 comor1 comor2 comcom7 comcom2 ax-a2 fh3r or32 ax-a3 orabs 3tr2 or12 anor2 df-t or1 2an an1 3tr1 ) ACZBDZC ZVCBEZPZVBABEZPZVCBDABDVFVBABCZPZEZVGVBBEZPZPVBVMPZVJVMPZEZVHVDVKVEVMVDVBVB CZVIPZEVKVBBFVRVJVBVQAVIAVQAGZHIJQVEVLVQBEZPVTVLPZVMVBBUAVLVTUIVMWAVGVTVLAV QBVSUBIHKUCVMVBVJVBVMVBVGVLAVGABLUDVBBLMNVJVMVJVGVLVJABAVIUEZVJBAVIUFUGZOVJ VBBVJAWBUHWCOMNUJVPVHREVHVNVHVORVHVLPVBVLPZVGPVNVHVBVGVLUKVBVGVLULWDVBVGVBB UMIUNVOVGVJVLPZPVGRPRVJVGVLUOWERVGWEVJVJCZPZRVLWFVJABUPSRWGVJUQHQSVGURKUSVH UTQKVCBTABTVA $. $( [28-Dec-98] $) $( Lemma used in study of orthoarguesian law. Equation 4.12 of [MegPav2000] p. 23. $) u1lem12 $p |- ( ( a ->1 b ) ->1 b ) = ( a ' ->1 b ) $= ( wi1 wn ax-a1 ud1lem0b u1lem11 ax-r2 ) ABCZBCADZDZBCZBCJBCILBAKBAEFFJBGH $. $( [28-Dec-98] $) $( Lemma for unified implication study. $) u2lem8 $p |- ( a ' ->2 ( a ->2 ( a ' ->2 b ) ) ) = ( a ->2 ( a ' ->2 b ) ) $= ( wn wi2 wa wo df-i2 wf u2lem7 ax-a1 ax-r1 u2lem7n 2an an12 anass anor1 lan dff ax-r2 an0 2or or0 ) ACZAUCBDDZDUDUCCZUDCZEZFZUDUCUDGUHABCZEZUCUIEFBFZHF ZUDUDUKUGHABIZUGAABFZUCBFZEZUIEZEZHUEAUFUQAUEAJKABLMURUPUJEZHAUPUINUSUNUOUJ EZEZHUNUOUJOVAUNHEHUTHUNUTUOUOCZEZHUJVBUOABPQHVCUORKSQUNTSSSSUAULUKUDUKUBUD UKUMKSSS $. $( [24-Dec-97] $) $( Lemma for unified implication study. $) u3lem8 $p |- ( a ' ->3 ( a ->3 ( a ' ->3 b ) ) ) = 1 $= ( wn wi3 wo wt comi31 comcom3 u3lemc4 wa ax-a1 ax-r1 u3lem7 2or ax-a3 ax-a2 df-t lor or1 ax-r2 ) ACZAUABDZDZDUACZUCEZFUAUCAUCAUBGHIUEAUAABJABCJEZEZEZFU DAUCUGAUDAKLABMNUHAUAEZUFEZFUJUHAUAUFOLUJUFUIEZFUIUFPUKUFFEFUIFUFFUIAQLRUFS TTTTT $. $( [24-Dec-97] $) $( Lemma for unified implication study. $) u3lem9 $p |- ( a ->3 ( a ->3 ( a ' ->3 b ) ) ) = ( a ->3 ( a ' ->3 b ) ) $= ( wn wi3 wo comi31 u3lemc4 wa u3lem7 lor ax-a3 ax-r1 oridm ax-r5 ax-r2 ) AA ACZBDZDZDPREZRARAQFGSPPABHABCHEZEZEZRRUAPABIZJUBPPEZTEZRUEUBPPTKLUEUARUDPTP MNRUAUCLOOOO $. $( [24-Dec-97] $) $( Lemma for unified implication study. $) u3lem10 $p |- ( a ->3 ( a ' ^ ( a v b ) ) ) = a ' $= ( wn wo wi3 df-i3 anass ax-r1 anidm ran ax-r2 anor3 lor oran1 lan omlan 2or wa wt orabs comanr1 comorr comcom3 fh4r df-t 2an an1 ancom ) AACZABDZRZEUIU KRZUIUKCZRZDZAUIUKDZRZDZUIAUKFURUIUIARZDUIUOUIUQUSUOUKUIBCZRZDZUIULUKUNVAUL UIUIRZUJRZUKVDULUIUIUJGHVCUIUJUIIJKUNUIAVADZRVAUMVEUIVEUMVEAUJCZDUMVAVFAABL ZMAUJNKHOAUTPKQVBUIVADZUJVADZRZUIUIVAUJUIUTUAAUJABUBUCUDVJUISRUIVHUIVISUIUT TVIUJVFDZSVAVFUJVGMSVKUJUEHKUFUIUGKKKUQAUIRUSUPUIAUIUJTOAUIUHKQUIATKK $. $( [17-Jan-98] $) $( u3lem10a $p |- ( a ->3 ( ( a ->3 b ) ->3 ( b ->3 a ) ) ' ) = a ' $= ?$. $) $( Lemma for unified implication study. $) u3lem11 $p |- ( a ->3 ( b ' ^ ( a v b ) ) ) = ( a ->3 b ' ) $= ( wn wo wa wi3 df-i3 lan lor ax-r5 wf anass ax-r1 ax-a2 ax-r2 ran 2or ancom 3tr1 wt ax-a1 oran dff anor3 oran1 coman1 coman2 comcom7 fh2 anidm or0 df-t ax-a3 or1 3tr2 an1 comor1 comcom2 comor2 fh4 id ) ABCZABDZEZFACZVDEZVEVDCZE ZDZAVEVDDZEZDZAVBFZAVDGVEVBEZVEBEZDZAVEVBDZEZDVNVEVBCZEZDZVRDVLVMVPWAVRVOVT VNBVSVEBUAHIJVIVPVKVRVIKVPDZVPVFKVHVPVNVCEZVNVNCZEVFKVCWDVNABUBHWCVFVEVBVCL MVNUCSVHVEVNBDZEZVPVGWEVEWEVGWEBVCCZDZVGWEWGBDWHVNWGBABUDJWGBNOBVCUEOMHWFVE VNEZVODVPVNVEBVEVBUFVNBVEVBUGUHUIWIVNVOWIVEVEEZVBEZVNWKWIVEVEVBLMWJVEVBVEUJ POJOOQWBVPKDVPKVPNVPUKOOAVEVCDZVQEZEVRVKVRWMVQAWMTVQEZVQWLTVQVEADZBDTBDZWLT WOTBWOAVEDZTVEANTWQAULMOJVEABUMWPBTDTTBNBUNOUOPWNVQTEVQTVQRVQUPOOHVJWMAVJVE VCVBEZDWMVDWRVEVBVCRIVCVEVBVCAABUQURVCBABUSURUTOHVRVASQAVBGSO $. $( [18-Jan-98] $) $( Lemma for unified implication study. $) u3lem11a $p |- ( a ->3 ( ( b ->3 a ) ->3 ( a ->3 b ) ) ' ) = ( a ->3 b ' ) $= ( wi3 wn wo wa ud3lem1 ancom anor3 ax-r2 lor oran1 con2 ud3lem0a u3lem11 ) ABACABCCZDZCABDZABEZFZCARCQTAPTPBRADZFZEZTDZBAGUCBSDZEUDUBUEBUBUARFUERUAHAB IJKBSLJJMNABOJ $. $( [18-Jan-98] $) $( Lemma for unified implication study. $) u3lem12 $p |- ( a ->3 ( a ->3 b ' ) ) ' = ( a ^ b ) $= ( wn wi3 wo wa lem4 ax-r4 df-a ax-r1 ax-r2 ) AABCZDDZCACLEZCZABFZMNALGHPOAB IJK $. $( [18-Jan-98] $) $( Lemma for unified implication study. $) u3lem13a $p |- ( a ->3 ( a ->3 b ' ) ' ) = ( a ->1 b ) $= ( wn wi3 wa wo ancom ax-r2 ax-a1 ax-r1 lan 2or comanr1 comorr ax-a2 lea lor wt comcom2 wf wi1 df-i3 u3lemnana u3lemana com2or com2an fh4r lel2or df-le2 comcom3 anor2 anor3 oran3 df-t 2an an1 comid comi31 fh1 dff u3lemnaa df-i1 or0 ) AABCZDZCZDACZVFEZVGVFCZEZFZAVGVFFEZFZABUAZAVFUBVMVGAVDCZEZFZVNVKVGVLV PVKVGAVDFZAVOFZEZEZVGVDEZVGVOEZFZFZVGVHWAVJWDVHVFVGEWAVGVFGAVDUCHVJVGVEEZWD VIVEVGVEVIVEIJKWFVEVGEWDVGVEGAVDUDHHLWEVGWDFZVTWDFZEZVGVGWDVTVGWBWCVGVDMVGV OMUEAVTAVRVSAVDNAVONUFUJUGWIVGREVGWGVGWHRWGWDVGFVGVGWDOWDVGWBVGWCVGVDPVGVOP UHUIHWHVTVTCZFZRWDWJVTWDVRCZVSCZFZWJWDWMWLFWNWBWMWCWLAVDUKAVDULLWMWLOHVRVSU MHQRWKVTUNJHUOVGUPHHHVLAVGEZAVFEZFZVPAVGVFAAAUQSAVEAVDURSUSWQTVPFZVPWOTWPVP TWOAUTJWPVFAEVPAVFGAVDVAHLWRVPTFVPTVPOVPVCHHHLVQVGABEZFZVNVPWSVGVOBABVOBIJK QVNWTABVBJHHH $. $( [18-Jan-98] $) $( Lemma for unified implication study. $) u3lem13b $p |- ( ( a ->3 b ' ) ->3 a ' ) = ( a ->1 b ) $= ( wn wa wo ax-r1 lan ax-r2 2or comanr1 comcom3 com2an com2or ax-a2 lea letr leo wf comcom wt wi3 wi1 df-i3 u3lemnana u3lemnaa comorr fh4r coman1 coman2 ax-a1 comcom7 fh3r df-le2 2an u3lemnona comi31 fh2 u3lemana anandi u3lemanb id u3lemaa an4 ancom dff an0 or0 comanr2 comcom2 comorr2 lel2or anor3 anor2 oran3 lor df-t an1 df-i1 ud1lem0a ) ABCZUAZACZUAWACZWBDZWCWBCZDZEZWAWCWBEZD ZEZABUBZWAWBUCWJWBAVTCZDZEZAVTEZAWLEZDZDZWBVTDZWBWLDZEZEZWKWGWRWIXAWGWBWQDZ WMEZWRWDXCWFWMAVTUDWFWCADWMWEAWCAWEAUJFGAVTUEHIXDWNWQWMEZDZWRWBWMWQAWMAWLJK ZAWQAWOWPAVTUFAWLUFLZKUGXFWNWOWMEZWPWMEZDZDZWRXEXKWNWMWOWPWMAVTAWLUHZWMVTAW LUIZUKMWMAWLXMXNMULGXLWRWRXKWQWNXKWQWQXIWOXJWPXIWMWOEWOWOWMNWMWOWMAWOAWLOZA VTQPUMHXJWMWPEWPWPWMNWMWPWMAWPXOAWLQPUMHUNWQVAHGWRVAHHHHWIWAWNDZXAWHWNWAAVT UOGXPWAWBDZWAWMDZEZXAWBWAWMAWAAVTUPKXGUQXSXAREXAXQXAXRRAVTURXRWAADZWAWLDZDZ RWAAWLUSYBAWBVTEZDZWTDZRXTYDYAWTAVTVBAVTUTUNYEAWBDZYCWLDZDZRAYCWBWLVCYHYGYF DZRYFYGVDYIYGRDRYFRYGRYFAVEFGYGVFHHHHHIXAVGHHHIXBWNXAEZWQXAEZDZWKWNXAWQXAWN XAWBWMWBXAWBWSWTWBVTJWBWLJMSZXAAWLXAAYMUKWLXAWLWSWTVTWSWBVTVHKWBWLVHMSLMSWQ WNWQWBWMWQAAWQXHSZVIWQAWLYNWLWQWLWOWPVTWOAVTVJKAWLVJLSLMSUGYLWNTDZWKYJWNYKT YJXAWNEZWNWNXANYPWNWNXAWNXAWBWNWSWBWTWBVTOWBWLOVKWBWMQPUMWNVAHHYKWQWQCZEZTX AYQWQXAWTWSEZYQWSWTNYSWOCZWPCZEYQWTYTWSUUAAVTVLAVTVMIWOWPVNHHVOTYRWQVPFHUNY OWNWKWNVQWNAWLUBZWKUUBWNAWLVRFWLBABWLBUJFVSHHHHHH $. $( [19-Jan-98] $) $( Lemma for unified implication study. $) u3lem14a $p |- ( a ->3 ( ( b ->3 a ' ) ->3 b ' ) ) = ( a ->3 ( b ->3 a ) ) $= ( wn wi3 u3lem13b ud3lem0a wa wo df-i3 ancom u1lemanb ax-r2 u1lemnanb ax-a2 wi1 2or wt u1lemonb lan an1 u3lem3 ax-r1 id ) ABACZDBCZDZDABAOZDZABADDZUFUG ABAEFUHUDUGGZUDUGCZGZHZAUDUGHZGZHZUIAUGIUPUDBGZUDUEGZHZAHZUIUMUSUOAUMUEUDGZ BUDGZHZUSUJVAULVBUJUGUDGVAUDUGJBAKLULUKUDGVBUDUKJBAMLPVCVBVAHUSVAVBNVBUQVAU RBUDJUEUDJPLLUOAQGAUNQAUNUGUDHQUDUGNBARLSATLPUTAUSHZUIUSANVDUIUIUIVDABUAUBU IUCLLLLL $. $( [19-Jan-98] $) $( Used to prove ` ->1 ` "add antecedent" rule in ` ->3 ` system. $) u3lem14aa $p |- ( a ->3 ( a ->3 ( ( b ->3 a ' ) ->3 b ' ) ) ) = 1 $= ( wn wi3 wt u3lem14a ud3lem0a i3th1 ax-r2 ) AABACDBCDDZDAABADDZDEJKAABFGABH I $. $( [19-Jan-98] $) $( Used to prove ` ->1 ` "add antecedent" rule in ` ->3 ` system. $) u3lem14aa2 $p |- ( a ->3 ( a ->3 ( b ->3 ( b ->3 a ' ) ' ) ) ) = 1 $= ( wn wi3 wt wi1 u3lem13a u3lem13b ax-r1 ax-r2 ud3lem0a u3lem14aa ) AABBACDZ CDZDZDAAMBCDZDZDEOQANPANBAFZPBAGPRBAHIJKKABLJ $. $( [19-Jan-98] $) $( Used to prove ` ->1 ` modus ponens rule in ` ->3 ` system. $) u3lem14mp $p |- ( ( a ->3 b ' ) ' ->3 ( a ->3 ( a ->3 b ) ) ) = 1 $= ( wn wo wa lear ax-a1 ax-r1 lbtr lelor letr ud3lem0c u3lem5 le3tr1 u3lemle1 wi3 ) ABCZPCZAABPPZAQCZDAQDEZACZATEZDZEZUBBDZRSUEUDUFUAUDFUCBUBUCTBATFBTBGH IJKAQLABMNO $. $( [19-Jan-98] $) $( Lemma for Kalmbach implication. $) u3lem15 $p |- ( ( a ->3 b ) ^ ( a v b ) ) = ( ( a ' v b ) ^ ( a v ( a ' ^ b ) ) ) $= ( wi3 wo wa wn dfi3b ran anass comor1 comcom2 comor2 com2an com2or fh1r lan wf ax-r2 2or 3tr leao4 lecom comcom anabs oran dff ax-r1 or0 df2le2 ) ABCZA BDZEAFZBDZAULBFZEZDZULBEZDZEZUKEUMURUKEZEUMAUQDZEUJUSUKABGHUMURUKIUTVAUMUTU PUKEZUQUKEZDVAUKUPUQUKAUOABJZUKULUNUKAVDKUKBABLKMZNUQUKUQUKBULAUAZUBUCOVBAV CUQVBAUKEZUOUKEZDAQDAUKAUOVDVEOVGAVHQABUDVHUOUOFZEZQUKVIUOABUEPQVJUOUFUGRSA UHTUQUKVFUISRPT $. $( [7-Aug-01] $) $( Possible axiom for Kalmbach implication system. $) u3lemax4 $p |- ( ( a ->3 b ) ->3 ( ( a ->3 b ) ->3 ( ( b ->3 a ) ->3 ( ( b ->3 a ) ->3 ( ( c ->3 ( c ->3 a ) ) ->3 ( c ->3 ( c ->3 b ) ) ) ) ) ) ) = 1 $= ( wi3 wn wo wt lem4 2i3 lor ax-r2 tb wa u3lembi ax-r4 ax-r1 conb ancom bltr anor1 oran3 ax-r5 ax-a3 le1 ska4 2bi 2or lea lelor lebi 3tr2 ) ABDZULBADZUM CCADDZCCBDDZDZDDZDDULEZUQFZGULUQHUSURUMEZCEZAFZVABFZDZFZFZGUQVEURUQUTUPFVEU MUPHUPVDUTUNVBUOVCCAHCBHIJKJURUTFZVDFABLZEZVDFZVFGVGVIVDVGULUMMZEVIULUMUAVK VHABNOKUBURUTVDUCVJGVJUDGVIVBVCLZFZVJGAEZBEZLZEZVNCMZVOCMZLZFZVMWAGVNVOCUEP VMWAVIVQVLVTVHVPABQOVLVBEZVCEZLZVTVBVCQVTWDVRWBVSWCVRCVNMWBVNCRCATKVSCVOMWC VOCRCBTKUFPKUGPKVLVDVIVLVDVCVBDZMZVDWFVLVBVCNPVDWEUHSUISUJUKKK $. $( [21-Jan-98] $) $( Possible axiom for Kalmbach implication system. $) u3lemax5 $p |- ( ( a ->3 b ) ->3 ( ( a ->3 b ) ->3 ( ( b ->3 a ) ->3 ( ( b ->3 a ) ->3 ( ( b ->3 c ) ->3 ( ( b ->3 c ) ->3 ( ( c ->3 b ) ->3 ( ( c ->3 b ) ->3 ( a ->3 c ) ) ) ) ) ) ) ) ) = 1 $= ( wi3 wn wo wt lem4 tb lor ax-a3 ax-r1 oran3 u3lembi ax-r4 ax-r2 ax-r5 bltr wa lelor le1 ska2 lea lebi ) ABDZUEBADZUFBCDZUGCBDZUHACDZDDZDDZDDZDDUEEZULF ZGUEULHUNUMUFEZBCIZEZUIFZFZFZGULUSUMULUOUKFUSUFUKHUKURUOUKUGEZUJFZURUGUJHVB VAUHEZUIFZFZURUJVDVAUHUIHJVEVAVCFZUIFZURVGVEVAVCUIKLVFUQUIVFUGUHSZEUQUGUHMV HUPBCNOPQPPPJPJUTUMUOFZURFZGVJUTUMUOURKLVJABIZEZURFZGVIVLURVIUEUFSZEVLUEUFM VNVKABNOPQVMGVMUAGVLUQACIZFZFZVMVQGABCUBLVPURVLVOUIUQVOUICADZSZUIVSVOACNLUI VRUCRTTRUDPPPP $. $( [23-Jan-98] $) $( Equivalence to biconditional. $) bi1o1a $p |- ( a == b ) = ( ( a ->1 ( a ^ b ) ) ^ ( ( a v b ) ->1 a ) ) $= ( wn wa wo tb wi1 lea leo letr ax-r1 leid ler2an lear lebi ax-r2 3tr1 df-i1 wf 2or lecom comcom comor1 comcom7 fh1 dfb ax-a2 dff ancom ax-r5 or0r comid df2le2 comcom2 comanr1 fh1r 3tr lor anor3 2an ) ACZABDZEZVABCZDZDZVCADZEZVC VEAEZDZABFZAVBGZABEZAGZDVJVHVCVEAVEVCVEVCVEVAVCVAVDHVAVBIJZUAUBVCAVAVBUCUDU EKVKVBVEEVEVBEVHABUFVBVEUGVEVFVBVGVEVFVEVCVEVOVELMVCVENOSVBADZEZVAADZVPEVBV GSVRVPSAVADVRAUHAVAUIPUJVBVPVQVPVBVBAABHZUMKVQVPVPUKKPAVAVBAAAULUNABUOUPQTU QVLVCVNVIVLVAAVBDZEVCAVBRVTVBVAVTVBAVBNVBAVBVSVBLMOURPVNVMCZVMADZEVIVMARWAV EWBAVEWAABUSKWBAVMANAVMAABIALMOTPUTQ $. $( [5-Jul-00] $) $( Equivalence to biconditional. $) biao $p |- ( a == b ) = ( ( a ^ b ) == ( a v b ) ) $= ( wa wn wo tb leao1 df2le2 ax-r1 anor3 lecon df-le1 ler2an lear df-le2 lebi oridm ax-r2 2or dfb 3tr1 ) ABCZADBDCZEUBABEZCZUBDZUDDZCZEABFUBUDFUBUEUCUHUE UBUBUDABBGZHIUCUGUHABJUGUHUGUFUGUBUDUIKUGUGUGQLMUHUGUHUGUFUGNOLPRSABTUBUDTU A $. $( [8-Jul-00] $) $( Equivalence to ` ->2 ` . $) i2i1i1 $p |- ( a ->2 b ) = ( ( a ->1 ( a v b ) ) ^ ( ( a v b ) ->1 b ) ) $= ( wn wa wo wi2 wi1 an1r ax-r1 df-i2 anabs ax-a2 ax-r2 df-i1 df-t 3tr1 anor3 wt lor leor leid ler2an lear lebi 2or 3tr 2an ) BACZBCDZEZRUJDZABFAABEZGZUL BGZDUKUJUJHIABJUMRUNUJUHAULDZEZAUHEZUMRUPUHAEUQUOAUHABKSUHALMAULNAOPUNULCZU LBDZEZUIBEZUJULBNVAUTUIURBUSABQBUSBULBBATBUAUBULBUCUDUEIUIBLUFUGP $. $( [5-Jul-00] $) $( An absorption law for ` ->1 ` . $) i1abs $p |- ( ( a ->1 b ) ' v ( a ^ b ) ) = a $= ( wi1 wn wa wo ud1lem0c ax-r5 comanr1 comorr comcom6 fh4r wt orabs df-a lor df-t ax-r1 ax-r2 2an an1 3tr ) ABCDZABEZFAADZBDZFZEZUDFAUDFZUGUDFZEZAUCUHUD ABGHAUDUGABIAUGUEUFJKLUKAMEAUIAUJMABNUJUGUGDZFZMUDULUGABOPMUMUGQRSTAUASUB $. $( [21-Feb-02] $) $( Part of an attempt to crack a potential Kalmbach axiom. $) test $p |- ( ( ( c v ( a ' v b ' ) ) ^ ( c ' ^ ( c v ( a ^ b ) ) ) ) v ( ( c ' ^ ( a ^ b ) ) v ( c ^ ( c ' v ( a ^ b ) ) ) ) ) = ( ( c v ( a ^ b ) ) ^ ( c ' v ( a ^ b ) ) ) $= ( wn wo wa oran3 lor ax-r5 comor1 comor2 com2an com2or wt ax-a3 ax-r1 ax-a2 comcom7 ax-r2 2an ran comcom2 fh4r anor2 df-t or1 leor df-le2 coman1 comcom lelan fh3 oml or12 orabs ancom an1 ) CADBDEZEZCDZCABFZEZFZFZUTVAFZCUTVAEZFZ EZECVADZEZVCFZVHEZVBVFFZVDVKVHUSVJVCURVICABGHUAIVLVJVHEZVCVHEZFZVMVJVHVCVJV EVGVJUTVAVJCCVIJZUBZVJVACVIKRZLVJCVFVQVJUTVAVRVSMLMVJUTVBVRVJCVAVQVSMLUCVPN VMFZVMVNNVOVMVNVJVEEZVGEZNWBVNVJVEVGOPWBVGWAEZNWAVGQWCVGNENWANVGWAVJVJDZEZN VEWDVJCVAUDHNWEVJUEPSHVGUFSSSVOVCVEEZVGEZVMWGVOVCVEVGOPWGVCVGEZVMWFVCVGWFVE VCEVCVCVEQVEVCVAVBUTVACUGUKUHSIWHVCCEZVCVFEZFVMVCCVFVCCUTVBUIRVFVCVFUTVBUTV AJZVFCVAVFCWKRUTVAKMLUJULWIVBWJVFWICVCEVBVCCQCVAUMSWJUTVCVAEEZVFVCUTVAUNWLU TVCEZVAEZVFWNWLUTVCVAOPWMUTVAUTVBUOISSTSSSTVTVMNFVMNVMUPVMUQSSSS $. $( [29-Dec-97] $) $( Part of an attempt to crack a potential Kalmbach axiom. $) test2 $p |- ( a v b ) =< ( ( a == b ) ' v ( ( c v ( a ^ b ) ) ^ ( c ' v ( a ^ b ) ) ) ) $= ( wo tb wn wa dfnb anidm 2or comor1 comor2 com2an comcom2 com2or fh4r ax-r2 wt ax-r1 leor ax-a2 lea leo letr df-le2 df-a lor df-t 2an le2an lelor bltr an1 ) ABDZABEFZABGZUPGZDZUOCUPDZCFZUPDZGZDURUNURUNAFZBFZDZGZUPDZUNUOVFUQUPA BHUPIJVGUNUPDZVEUPDZGZUNUNUPVEUNABABKZABLZMUNVCVDUNAVKNUNBVLNOPVJUNRGUNVHUN VIRVHUPUNDUNUNUPUAUPUNUPAUNABUBABUCUDUEQVIVEVEFZDZRUPVMVEABUFUGRVNVEUHSQUIU NUMQQQSUQVBUOUPUSUPVAUPCTUPUTTUJUKUL $. $( [29-Dec-97] $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Some 3-variable theorems =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( A 3-variable theorem. Equivalent to OML. $) 3vth1 $p |- ( ( a ->2 b ) ^ ( b v c ) ' ) =< ( a ->2 c ) $= ( wn wa wo wi2 anor3 lan ax-r1 anass ax-r2 ancom omlan lear bltr leran leor letr df-i2 lor ran le3tr1 ) BBDZADZEZFZBCFDZEZCUECDZEZFZABGZUHEACGUIUKULUIU GUDEZUJEZUKUIUGUDUJEZEZUOUQUIUPUHUGBCHIJUOUQUGUDUJKJLUNUEUJUNUFUEUNUDUGEUFU GUDMBUENLUDUEOPQPUKCRSUMUGUHUMBUEUDEZFUGABTURUFBUEUDMUALUBACTUC $. $( [18-Oct-98] $) $( A 3-variable theorem. Equivalent to OML. $) 3vth2 $p |- ( ( a ->2 b ) ^ ( b v c ) ' ) = ( ( a ->2 c ) ^ ( b v c ) ' ) $= ( wi2 wo wn wa 3vth1 lear ler2an ax-a2 ax-r4 lan bltr lebi ) ABDZBCEZFZGZAC DZRGZSTRABCHPRIJUAPRUATCBEZFZGPRUCTQUBBCKLMACBHNTRIJO $. $( [18-Oct-98] $) $( A 3-variable theorem. Equivalent to OML. $) 3vth3 $p |- ( ( a ->2 c ) v ( ( a ->2 b ) ^ ( b v c ) ' ) ) = ( a ->2 c ) $= ( wi2 wo wn wa ax-a2 3vth1 df-le2 ax-r2 ) ACDZABDBCEFGZEMLELLMHMLABCIJK $. $( [18-Oct-98] $) $( A 3-variable theorem. $) 3vth4 $p |- ( ( a ->2 b ) ' ->2 ( b v c ) ) = ( ( a ->2 c ) ' ->2 ( b v c ) ) $= ( wo wi2 wn wa 3vth2 ax-a1 ran 3tr2 lor df-i2 3tr1 ) BCDZABEZFZFZOFZGZDOACE ZFZFZSGZDQOEUBOETUDOPSGUASGTUDABCHPRSPIJUAUCSUAIJKLQOMUBOMN $. $( [18-Oct-98] $) $( A 3-variable theorem. $) 3vth5 $p |- ( ( a ->2 b ) ' ->2 ( b v c ) ) = ( c v ( ( a ->2 b ) ^ ( c ->2 b ) ) ) $= ( wo wn wi2 ax-a3 or12 comorr comcom2 fh3 ax-r1 oridm ax-r5 ax-r2 ancom lor wa 2an df-i2 anor3 ax-a1 ran 3tr1 ) BCDZBAEBEZRZDZUEEZRZDZCUHBCEZUFRZDZRZDZ ABFZEZUEFZCUQCBFZRZDUKBCUJDDZUPBCUJGVBCBUJDZDUPBCUJHVCUOCVCBUHDZBUIDZRUOBUH UIBUGIBUEBCIJKVDUHVEUNVDBBDZUGDZUHVGVDBBUGGLVFBUGBMNOUIUMBUMUIUMUFULRUIULUF PBCUAOLQSOQOOUSUEUREZUIRZDZUKURUETUKVJUJVIUEUHVHUIUHUQVHUQUHABTZLUQUBOUCQLO VAUOCUQUHUTUNVKCBTSQUD $. $( [18-Oct-98] $) $( A 3-variable theorem. $) 3vth6 $p |- ( ( a ->2 b ) ' ->2 ( b v c ) ) = ( ( ( a ->2 b ) ^ ( c ->2 b ) ) v ( ( a ->2 c ) ^ ( b ->2 c ) ) ) $= ( wi2 wn wo wa oridm ax-r1 3vth4 3vth5 ax-a2 ax-r2 2or or4 leo df-i2 ler2an lbtr df-le2 lor ud2lem0a ax-r5 ) ABDZEBCFZDZUFUFFZUDCBDZGZACDZBCDZGZFZUGUFU FHIUGUFUJEZUEDZFZUMUFUOUFABCJUAUPCUIFZBULFZFZUMUFUQUOURABCKUOUNCBFZDURUEUTU NBCLUBACBKMNUSUTUMFZUMCUIBULOVAUEUMFZUMUTUEUMCBLUCVBBUIFZCULFZFUMBCUIULOVCU IVDULBUIBUDUHBBAEZBEZGZFZUDBVGPUDVHABQISBBCEZVFGZFZUHBVJPUHVKCBQISRTCULCUJU KCCVEVIGZFZUJCVLPUJVMACQISCCVFVIGZFZUKCVNPUKVOBCQISRTNMMMMMM $. $( [18-Oct-98] $) $( A 3-variable theorem. $) 3vth7 $p |- ( ( a ->2 b ) ' ->2 ( b v c ) ) = ( a ->2 ( b v c ) ) $= ( wi2 wa wo wn df-i2 2an anass ax-r1 anor3 lan an32 3tr lor comanr2 comcom6 3tr2 ax-r2 anidm an4 fh3 3vth5 ax-a3 or12 3tr1 ) CABDZCBDZEZFCBAGZBCFZGZEZF ZFZUHGULDAULDZUJUOCUJBUKBGZEZFZBCGZUREZFZEZUOUHUTUIVCABHCBHIUOVDUOBUSVBEZFV DUNVEBUNUKVAEZUREZVFURUREZEZVEUKURVAEZEZUSVAEZUNVGVLVKUKURVAJKVJUMUKBCLMUKU RVANSVIVGVHURVFURUAMKUKVAURURUBOPBUSVBBUSUKURQRBVBVAURQRUCTKTPABCUDUQULUNFB CUNFFUPAULHBCUNUEBCUNUFOUG $. $( [18-Oct-98] $) $( A 3-variable theorem. $) 3vth8 $p |- ( a ->2 ( b v c ) ) = ( ( ( a ->2 b ) ^ ( c ->2 b ) ) v ( ( a ->2 c ) ^ ( b ->2 c ) ) ) $= ( wo wi2 wn wa 3vth7 ax-r1 3vth6 ax-r2 ) ABCDZEZABEZFLEZNCBEGACEBCEGDOMABCH IABCJK $. $( [18-Oct-98] $) $( A 3-variable theorem. $) 3vth9 $p |- ( ( a v b ) ->1 ( c ->2 b ) ) = ( ( b v c ) ->2 ( a ->2 b ) ) $= ( wo wn wi2 wa wi1 anor3 ax-r1 df-i2 lan 2or df-i1 ud2lem0c 2an ax-r2 ancom anandi lor anass or32 comanr1 comcom6 comorr2 or12 oridm ax-r5 ax-a2 3tr1 fh3 ) ABDZEZULCBFZGZDAEBEZGZULBCEZUPGZDZGZDZULUNHBCDZABFZFZUMUQUOVAUQUMABIJ UNUTULCBKLMULUNNVEBUQDZUPURGZULGZDZVBVEVDVCEZVDEZGZDVIVCVDKVDVFVLVHABKVLVGU PULGZGZVHVJVGVKVMVGVJBCIJABOPVNUPURULGGZVHVOVNUPURULSJVHVOUPURULUAJQQMQVIBV HDZUQDZVBBUQVHUBVQVAUQDVBVPVAUQVPBVGDZBULDZGZVABVGULBVGUPURUCUDABUEUKVTUTUL GVAVRUTVSULVGUSBUPURRTVSABBDZDULBABUFWABABUGTQPUTULRQQUHVAUQUIQQQUJ $. $( [16-Nov-98] $) $( 3-variable commutation theorem. $) 3vcom $p |- ( ( a ->1 c ) v ( b ->1 c ) ) C ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) $= ( wn wi1 wa wo oran3 ax-r1 u1lem9ab le2or lecom bctr comcom6 comcom ) ADCEZ BDCEZFZACEZBCEZGZRUARDZPDZQDZGZUAUEUBPQHIUEUAUCSUDTACJBCJKLMNO $. $( [19-Mar-99] $) ${ 3vded11.1 $e |- b =< ( c ->1 ( b ->1 a ) ) $. $( A 3-variable theorem. Experiment with weak deduction theorem. $) 3vded11 $p |- c =< ( b ->1 a ) $= ( wi1 wt le1 wn wa df-t ancom anor2 ax-r2 lor ax-r1 ax-a3 3tr df-i1 lbtr wo leo lelan lelor lel2or bltr lebi u1lemle2 ) CBAEZCUHEZFUIGFBCHZCBHZIZT ZTZUIFBUJTZUOHZTZUOULTZUNUOJURUQULUPUOULUKCIUPCUKKBCLMNOBUJULPQBUIUMDUMUJ CUHIZTZUIULUSUJUKUHCUKUKBAIZTZUHUKVAUAUHVBBAROSUBUCUIUTCUHROSUDUEUFUG $. $( [25-Oct-98] $) $} ${ 3vded12.1 $e |- ( a ^ ( c ->1 a ) ) =< ( c ->1 ( b ->1 a ) ) $. 3vded12.2 $e |- c =< a $. $( A 3-variable theorem. Experiment with weak deduction theorem. $) 3vded12 $p |- c =< ( b ->1 a ) $= ( wi1 wt le1 wn wo df-t wa an1 ax-r1 u1lemle1 lan ax-r2 bltr lecon leo df-i1 lbtr letr lel2or lebi u1lemle2 ) CBAFZCUGFZGUHHGAAIZJUHAKAUHUIAACAF ZLZUHAAGLZUKULAAMNUKULUJGACAEOPNQDRUICIZUHCAESUMUMCUGLZJZUHUMUNTUHUOCUGUA NUBUCUDRUEUF $. $( [25-Oct-98] $) $} ${ 3vded13.1 $e |- ( b ^ ( c ->1 a ) ) =< ( c ->1 ( b ->1 a ) ) $. 3vded13.2 $e |- c =< a $. $( A 3-variable theorem. Experiment with weak deduction theorem. $) 3vded13 $p |- c =< ( b ->1 a ) $= ( wi1 wa wt an1 ax-r1 u1lemle1 lan ax-r2 bltr 3vded11 ) ABCBBCAFZGZCBAFFB BHGZQRBBIJHPBPHCAEKJLMDNO $. $( [25-Oct-98] $) $} ${ 3vded21.1 $e |- c =< ( ( a ->0 b ) ->0 ( c ->2 b ) ) $. 3vded21.2 $e |- c =< ( a ->0 b ) $. $( A 3-variable theorem. Experiment with weak deduction theorem. $) 3vded21 $p |- c =< b $= ( wf wo wa wn wi0 df-i0 lbtr lor ax-r2 2or ax-a2 3tr comor2 comcom2 anabs wi2 ax-r4 df-i2 anor3 ler2an leror ax-a3 oridm lecom comcom comid fh1 or0 com2or ax-r1 dff ran ancom ax-r5 3tr2 leran com2an fh1r an32 anass le3tr2 lan an0 ) CBFGZBCCBGZHBAIZBGZVJIZHZGZVJHZCVICVOVJCVLBVMGZVLIZGZHZVOCVLVSC ABJZVLEABKZLZCWACBUAZJZVSDWEWAIZWDGVRVQGVSWAWDKWFVRWDVQWAVLWBUBWDBCIBIHZG VQCBUCWGVMBCBUDMNOVRVQPQLUEVTVLVQHZVLVRHZGZVOVLVQVRVLBVMVKBRZVLVJVJVLVJVL VJVLBGZVLCVLBWCUFWLVKBBGZGVLVKBBUGWMBVKBUHMNLUIZUJSZUNVLVLVLUKSULVLBHZVNG ZFGWQWJVOWQUMWQWHFWIWHWQVLBVMWKWOULUOVLUPOWPBVNWPBVKGZBHBWRHBVLWRBVKBPUQW RBURBVKTQUSUTNLVACBTVPBVJHZVNVJHZGVIVJBVNCBRVJVLVMWNVJVJVJUKSVBVCWSBWTFWS BBCGZHBVJXABCBPVGBCTNWTVLVJHVMHVLVJVMHZHZFVLVMVJVDVLVJVMVEXCVLFHZFXDXCFXB VLVJUPVGUOVLVHNQONVFBUML $. $( [31-Oct-98] $) $} ${ 3vded22.1 $e |- c =< ( C ( a , b ) v C ( c , b ) ) $. 3vded22.2 $e |- c =< a $. 3vded22.3 $e |- c =< ( a ->0 b ) $. $( A 3-variable theorem. Experiment with weak deduction theorem. $) 3vded22 $p |- c =< b $= ( wn wa wo wi0 wcmtr df-cmtr or4 ax-r2 lear lel2or leran le2or bltr df-i0 wi2 lecon lelor leror letr or12 ax-r4 anor1 ax-r1 df-i2 2or oridm 3vded21 3tr1 lbtr ) ABCCBABGZHZCGZUPHZIZIZVAIZABJZCBUAZJZCABKZCBKZIVBDVFVAVGVAVFA BHZAGZBHZIZUQVIUPHZIZIZVAVFVHUQIVJVLIIVNABLVHUQVJVLMNVKBVMUTVHBVJABOVIBOP VLUSUQVIURUPCAEUBQUCRSVGCBHZURBHZIZCUPHZUSIZIZVAVGVOVRIVPUSIIVTCBLVOVRVPU SMNVQBVSUTVOBVPCBOURBOPVRUQUSCAUPEQUDRSRUEVEVBVEVCGZVDIZVBVCVDTUQBUSIZIVA WBVBUQBUSUFWAUQVDWCWAVIBIZGZUQVCWDABTUGUQWEABUHUINCBUJUKVAULUNNUIUOFUM $. $( [31-Oct-98] $) $} ${ 3vded3.1 $e |- ( c ->0 C ( a , c ) ) = 1 $. 3vded3.2 $e |- ( c ->0 a ) = 1 $. 3vded3.3 $e |- ( c ->0 ( a ->0 b ) ) = 1 $. $( A 3-variable theorem. Experiment with weak deduction theorem. $) 3vded3 $p |- ( c ->0 b ) = 1 $= ( wi0 wn wo wt df-i0 wa wcmtr lor 3tr1 ax-r2 ax-r1 wf ancom 3tr2 cmtrcom ax-a3 i0cmtrcom comcom4 comid comcom3 fh1 lan dff or0 an1 orabs ax-r5 3tr comcom ) CBGCHZBIZCABGZGZJCBKUPAHZIZBIZUPUTBIZIZUQUSUPUTBUBVBUQVAUPBVAUPU PUTLZIUPUTVEUPUTJLZUTUPLZUTVEUTUPAIZLVGUTALZIZVFVGUTUPAUPUTCACACCAMZGZCAC MZGZJUPVKIUPVMIVLVNVKVMUPCAUANCVKKCVMKODPUCUDUOAAAUEUFUGVHJUTVHCAGZJVOVHC AKQEPUHVJVGRIZVGVPVJRVIVGRAUTLVIAUIAUTSPNQVGUJPTUTUKUTUPSTNUPUTULPUMQUSUP URIVDCURKURVCUPABKNPOFUN $. $( [24-Jan-99] $) $} $( Orthoarguesian-like law with ` ->1 ` instead of ` ->0 ` but true in all OMLs. $) 1oa $p |- ( ( a ->2 b ) ^ ( ( b v c ) ->1 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) =< ( a ->2 c ) $= ( wn wa wo wi2 lear an12 lerr lan ax-r1 coman1 bctr comcom2 df-i2 2an anass wf ax-r2 wi1 bltr leid letr df-i1 fh2c anor3 comid comcom3 comanr2 fh1r dff lel2or anidm 2or ax-a2 or0 3tr ran 3tr2 lea lecom fh3 coman2 oran cbtr 3tr1 com2an le3tr1 ) ADZBDZCDZEZEZBCFZFZVNBVJVKEZFZFZEZVNCVJVLEZFZFZEZWBABGZVOWE ACGZEZUAZEZWFWDWCWBVTWCHVNWBWBVNVKWAEZWBVJVKVLIZWJWACVKWAHJZUBWBUCUMUDWIWEV ODZVOWGEZFZEWEWMEZWEWNEZFZWDWHWOWEVOWGUEKWNWEWMWNWEVOWFEZEZWEWTWNWEVOWFILWE WSMNWNVOVOWGMOUFWRVNVOVRWBEZEZFZWDWPVNWQXBWPVRVMEZVNWEVRWMVMABPZVMWMBCUGLQV RVKEZVLEVQVLEZXDVNXFVQVLXFBVKEZVQVKEZFSVQFZVQVKBVQBBBUHUIVJVKUJUKXHSXIVQSXH BULLXIVJVKVKEZEVQVJVKVKRXKVKVJVKUNKTUOXJVQSFVQSVQUPVQUQTURUSVRVKVLRVJVKVLRZ UTTWQVOWEWGEZEXBWEVOWGIXMXAVOXMWEWEEZWFEZXAXOXMWEWEWFRLXNVRWFWBXNWEVRWEUNXE TACPZQTKTUOVPVNXAFZEVPVSWCEZEXCWDXQXRVPVNVRWBVNXGVRXGVNXLLXGVRXGVQBVQVLVAJV BNZVNWJWBWKWJWBWLVBNZVCKVNVOXAVNVMDZVOVNVMVJVMVDOVOYABCVELVFVNVRWBXSXTVHVCV PVSWCRVGTURXPVI $. $( [1-Nov-98] $) $( Orthoarguesian-like OM law. $) 1oai1 $p |- ( ( a ->1 c ) ^ ( ( a ^ b ) ' ->1 ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) =< ( b ->1 c ) $= ( wn wi2 wo wa wi1 1oa i1i2 oran3 ax-r1 2an ud1lem0ab le3tr1 ) CDZADZEZQBDZ FZRPSEZGZHZGUAACHZABGDZUDBCHZGZHZGUFPQSIUDRUHUCACJZUETUGUBTUEABKLUDRUFUAUIB CJZMNMUJO $. $( [30-Dec-98] $) $( Orthoarguesian-like OM law. $) 2oai1u $p |- ( ( a ->1 c ) ^ ( ( ( a ->1 c ) ^ ( b ->1 c ) ) ' ->2 ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) ) =< ( b ->1 c ) $= ( wn wi1 wa wi2 1oai1 u1lem11 2an ax-r1 ud1lem0a i1i2con2 ax-r2 le3tr2 ) AD CEZCEZPBDCEZFZDZQRCEZFZEZFUAACEZUDBCEZFZDSGZFUEPRCHQUDUCUGACIZUCTUFEZUGUIUC UFUBTUBUFQUDUAUEUHBCIZJKLKSUFMNJUJO $. $( [28-Feb-99] $) $( OML analog to orthoarguesian law of Godowski/Greechie, Eq. III with ` ->1 ` instead of ` ->0 ` . $) 1oaiii $p |- ( ( a ->2 b ) ^ ( ( b v c ) ->1 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) = ( ( a ->2 c ) ^ ( ( b v c ) ->1 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) $= ( wi2 wo wa wi1 anass anidm lan ax-r2 ax-r1 leran bltr ancom ud1lem0a ax-a2 1oa ud1lem0b ran lebi ) ABDZBCEZUBACDZFZGZFZUDUFFZUGUGUFFZUHUIUGUIUBUFUFFZF UGUBUFUFHUJUFUBUFIZJKLUGUDUFABCRMNUHUDCBEZUDUBFZGZFZUFFZUGUPUHUPUDUNUFFZFUH UDUNUFHUQUFUDUQUJUFUNUFUFUNULUEGUFUMUEULUDUBOPULUCUECBQSKTUKKJKLUOUBUFACBRM NUA $. $( [1-Nov-98] $) $( OML analog to orthoarguesian law of Godowski/Greechie, Eq. II with ` ->1 ` instead of ` ->0 ` . $) 1oaii $p |- ( b ' ^ ( ( a ->2 b ) v ( ( a ->2 c ) ^ ( ( b v c ) ->1 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) ) =< a ' $= ( wn wi2 wo wi1 orabs 1oaiii lor df-i2 ancom ax-r2 3tr2 lan omlan lear bltr wa ) BDZABEZACEZBCFUAUBSGZSZFZSZTADZSZUGUFTBUHFZSUHUEUITUAUAUCSZFUAUEUIUAUC HUJUDUAABCIJUABUGTSZFUIABKUKUHBUGTLJMNOBUGPMTUGQR $. $( [1-Nov-98] $) $( Lemma for OA-like stuff with ` ->2 ` instead of ` ->0 ` . $) 2oalem1 $p |- ( ( a ->2 b ) ' v ( ( b v c ) v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) = 1 $= ( wi2 wn wo wa wt or12 df-i2 2an lor or32 ax-a2 lan ax-r5 ax-r2 anor3 ax-r1 3tr ud2lem0c 2or oml 3tr1 ax-a3 oran lear bltr leo letr lecom comcom le3tr2 comcom6 fh3 df-t or1 anidm 3tr2 ) ABDZEZBCFZUTACDZGZFFVBVAVDFZFVBBEZABFZGZB AEZVFGZFZCVICEZGZFZGZFZFZHVAVBVDIVEVPVBVAVHVDVOABUAUTVKVCVNABJACJKUBLVBVHFZ VOFVGCFZVOFZVQHVRVSVOVRBVHFZCFVSBCVHMWAVGCBVFBAFZGZFWBWAVGBAUCVHWCBVGWBVFAB NZOLWDUDPQPVBVHVOUEVTVSVKFZVSVNFZGHHGHVSVKVNVKVSVKVSVKEZVSWGVGVSWGVHVGVHWGV HVFVJEZGWGVGWHVFABUFOBVJRQSVFVGUGUHVGCUIUJUKUNULVNVSVNVSVNEZVSVLACFZGZWJBFZ WIVSWKWJWLVLWJUGWJBUIUJWKVLVMEZGWIWJWMVLACUFOCVMRQACBMUMUKUNULUOWEHWFHWEBVS VJFZFBHFZHVSBVJIWNHBWNVGVJFZCFCWPFZHVGCVJMWPCNWQCHFZHWPHCWPVGVGEZFZHVJWSVGA BRLHWTVGUPSQLCUQZQTLBUQZTWFCVSVMFZFWRHVSCVMIXCHCXCBWJFZVMFBWJVMFZFZHVSXDVMV SWLXDABCMWJBNQPBWJVMUEXFWOHXEHBXEWJWJEZFZHVMXGWJACRLHXHWJUPSQLXBQTLXATKHURT UST $. $( [15-Nov-98] $) $( OA-like theorem with ` ->2 ` instead of ` ->0 ` . $) 2oath1 $p |- ( ( a ->2 b ) ^ ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) = ( ( a ->2 b ) ^ ( a ->2 c ) ) $= ( wi2 wo wa wn df-i2 lan coman1 comorr2 comcom2 anor3 ax-r1 fh2 anass ax-r2 cbtr wf wt anidm ran oran lor 2oalem1 ax-r4 df-a df-f 3tr1 2or or0 3tr ) AB DZBCEZUMACDZFZDZFUMUPUNGUPGFZEZFUMUPFZUMURFZEZUPUQUSUMUNUPHIUPUMURUMUOJUPUN UPEZGZURUPVCUNUPKLURVDUNUPMNROVBUPSEUPUTUPVASUTUMUMFZUOFZUPVFUTUMUMUOPNVEUM UOUMUAUBQUMGZURGZEZGTGVASVITVIVGVCEZTVJVIVCVHVGUNUPUCUDNABCUEQUFUMURUGUHUIU JUPUKQUL $. $( [15-Nov-98] $) $( Orthoarguesian-like OM law. $) 2oath1i1 $p |- ( ( a ->1 c ) ^ ( ( a ^ b ) ' ->2 ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) = ( ( a ->1 c ) ^ ( b ->1 c ) ) $= ( wn wi2 wo wa wi1 2oath1 i1i2 2an ud2lem0a oran3 ax-r1 ud2lem0b ax-r2 3tr1 ) CDZADZEZSBDZFZTRUAEZGZEZGUDACHZABGDZUFBCHZGZEZGUIRSUAIUFTUJUEACJZUJUGUDEU EUIUDUGUFTUHUCUKBCJKZLUGUBUDUBUGABMNOPKULQ $. $( [30-Dec-98] $) $( Orthoarguesian-like OM law. $) 1oath1i1u $p |- ( ( a ->1 c ) ^ ( ( ( a ->1 c ) ^ ( b ->1 c ) ) ' ->1 ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) ) = ( ( a ->1 c ) ^ ( b ->1 c ) ) $= ( wn wi1 wa wi2 2oath1i1 u1lem11 2an ud2lem0a i1i2con2 ax-r1 ax-r2 3tr2 ) A DCEZCEZPBDCEZFZDZQRCEZFZGZFUBACEZUDBCEZFZDSEZFUFPRCHQUDUCUGACIZUCTUFGZUGUBU FTQUDUAUEUHBCIJZKUGUIUFSLMNJUJO $. $( [28-Feb-99] $) $( Relation for studying OA. $) oale $p |- ( ( a ->2 b ) ^ ( ( b v c ) v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ' ) =< ( a ->2 c ) $= ( wi2 wo wa wn df-i2 lan coman1 comanr2 comcom6 fh2 anass ax-r1 anidm ax-r2 ran anor3 2or ax-a2 3tr 2oath1 df-le1 lear letr ) ABDZBCEZUGACDZFZEGZFZUJUI ULUJULUJEZUGUHUJDZFZUJUOUMUOUGUJUHGZUJGZFZEZFUGUJFZUGURFZEZUMUNUSUGUHUJHIUJ UGURUGUIJUJURUPUQKLMVBUJULEUMUTUJVAULUTUGUGFZUIFZUJVDUTUGUGUINOVCUGUIUGPRQU RUKUGUHUJSITUJULUAQUBOABCUCQUDUGUIUEUF $. $( [18-Nov-98] $) ${ oaeqv.1 $e |- ( ( a ->2 b ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) =< ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $. $( Weakened OA implies OA). $) oaeqv $p |- ( ( a ->2 b ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) =< ( a ->2 c ) $= ( wi2 wo wn wa lea ler2an 2oath1 lbtr lear letr ) ABEZBCFZGOACEZHZFZHZRQT OPREZHRTOUAOSIDJABCKLOQMN $. $( [16-Nov-98] $) $} ${ 3vroa.1 $e |- ( ( a ->2 b ) ^ ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) = 1 $. $( OA-like inference rule (requires OM only). $) 3vroa $p |- ( a ->2 c ) = 1 $= ( wi2 wn wa wo wt df-i2 or12 oridm lor le1 wi0 ax-r1 lea bltr lebi ax-r2 ran ancom an1 3tr lear df-i0 anor3 ax-r5 le3tr2 u2lemle2 lecon leran 3tr2 leror ) ACEZCAFZCFZGZHZIACJZCURURHZHURUSHZUSICURURKVAURCURLMVBURABEZUOGZH ZIVEVBVDUSURVDUOIGZUOUSVDIUOGVFVCIUOVCIVCNIVCBCHZVDOZGZVCVIIDPVCVHQRSZUAI UOUBTUOUCUTUDMPVEIVENIBFZUQGZVDHZVEIVMVIVHIVMVCVHUEDVHVGFZVDHZVMVGVDUFVMV OVLVNVDBCUGUHPTUIVMNSVLURVDVKUPUQABABVJUJUKULUNRSTUMT $. $( [13-Nov-98] $) $} $( Lemma for Mladen's OML. $) mlalem $p |- ( ( a == b ) ^ ( b ->1 c ) ) =< ( a ->1 c ) $= ( wa wn wo tb wi1 comcom3 anass ax-r1 3tr bltr ax-r2 lear letr lel2or df-i1 wf leo comanr2 comanr1 fh2 dff lan an0 le0 an12 an4 leor lea dfb 2an coman1 lecom coman2 com2or oran3 cbtr comcom7 fh2rc le3tr1 ) ABDZBEZBCDZFZDZAEZVDD ZVFDZFZVHACDZFZABGZBCHZDZACHVGVMVJVGVCVDDZVCVEDZFVMVDVCVEBVCABUAIBVEBCUBIUC VQVMVRVQSVMVQABVDDZDASDSABVDJVSSASVSBUDKUEAUFLVMUGMVRBBDZVLDZVMVRABVEDDBAVE DDZWAABVEJABVEUHWBBADVEDZWAWCWBBAVEJKBABCUINLWAVLVMVTVLOVLVHUJPMQMVJVHVDVFD ZDZVMVHVDVFJWEVHVMVHWDUKVHVLTPMQVPVCVIFZVFDVKVNWFVOVFABULBCRUMVIVFVCVIVFVIV DVFVHVDOVDVETPUOVIVCVIVHVDFVCEVIVHVDVHVDUNVHVDUPUQABURUSUTVANACRVB $. $( [4-Nov-98] $) $( Mladen's OML. $) mlaoml $p |- ( ( a == b ) ^ ( b == c ) ) =< ( a == c ) $= ( wi1 wa tb u1lembi ran mlalem bltr ancom an32 3tr le2an an12 id 3tr1 anass anandi anandir 3tr2 2an le3tr2 ) ABDZBADZEZBCDZEZUECBDZEZUGEZEZACDZCADZEABF ZBCFZEZACFUHUMUKUNUHUOUGEUMUFUOUGABGZHABCIJUKCBFZUEEZUNUKUIUEEZUGEUIUGEZUEE UTUJVAUGUEUIKHUIUEUGLVBUSUECBGHMCBAIJNULUHUIEZUFUGUIEZEUQUFUJEZUGEUFUIEZUGE ULVCVEVFUGUEUDUIEEZUDUJEVEVFUEUDUIOVEUEUDEZUJEVEVGUFVHUJUDUEKHVEPUEUDUISQUD UEUIRQHUFUJUGTUFUIUGLUAUFUGUIRUFUOVDUPURBCGUBMACGUC $. $( [4-Nov-98] $) $( 4-variable transitive law for equivalence. $) eqtr4 $p |- ( ( ( a == b ) ^ ( b == c ) ) ^ ( c == d ) ) =< ( a == d ) $= ( tb wa mlaoml leran letr ) ABEBCEFZCDEZFACEZKFADEJLKABCGHACDGI $. $( [26-Jun-03] $) ${ sac.1 $e |- ( a ->1 c ) = ( b ->1 c ) $. $( Theorem showing "Sasaki complement" is an operation. $) sac $p |- ( a ' ->1 c ) = ( b ' ->1 c ) $= ( wi1 wn ud1lem0b u1lem12 3tr2 ) ACEZCEBCEZCEAFCEBFCEJKCDGACHBCHI $. $( [3-Jan-99] $) $} ${ sa5.1 $e |- ( a ->1 c ) =< ( b ->1 c ) $. $( Possible axiom for a "Sasaki algebra" for orthoarguesian lattices. $) sa5 $p |- ( b ' ->1 c ) =< ( ( a ' ->1 c ) v c ) $= ( wn wa wo wi1 leor ax-a2 lan ax-r5 oml6 ax-r1 ud1lem0c le3tr2 letr ax-a1 3tr df-i1 lecon lea leror bltr orabs ancom 3tr2 ax-a3 ax-r2 lel2or le3tr1 2or lear ) BEZEZUNCFZGAEZEZUQCFZGZCGZUNCHUQCHZCGUOVAUPBACGZUOVABCBGZVCBCI VDBUNCEZGZFZCGZVCVHVDVHBVEUNGZFZCGCVJGVDVGVJCVFVIBUNVEJKLVJCJCBMSNVGACVGA UQVEGZFZABCHZEACHZEVGVLVNVMDUABCOACOPAVKUBQUCUDQBRVCURUSCGZGZVAAURCVOARCC UQFZGVQCGCVOCVQJCUQUEVQUSCCUQUFLUGULVAVPURUSCUHNUIPUPCVAUNCUMCUTIQUJUNCTV BUTCUQCTLUK $. $( [3-Jan-99] $) $} $( lattice (((-xIy)vy)Iy)=(x2y) lattice "((xIw)v(yIw))<((((-xIw)^(-yIw))Iw)vw)" lattice "((((-xIw)vw)Iw)^(((-yIw)vw)Iw))<((((-xIw)v(-yIw))Iw)vw)" lattice "(((-xIw)^(-yIw))Iw)<((xIw)v(yIw))" lattice "(((-xIw)v(-yIw))Iw)<(((xIw)^(yIw))vw)" a' v b' =< (a ^ b)' v 0 (a v 0)' ^ (b v 0)' =< (a ^ b)' v 0 (a ^ b)' =< a' v b' (a v b)' =< (a' ^ b') v 0 $) $( Lemma for attempt at Sasaki algebra. $) salem1 $p |- ( ( ( a ' ->1 b ) v b ) ->1 b ) = ( a ->2 b ) $= ( wn wi1 wo wi2 u1lemob ax-r4 anor1 ax-r1 ax-r2 ran ax-a2 ancom anabs df-i1 wa 3tr 2or df-i2 3tr1 ) ACZBDBEZCZUCBQZEZBUBBCQZEZUCBDABFUFUGBEUHUDUGUEBUDU BCZBEZCZUGUCUJUBBGZHUGUKUBBIJKUEUJBQZBBUIEZQZBUCUJBULLUMUNBQUOUJUNBUIBMLUNB NKBUIORSUGBMKUCBPABTUA $. $( [4-Jan-99] $) $( Weak DeMorgan's law for attempt at Sasaki algebra. $) sadm3 $p |- ( ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ->1 c ) =< ( ( a ->1 c ) v ( b ->1 c ) ) $= ( wn wi1 wa wo oran3 ax-r1 u1lem9a bltr an32 lea leo or32 lbtr u1lemab letr le2or df-i1 ax-a1 bile leran lel2or lelor 2or le3tr1 ) ADZCEZBDZCEZFZDZULCF ZGZUHACFZGZUJBCFZGZGZULCEACEZBCEZGUOUQUJGZUTUOUHUJGZUICFZGVCUMVDUNVEUMUIDZU KDZGZVDVHUMUIUKHIVFUHVGUJACJBCJSKUNVEUKFVEUIUKCLVEUKMKSVDVCVEVDVDUPGVCVDUPN UHUJUPOPVEUQVCVEUHCFZUHDZCFZGUQUHCQVIUHVKUPUHCMVJACVJAAVJAUAIUBUCSKUQUJNRUD RUJUSUQUJURNUERULCTVAUQVBUSACTBCTUFUG $. $( [4-Jan-99] $) $( Weak DeMorgan's law for attempt at Sasaki algebra. $) $( sadm1 $p |- ( ( a ->1 c ) v ( b ->1 c ) ) =< ( ( ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ->1 c ) v c ) $= ?$. $) $( Weak DeMorgan's law for attempt at Sasaki algebra. $) $( sadm2 $p |- ( ( ( ( a ' ->1 c ) v c ) ->1 c ) ^ ( ( ( b ' ->1 c ) v c ) ->1 c ) ) =< ( ( ( ( a ' ->1 c ) v ( b ' ->1 c ) ) ->1 c ) v c ) $= ?$. $) $( Weak DeMorgan's law for attempt at Sasaki algebra. $) $( sadm4 $p |- ( ( ( a ' ->1 c ) v ( b ' ->1 c ) ) ->1 c ) =< ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v c ) $= ?$. $) $( Chained biconditional. $) bi3 $p |- ( ( a == b ) ^ ( b == c ) ) = ( ( ( a ^ b ) ^ c ) v ( ( a ' ^ b ' ) ^ c ' ) ) $= ( tb wa wn wo ax-r1 lan leo letr lecom comcom7 wf anass 3tr ax-r2 ran ancom 2or wi1 wi2 dfb u12lembi 2an df-i1 lear coman1 coman2 fh2rc comanr2 comcom3 com2an comanr1 fh2 dff an0 anidm or0r comcom an4 an0r 3tr2 or0 df-i2 le3tr1 an32 lea bltr oran lbtr fh2r u2lemab u2lemanb an12 ) ABDZBCDZEABEZAFZBFZEZG ZBCUAZCBUBZEZEZVRCEZWACFZEZGZVPWBVQWEABUCWEVQBCUDHUEWBWCEZWDEWGWAGZWDEZWFWJ WKWLWDWKWBVTBCEZGZEVRWOEZWAWOEZGWLWCWOWBBCUFIWAWOVRWAWOWAVTWOVSVTUGVTWNJKLW AABWAAVSVTUHMWABVSVTUIZMUMUJWPWGWQWAWPVRVTEZVRWNEZGNWGGWGVTVRWNBVRABUKULBWN BCUNULZUOWSNWTWGWSABVTEZEZANEZNABVTOXDXCNXBABUPZIHAUQPWTVRBEZCEZWGXGWTVRBCO HXFVRCXFABBEZEVRABBOXHBABURIQRQTWGUSPWQWAVTEZWAWNEZGWANGWAVTWAWNWAVTWRUTXAU OXIWAXJNXIVSVTVTEZEWAVSVTVTOXKVTVSVTURIQXJVSBEVTCEZEVSBXLEZEZNVSVTBCVAVSBXL OXNVSNENXMNVSXBCEZNCEZXMNXPXONXBCXERHBVTCOCVBVCIVSUQQPTWAVDPTPRWBWCWDOWMWGW DEZWAWDEZGWJWGWDWAWGWDACEZBEZBWHVTEZGZWGWDXTBYBXSBUGBYAJKABCVGCBVEVFLWGWAWG WAFZWGABGZYCWGAYDWGAWNEAABCOAWNVHVIABJKABVJVKLMVLXQWGXRWIXQVRCWDEEXSBWDEZEZ WGVRCWDOABCWDVAYFXTWGYEBXSYEWDBEBBWDSCBVMQIACBVGQPXRVSVTWDEZEVSYAEZWIVSVTWD OYGYAVSYGWDVTEYAVTWDSCBVNQIYHWHWAEWIVSWHVTVOWHWASQPTQVCQ $. $( [2-Mar-00] $) $( Chained biconditional. $) bi4 $p |- ( ( ( a == b ) ^ ( b == c ) ) ^ ( c == d ) ) = ( ( ( ( a ^ b ) ^ c ) ^ d ) v ( ( ( a ' ^ b ' ) ^ c ' ) ^ d ' ) ) $= ( tb wa wn wo ax-r1 lan lecom leao4 lbtr wf anass 3tr ax-r2 ran 2or ancom wi1 wi2 bi3 u12lembi df-i1 leao2 oran2 comcom comcom6 fh2rc comanr2 comcom3 2an comanr1 fh2 dff an0 anidm or0r an4 an0r 3tr2 or0 u2lemab df2le1 comcom7 an32 bltr fh2r u2lemanb an12 ) ABEBCEFZCDEZFABFZCFZAGBGFZCGZFZHZCDUAZDCUBZF ZFZVODFZVRDGZFZHZVLVSVMWBABCUCWBVMCDUDIUMVSVTFZWAFWDVRHZWAFZWCWGWHWIWAWHVSV QCDFZHZFVOWLFZVRWLFZHWIVTWLVSCDUEJVRWLVOVRWLVQVPWKUFKVRVOVOVRGZVOWOVOVPGZCH ZWOCVNWPLVPCUGZMKUHUIUJWMWDWNVRWMVOVQFZVOWKFZHNWDHWDVQVOWKCVOVNCUKULCWKCDUN ULZUOWSNWTWDWSVNCVQFZFZVNNFZNVNCVQOXDXCNXBVNCUPZJIVNUQPWTVOCFZDFZWDXGWTVOCD OIXFVODXFVNCCFZFVOVNCCOXHCVNCURJQRQSWDUSPWNVRVQFZVRWKFZHVRNHVRVQVRWKVPVQUKX AUOXIVRXJNXIVPVQVQFZFVRVPVQVQOXKVQVPVQURJQXJVPCFVQDFZFVPCXLFZFZNVPVQCDUTVPC XLOXNVPNFNXMNVPXBDFZNDFZXMNXPXONXBDXERICVQDODVAVBJVPUQQPSVRVCPSPRVSVTWAOWJW DWAFZVRWAFZHWGWDWAVRWDWAWDWAXQVODWAFFVNDFZCWAFZFZWDVODWAOVNCDWAUTYAXSCFZWDX TCXSXTWACFCCWATDCVDQJVNDCVGQPZVEKWDVRWDWOWDWQWOWDYBWQVNCDVGCXSWPLVHWRMKVFVI XQWDXRWFYCXRVPVQWAFZFVPWEVQFZFZWFVPVQWAOYDYEVPYDWAVQFYEVQWATDCVJQJYFWEVRFWF VPWEVQVKWEVRTQPSQVBQ $. $( [25-Jun-03] $) $( Implicational product with 3 variables. Theorem 3.20 of "Equations, states, and lattices..." paper. $) imp3 $p |- ( ( a ->2 b ) ^ ( b ->1 c ) ) = ( ( a ' ^ b ' ) v ( b ^ c ) ) $= ( wi2 wi1 wa wn wo df-i1 lan u2lemc1 comcom3 comanr1 fh2 u2lemanb ancom lea u2lem3 u2lemle2 letr df2le2 ax-r2 2or 3tr ) ABDZBCEZFUEBGZBCFZHZFUEUGFZUEUH FZHAGUGFZUHHUFUIUEBCIJUGUEUHBUEABKLBUHBCMLNUJULUKUHABOUKUHUEFUHUEUHPUHUEUHB UEBCQBUEBARSTUAUBUCUD $. $( [3-Mar-00] $) $( Disjunction of biconditionals. $) orbi $p |- ( ( a == c ) v ( b == c ) ) = ( ( ( a ->2 c ) v ( b ->2 c ) ) ^ ( ( c ->1 a ) v ( c ->1 b ) ) ) $= ( tb wo wa wn wi2 2or ax-a2 ax-a3 lor ax-r2 ax-r5 leo letr lecom comcom 3tr bctr wi1 dfb ancom imp3 ax-r1 df-i1 lear comi12 fh4rc df-le2 lan 3tr2 df-i2 lea anor1 cbtr comcom7 fh4 orordi 3tr1 or12 2an ) ACDZBCDZEACFZAGZCGZFZEZBC FZBGVGFZEZEVLVIEZACHZBCHZEZCAUAZCBUAZEZFZVCVIVDVLACUBBCUBIVIVLJVMVJVKVIEZEV JVOVHEZVGCAFZEZFZEZVTVJVKVIKWAWEVJVKVEEZVHEVOVQFZVHEZWAWEWGWHVHWGVKWCEZWHVE WCVKACUCLWHWJBCAUDUEMNVKVEVHKWIWBVQVHEZFWEVQVHVOVQWDVHCAUFZVHWDVHWDVHVGWDVF VGUGVGWCOPZQRTCABUHUIWKWDWBWKWDVHEVHWDEWDVQWDVHWLNWDVHJVHWDWMUJSUKMULLWFVJW BEZVJWDEZFVTWBVJWDWBCVKVHEZEZVJWBCVKEZVHEZWQVOWRVHBCUMZNCVKVHKZMZVJWQVJWQVJ CWQBCUGZCWPOZPQRTWBWQWDXBWQWDWQCWCGZFZWDGXFWQXFWQXFCWQCXEUNXDPQRCWCUOUPUQTU RWNVPWOVSVJVOEZVHEWSWNVPXGWRVHXGVJWREWRVOWRVJWTLVJWRVJCWRXCCVKOPUJMNVJVOVHK WSWQVPXAWRCVHEZEXHWREWQVPWRXHJCVKVHUSVNXHVOWRACUMWTIUTMULWOVGVJWCEEZVSVJVGW CVAVGVJEZWDEWDXJEXIVSXJWDJVGVJWCUSVQWDVRXJWLVRVGCBFZEXJCBUFXKVJVGCBUCLMIUTM VBMSS $. $( [5-Jul-00] $) $( Disjunction of biconditionals. $) orbile $p |- ( ( a == c ) v ( b == c ) ) =< ( ( ( a ^ b ) ->2 c ) ^ ( c ->1 ( a v b ) ) ) $= ( tb wo wi2 wi1 wa orbi i2or i1or le2an bltr ) ACDBCDEACFBCFEZCAGCBGEZHABHC FZCABEGZHABCINPOQABCJABCKLM $. $( [5-Jul-00] $) ${ mlaconj4.1 $e |- ( ( d == e ) ^ ( ( e ' ^ c ' ) v ( d ^ c ) ) ) =< ( d == c ) $. mlaconj4.2 $e |- d = ( a v b ) $. mlaconj4.3 $e |- e = ( a ^ b ) $. $( For 4GO proof of Mladen's conjecture, that it follows from Eq. (3.30) in OA-GO paper. $) mlaconj4 $p |- ( ( a == b ) ^ ( ( a == c ) v ( b == c ) ) ) =< ( a == c ) $= ( tb wo wa wn ax-r2 lbtr ran 2or ax-r1 anass comcom7 wf biao bile wi2 wi1 bicom orbile imp3 le2an 2bi ax-r4 lan 2an lea 3tr1 rbi ler2an coman1 bctr ancom an32 coman2 com2an com2or fh2c anor3 comanr1 fh2rc leao1 df2le2 dff comcom3 oran an0r 3tr2 or0 3tr an4 anidm or0r dfb lor mlaoml bltr letr bi3 ) ABIZACIZBCIZJZKABJZABKZIZWKLZCLZKZCWJKZJZKZWGWFWLWIWQWFWLWFWKWJIZWL ABUAZWKWJUEMUBWIWKCUCCWJUDKWQABCUFWKCWJUGNUHWRDEIZELZWNKZDCKZJZKZWGXFWRXA WLXEWQDWJEWKGHUIZXCWOXDWPXBWMWNEWKHUJOXDCDKWPDCUSDWJCGUKMPULQXFWFWJCIZKZW GXFWFXHXFXAWFXAXEUMWLWSXAWFWJWKUEXGWTUNNXFDCIXHFDWJCGUONUPXIWFWHKZWGWKALZ BLZKZJZWJCKZXMWNKZJZKZWKCKZXPJZXIXJXRXNXOKZXNXPKZJXTXPXNXOXPWKXMXPABXPXKX LWNKZKZAXKXLWNRYDAXKYCUQSURZXPXKWNKZXLKZBXKXLWNUTYGBYFXLVASURZVBXMWNUQVCX PWJCXPABYEYHVCXPCXMWNVASVBVDYAXSYBXPYAWKXOKZXMXOKZJXSTJXSXMXOWKXMWJLZXOAB VEZWJXOWJCVFVKURXMABXMAXKXLUQSXMBXKXLVASVBZVGYIXSYJTYIWKWJKZCKZXSYOYIWKWJ CRQYNWKCWKWJABBVHVIOMXMWJKZCKZTCKZYJTYRYQTYPCTXMXMLZKZYPXMVJYPYTWJYSXMABV LUKQMOQXMWJCRCVMVNPXSVOVPYBWKXPKZXMXPKZJTXPJXPXMXPWKXMWNVFYMVGUUATUUBXPUU AAXMKZBWNKZKZTUUDKZTABXMWNVQUUFUUETUUCUUDTXLKAXKKZXLKTUUCTUUGXLAVJOXLVMAX KXLRVNOQUUDVMVPUUBXMXMKZWNKZXPUUIUUBXMXMWNRQUUHXMWNXMVROMPXPVSVPPMWFXNXHX QABVTXHXOYKWNKZJZXQWJCVTXQUUKXPUUJXOXMYKWNYLOWAQMULABCWEUNABCWBWCWDWCWD $. $( [8-Jul-00] $) $} $( For 5GO proof of Mladen's conjecture. $) mlaconj $p |- ( ( a == b ) ^ ( ( a == c ) v ( b == c ) ) ) =< ( ( ( ( a ->1 ( a ^ b ) ) ^ ( ( a ^ b ) ->1 ( ( a ^ b ) v c ) ) ) ^ ( ( ( ( a ^ b ) v c ) ->1 c ) ^ ( c ->1 ( a v b ) ) ) ) ^ ( ( a v b ) ->1 a ) ) $= ( tb wo wa wi2 wi1 orbile lelan ancom ran anass ax-r2 3tr lan bi1o1a i2i1i1 id 3tr1 2an lbtr ) ABDZACDBCDEZFUCABFZCGZCABEZHZFZFZAUEHZUEUECEZHZFZULCHZUH FZFUGAHZFZUDUIUCABCIJUKUQFZUMUOFZUHFZFZUNUPUQFZFZUJURUKUQVAFZFUKUMVCFZFVBVD VEVFUKVEVAUQFUMUPFZUQFVFUQVAKVAVGUQVAVAVGUTUTUHUTSLUMUOUHMNLUMUPUQMOPUKUQVA MUKUMVCMTUCUSUIVAABQUFUTUHUECRLUAUNUPUQMTUB $. $( [20-Jan-02] $) ${ mlaconj2.1 $e |- ( ( ( ( a ->1 ( a ^ b ) ) ^ ( ( a ^ b ) ->1 ( ( a ^ b ) v c ) ) ) ^ ( ( ( ( a ^ b ) v c ) ->1 c ) ^ ( c ->1 ( a v b ) ) ) ) ^ ( ( a v b ) ->1 a ) ) =< ( a == c ) $. $( For 5GO proof of Mladen's conjecture. Hypothesis is 5GO law consequence. $) mlaconj2 $p |- ( ( a == b ) ^ ( ( a == c ) v ( b == c ) ) ) =< ( a == c ) $= ( tb wo wa wi1 mlaconj letr ) ABEACEZBCEFGAABGZHLLCFZHGMCHCABFZHGGNAHGKAB CIDJ $. $( [6-Jul-00] $) $} $( Equivalence to chained biconditional. $) $( [Appears not to be a theorem.] bi3eq $p |- ( ( a == b ) ^ ( ( a ^ c ) v ( b ' ^ c ' ) ) ) = ( ( a == c ) ^ ( b == c ) ) $= ( u1lembi ran ax-r1 anass wn lea wa leo df-i1 lbtr letr lecom lear lecon comcom7 fh2c u1lemab id ax-r2 u1lemana 2or lan bi3 bicom ) ??????????DEF??? ???GZ?????????????????BHZCHZI???UIBAJK????LFMNO???????UIUJP??ACPQNORS?????? ??????UHFZ????????TE?UAZUBUB???UK????????UCEULUBUBUDULUBUBUE???????????UB?? ???UFFUB?????UGUEUBUBUBUB $. $) $( [3-Mar-00] $) $( Complemented antecedent lemma. $) i1orni1 $p |- ( ( a ->1 b ) v ( a ' ->1 b ) ) = 1 $= ( wi1 wn wo wa wt df-i1 ax-a1 ax-r5 ax-r1 ax-r2 lor orordi u1lemoa or1r ) A BCZADZBCZEQARBFZEZEZGSUAQSRDZTEZUARBHUAUDAUCTAIJKLMUBQAEZQTEZEZGQATNUGGUFEG UEGUFABOJUFPLLL $. $( [6-Aug-01] $) ${ negant.1 $e |- ( a ->1 c ) = ( b ->1 c ) $. $( Lemma for negated antecedent identity. $) negantlem1 $p |- a C ( b ->1 c ) $= ( wi1 wn wa wo leo df-i1 ax-r1 ax-r2 lbtr lecom comcom6 ) ABCEZAFZPQQACGZ HZPQRISACEZPTSACJKDLMNO $. $( [6-Aug-01] $) $( Lemma for negated antecedent identity. $) negantlem2 $p |- a =< ( b ' ->1 c ) $= ( wn wi1 wo leo wa wt i1orni1 lan ax-r1 an1 u1lemc6 negantlem1 ancom lear bltr letr comcom fh4rc 3tr1 u1lemaa 3tr2 ler2an ax-a1 leror u1lemab ax-r2 lea lbtr df-i1 le3tr1 leid lel2or ) AABEZCFZGZURAURHUSABCFZIZURGZURUSJIZU SUTURGZIZUSVBVEVCVDJUSBCKLMVCUSUSNMUTURABCOAUTABCDPUAUBUCVAURURVACUTIZURV ACUTVAACIZCAACFZIVHAIVAVGAVHQVHUTADLACUDUEACRSAUTRUFBCIZUQCIZGZUQEZVJGVFU RVIVLVJVIBVLBCUKBUGULUHVFUTCIVKCUTQBCUIUJUQCUMUNTURUOUPST $. $( [6-Aug-01] $) $( Lemma for negated antecedent identity. $) negantlem3 $p |- ( a ' ^ c ) =< ( b ' ->1 c ) $= ( wn wa wi1 wo leo df-i1 ax-r1 ax-r2 lbtr leran leror u1lemab ax-a1 ax-r5 lea le3tr1 letr ) AEZCFBCGZCFZBEZCGZUBUCCUBUBACFZHZUCUBUGIUHACGZUCUIUHACJ KDLMNBCFZUECFZHBUKHZUDUFUJBUKBCSOBCPUFUEEZUKHZULUECJULUNBUMUKBQRKLTUA $. $( [6-Aug-01] $) $( Lemma for negated antecedent identity. $) negantlem4 $p |- ( a ' ->1 c ) =< ( b ' ->1 c ) $= ( wn wi1 wa wo df-i1 ax-a1 ax-r5 ax-r1 ax-r2 negantlem2 negantlem3 lel2or bltr ) AEZCFZARCGZHZBECFZSREZTHZUARCIUAUDAUCTAJKLMAUBTABCDNABCDOPQ $. $( [6-Aug-01] $) $( Negated antecedent identity. $) negant $p |- ( a ' ->1 c ) = ( b ' ->1 c ) $= ( wn wi1 negantlem4 ax-r1 lebi ) AECFBECFABCDGBACACFBCFDHGI $. $( [6-Aug-01] $) $( Negated antecedent identity. $) negantlem5 $p |- ( a ' ^ c ' ) = ( b ' ^ c ' ) $= ( wi1 wn wa ran u1lemanb 3tr2 ) ACEZCFZGBCEZLGAFLGBFLGKMLDHACIBCIJ $. $( [6-Aug-01] $) $( Negated antecedent identity. $) negantlem6 $p |- ( a ^ c ' ) = ( b ^ c ' ) $= ( wn wa negant negantlem5 ax-a1 ran 3tr1 ) AEZEZCEZFBEZEZNFANFBNFLOCABCDG HAMNAIJBPNBIJK $. $( [6-Aug-01] $) $( Negated antecedent identity. $) negantlem7 $p |- ( a v c ) = ( b v c ) $= ( wo wn wa negantlem5 anor3 3tr2 con1 ) ACEZBCEZAFCFZGBFNGLFMFABCDHACIBCI JK $. $( [6-Aug-01] $) $( Negated antecedent identity. $) negantlem8 $p |- ( a ' v c ) = ( b ' v c ) $= ( wn wa wo negantlem6 ax-r4 oran2 3tr1 ) ACEZFZEBLFZEAECGBECGMNABCDHIACJB CJK $. $( [6-Aug-01] $) $( Negated antecedent identity. $) negant0 $p |- ( a ' ->0 c ) = ( b ' ->0 c ) $= ( wn wo wi0 negantlem7 ax-a1 ax-r5 3tr2 df-i0 3tr1 ) AEZEZCFZBEZEZCFZNCGQ CGACFBCFPSABCDHAOCAIJBRCBIJKNCLQCLM $. $( [6-Aug-01] $) $( Negated antecedent identity. $) negant2 $p |- ( a ' ->2 c ) = ( b ' ->2 c ) $= ( wn wa wo wi2 negantlem6 ax-a1 ran 3tr2 lor df-i2 3tr1 ) CAEZEZCEZFZGCBE ZEZRFZGPCHTCHSUBCARFBRFSUBABCDIAQRAJKBUARBJKLMPCNTCNO $. $( [6-Aug-01] $) $( Negated antecedent identity. $) negantlem9 $p |- ( a ->3 c ) =< ( b ->3 c ) $= ( wn wa wo wi3 leor wi1 df-i1 ax-a1 ax-r5 ax-r1 leo bltr letr ler2an lbtr ax-r2 leao4 sac 3tr2 leror leao1 negantlem8 negantlem5 ler lear lel df-i3 lel2or dfi3b le3tr1 ) AEZCFZUOCEZFZGZAUOCGZFZGBEZCGZBVBUQFZGZVBCFZGZFZACH BCHUSVHVAUPVHURUPVCVGCUOVBUAUPAUPGZVGUPAIVIBVFGZVGUOCJZVBCJZVIVJABCDUBVKU OEZUPGZVIUOCKVIVNAVMUPALMNTVLVBEZVFGZVJVBCKVJVPBVOVFBLMNTUCZBVEVFBVDOUDZP QRURVCVGURUTVCUOUQCUEABCDUFZSURVDVGABCDUGVDVEVFVDBIUHPRULVAVCVGVAUTVCAUTU IVSSAVGUTAVJVGAVIVJAUPOVQSVRQUJRULACUKBCUMUN $. $( [6-Aug-01] $) $( Negated antecedent identity. $) negant3 $p |- ( a ' ->3 c ) = ( b ' ->3 c ) $= ( wn wi3 sac negantlem9 wi1 ax-r1 lebi ) AEZCFBEZCFLMCABCDGZHMLCLCIMCINJH K $. $( [6-Aug-01] $) $( Lemma for negated antecedent identity. $) negantlem10 $p |- ( a ->4 c ) =< ( b ->4 c ) $= ( wa wn wo wi4 leao4 wi1 leor df-i1 ax-r1 lbtr lear ler2an ran ancom bltr ax-r2 u1lemab 2or ax-a2 lor ax-a3 letr negant ax-a1 lel2or lea negantlem8 leao2 ler df-i4 dfi4b le3tr1 ) ACEZAFZCEZGZURCGZCFZEZGBFZCGZVBCVDEZGZCBEZ GZEZACHBCHUTVJVCUQVJUSUQVEVICAVDIUQACJZCEZVIUQVKCUQURUQGZVKUQURKVKVMACLMN ACOPVLBCJZCEZVIVKVNCDQVOBCEZVDCEZGZVIBCUAVRVBVRGZVIVRVBKVSVBVFVHGZGZVIVRV TVBVRVHVFGVTVPVHVQVFBCRVDCRUBVHVFUCTUDVIWAVBVFVHUEMZTNSSUFPUSVEVICURVDIUS URCJZCEZVIUSWCCUSURFZUSGZWCUSWEKWCWFURCLMNURCOPWDVDCJZCEZVIWCWGCABCDUGQWH VQVDFZCEZGZVIVDCUAWKVBWKGZVIWKVBKWLWAVIWAWLVTWKVBVFVQVHWJCVDRVHVPWJCBRBWI CBUHQTUBUDMWBTNSSUFPUIVCVEVIVCVAVEVAVBUJABCDUKNVCVGVHVBVAVFULUMPUIACUNBCU OUP $. $( [6-Aug-01] $) $( Negated antecedent identity. $) negant4 $p |- ( a ' ->4 c ) = ( b ' ->4 c ) $= ( wn wi4 sac negantlem10 wi1 ax-r1 lebi ) AEZCFBEZCFLMCABCDGZHMLCLCIMCINJ HK $. $( [6-Aug-01] $) $( Negated antecedent identity. $) negant5 $p |- ( a ' ->5 c ) = ( b ' ->5 c ) $= ( wn wi2 wi4 wa wi5 negant2 negant4 2an u24lem 3tr2 ) AEZCFZOCGZHBEZCFZRC GZHOCIRCIPSQTABCDJABCDKLOCMRCMN $. $( [6-Aug-01] $) $} ${ neg3ant.1 $e |- ( a ->3 c ) = ( b ->3 c ) $. $( Lemma for negated antecedent identity. $) neg3antlem1 $p |- ( a ^ c ) =< ( b ->1 c ) $= ( wa wi1 wn wo leo wi3 ran u3lemab 3tr2 u1lemab ax-r1 ax-r2 lbtr lea letr ) ACEZBCFZCEZUATTAGCEZHZUBTUCIUDBCEBGCEHZUBACJZCEBCJZCEUDUEUFUGCDKACLBCLM UBUEBCNOPQUACRS $. $( [7-Aug-01] $) $( Lemma for negated antecedent identity. $) neg3antlem2 $p |- a ' =< ( b ->1 c ) $= ( wn wa wo leor wi3 u3lemab 3tr2 lbtr leao1 lel2or letr ax-r2 ax-r1 wf wt ran wi1 df-i3 u3lemanb anor3 con1 ler2an u3lem15 lear oran2 lan anor1 lor anor2 oran1 le3tr2 lecon1 leo ax-r5 u3lemob comor1 comcom7 comor2 comcom2 lel com2an fh1r anabs dff 2or or0 3tr ler id ax-a2 orabs 3tr1 df-t coman1 2an an1 coman2 com2or fh3 df-i1 le3tr1 ) AEZCFZWFACEZGZFZGZBEZBCFZGZWFBCU AWGWNWJWGWMWLCFZGZWNWGACFZWGGZWPWGWQHACIZCFBCIZCFWRWPWSWTCDTACJBCJKLWMWNW OWMWLHWLCWMMNOWJWLWMWJWLBWHFZGZWLCGZFZWLWJXBXCXBWJBXCFZAWGGZXBEZWJEZXEWFC GZXFFZXFXEWSACGZFXJXEWSXKXEWOWLWHFZGZXEGZWSXEXMHWSXNWSWTXNDBCUBPQLXEBCGZX KBXCCMXKXOXKXOWFWHFZXLXKEXOEWSWHFWTWHFXPXLWSWTWHDTACUCBCUCKACUDBCUDKUEQLU FACUGLXIXFUHOXEBXAEZFXGXCXQBBCUIZUJBXAUKPXFAWIEZGXHWGXSAACUMULAWIUNPUOUPW FXCWIWFXIXCWFCUQWSCGWTCGXIXCWSWTCDURACUSBCUSKLVDUFXDWLXCFZXAXCFZGWLRGWLXC WLXAWLCUTZXCBWHXCBYBVAXCCWLCVBVCVEVFXTWLYARWLCVGYAXAXQFZRXCXQXAXRUJRYCXAV HQPVIWLVJVKLVLNWFSFZWGWFGZWGWIGZFWFWKWFYESYFWFWFWFYEWFVMZYGYEWFWGGWFWGWFV NWFCVOPVPSWGWGEZGZYFWGVQYFYIWIYHWGACUNULQPVSYDWFWFVTQWGWFWIWFCVRZWGAWHWGA YJVAWGCWFCWAVCWBWCVPBCWDWE $. $( [7-Aug-01] $) $( Lemma for negated antecedent identity. $) neg3ant1 $p |- ( a ->1 c ) = ( b ->1 c ) $= ( wn wa wi1 neg3antlem2 neg3antlem1 lel2or df-i1 lbtr wi3 ax-r1 lebi 3tr1 wo ) AEZACFZQZBEZBCFZQZACGZBCGZTUCTUEUCRUESABCDHABCDIJBCKZLUCUDTUAUDUBBAC ACMBCMDNZHBACUGIJACKZLOUHUFP $. $( [7-Aug-01] $) $} ${ elimcons.1 $e |- ( a ->1 c ) = ( b ->1 c ) $. elimcons.2 $e |- ( a ^ c ) =< ( b v c ' ) $. $( Lemma for consequent elimination law. $) elimconslem $p |- a =< ( b v c ' ) $= ( wn wo wa wt df-t lecon oran3 ax-r1 lbtr bltr df-a wi1 df-i1 3tr2 lor lelor lelan an1 comor1 comcom7 lecom comcom6 fh2c le3tr2 ax-r4 3tr1 leror lear letr ax-a2 leao1 df-le2 ax-r2 ) ABCFZGZBBFZUSGZHZGZUTAAUTHZVCGZVDAVE AAFZUSGZHZGZVFAIHAUTVHGZHAVJIVKAIUTUTFZGVKUTJVLVHUTVLACHZFZVHVMUTEKVHVNAC LMNUAOUBAUCVHAUTVHAVGUSUDUEVHUTVHFZUTVOVMUTVMVOACPZMEOUFUGUHUIVIVCVEVGVOG ZFVAVBFZGZFVIVCVQVSVGVMGZVABCHZGZVQVSACQBCQVTWBDACRBCRSVMVOVGVPTWAVRVABCP TSUJAVHPBVBPUKTNVEUTVCAUTUMULUNVDVCUTGUTUTVCUOVCUTBVBUSUPUQURN $. $( [3-Mar-02] $) $( Consequent elimination law. $) elimcons $p |- a =< b $= ( wn wo wa df-t elimconslem leror bltr wi1 df-i1 3tr2 anor2 lor df-a lbtr wt lelan an1 comor1 comcom2 lecom comcom3 comcom le3tr2 negant ax-r1 3tr1 fh2 ax-r4 ax-r5 lear lelor letr lea df-le2 lecon1 ) BABFZAFZACFZGZHZVBGZV BVAVEVAVBHZGZVFVAVABVCGZHZVGGZVHVATHVAVIVBGZHVAVKTVLVATAVBGVLAIAVIVBABCDE JZKLUAVAUBVIVAVBVIBBVCUCUDVBVIAVIAVIVMUEUFUGULUHVJVEVGVAFZVIFZGZFVBFZVDFZ GZFVJVEVPVSVSVPVQVBCHZGZVNVACHZGZVSVPVBCMVACMWAWCABCDUIVBCNVACNOVTVRVQACP QWBVOVNBCPQOUJUMVAVIRVBVDRUKUNSVGVBVEVAVBUOUPUQVEVBVBVDURUSSUT $. $( [3-Mar-02] $) $} ${ elimcons2.1 $e |- ( a ->1 c ) = ( b ->1 c ) $. elimcons2.2 $e |- ( a ^ ( c ^ ( b ->1 c ) ) ) =< ( b v ( c ' v ( a ->1 c ) ' ) ) $. $( Consequent elimination law. $) elimcons2 $p |- a =< b $= ( wi1 wa wn ax-r1 df-i1 ax-r2 lan anass leor df2le2 3tr ax-r4 lor ax-a2 wo ud1lem0c ax-a3 lea df-le2 ax-r5 le3tr2 elimcons ) ABCDACBCFZGZGZBCHZAC FZHZTZTZACGZBUKTZEUJACAHZUPTZGZGZUPUSGZUPUIUTAUHUSCUHULUSULUHDIACJKLLVBVA ACUSMIUPUSUPURNOPUOBBBHUKTZGZUKTZTZBVDTZUKTZUQUNVEBUNUKVDTVEUMVDUKUMUHHVD ULUHDQBCUAKRUKVDSKRVHVFBVDUKUBIVGBUKVGVDBTBBVDSVDBBVCUCUDKUEPUFUG $. $( [12-Mar-02] $) $} $( Lemma for biconditional commutation law. $) comanblem1 $p |- ( ( a == c ) ^ ( b == c ) ) = ( ( ( a v c ) ' v ( ( a ^ b ) ^ c ) ) ^ ( b ->1 c ) ) $= ( wi1 wa tb wo wn u1lembi 2an df-i1 comanr1 comcom3 ax-r1 ax-r2 lan ran 3tr ancom wf an4 an32 fh3 lea leor bltr letr lecom com2an comcom coman2 comcom2 fh2c coman1 fh2rc anass dff an0 lor or0 anor3 bctr anandi leran df2le2 lear 2or df-le2 3tr2 ) ACDZCADZEZBCDZCBDZEZEVJVMEVKVNEZEZACFZBCFZEACGHZABEZCEZGZ VMEZVJVKVMVNUAVLVRVOVSACIBCIJVQVJVPEZVMEWDVJVMVPUBWEWCVMWEVJCHZCAEZCBEZEZGZ EAHZACEZGZWJEZWCVPWJVJVPWFWGGZWFWHGZEZWJVKWOVNWPCAKCBKJWJWQWFWGWHCWGCALMZCW HCBLMZUCNOPVJWMWJACKQWNWMWFEZWMWIEZGWCWIWMWFWIWMWIWGWMWGWHUDWGWLWMCASWLWKUE UFUGUHWFWIWFWGWHWRWSUIUJUMWTVTXAWBWTWKWFEZWLWFEZGXBTGZVTWLWFWKWLCACUKULWLAA CUNULZUOXCTXBXCACWFEZEZATEZTACWFUPXHXGTXFACUQPNAURRUSXDXBVTXBUTACVAORXAWKWI EZWLWIEZGWKWBEZWBGWBWLWIWKWLWGWIACSWGWHLVBXEUOXIXKXJWBWIWBWKWICWAEZWBXLWICA BVCNCWASOZPXJWLWBEWBWLEWBWIWBWLXMPWLWBSWBWLWAACABUDVDVERVGXKWBWKWBVFVHRVGOR QOVI $. $( [1-Dec-99] $) $( Lemma for biconditional commutation law. $) comanblem2 $p |- ( ( a ^ b ) ^ ( ( a == c ) ^ ( b == c ) ) ) = ( ( a ^ b ) ^ c ) $= ( wa tb wn wo dfb 2an wf comanr1 comcom6 fh1 anass ax-r1 anidm ran dff 3tr2 ax-r2 lan an0r 2or or0 3tr an4 anandir 3tr1 ) ABDZACEZBCEZDZDUIACDZAFZCFZDZ GZBCDZBFZUODZGZDZDZUICDZULVBUIUJUQUKVAACHBCHIUAAUQDZBVADZDUMURDVCVDVEUMVFUR VEAUMDZAUPDZGUMJGUMAUMUPACKAUPUNUOKLMVGUMVHJVGAADZCDZUMVJVGAACNOVIACAPQTAUN DZUODZJUODZVHJVMVLJVKUOARQOAUNUONUOUBZSUCUMUDUEVFBURDZBUTDZGURJGURBURUTBCKB UTUSUOKLMVOURVPJVOBBDZCDZURVRVOBBCNOVQBCBPQTBUSDZUODZVMVPJVMVTJVSUOBRQOBUSU ONVNSUCURUDUEIABUQVAUFABCUGUHT $. $( [1-Dec-99] $) $( Biconditional commutation law. $) comanb $p |- ( a ^ b ) C ( ( a == c ) ^ ( b == c ) ) $= ( wa tb wo wn wi1 lea leo lecon leror comanblem1 df-i1 comanblem2 lor ax-r2 letr le3tr1 i1com ) ABDZACEBCEDZACFZGZUACDZFZBCHZDZUAGZUEFZUBUAUBHZUHUFUJUF UGIUDUIUEUAUCUAAUCABIACJRKLRABCMUKUIUAUBDZFUJUAUBNULUEUIABCOPQST $. $( [1-Dec-99] $) $( Biconditional commutation law. $) comanbn $p |- ( a ' ^ b ' ) C ( ( a == c ) ^ ( b == c ) ) $= ( wn wa tb comanb conb 2an ax-r1 cbtr ) ADZBDZELCDZFZMNFZEZACFZBCFZEZLMNGTQ ROSPACHBCHIJK $. $( [1-Dec-99] $) ${ mhlem.1 $e |- ( a v b ) =< ( c v d ) ' $. $( Lemma for Lemma 7.1 of Kalmbach, p. 91. $) mhlemlem1 $p |- ( ( ( a v b ) v c ) ^ ( a v ( c v d ) ) ) = ( a v c ) $= ( wo wa leo ler lecom wn letr comcom7 fh2 ancom ax-a3 anabs 3tr wf 2or lan comor1 lecon3 fh1rc ortha or0r ax-r2 ) ABFZCFZACDFZFGUIAGZUIUJGZFACFA UIUJAUIAUHCABHZIJAUJAUJKZAUHUNUMELJMNUKAULCUKAUIGAABCFZFZGAUIAOUIUPAABCPU AAUOQRULUHUJGZCUJGZFSCFCUJCUHCDUBUJUHUJUHKUHUJEUCJMUDUQSURCUHUJEUECDQTCUF RTUG $. $( [10-Mar-02] $) $( Lemma for Lemma 7.1 of Kalmbach, p. 91. $) mhlemlem2 $p |- ( ( ( a v b ) v d ) ^ ( b v ( c v d ) ) ) = ( b v d ) $= ( wo wa ax-a2 ax-r5 lor 2an wn ax-r4 le3tr1 mhlemlem1 ax-r2 ) ABFZDFZBCDF ZFZGBAFZDFZBDCFZFZGBDFRUBTUDQUADABHISUCBCDHJKBADCQSLUAUCLEBAHUCSDCHMNOP $. $( [10-Mar-02] $) $( Lemma 7.1 of Kalmbach, p. 91. $) mhlem $p |- ( ( a v c ) ^ ( b v d ) ) = ( ( a ^ b ) v ( c ^ d ) ) $= ( wo wa comor1 comor2 com2an wn lecom comcom7 leao1 letr comcom 3tr ax-r2 3tr1 wf fh1r fh2rc 2or lerr fh3 id mhlemlem1 mhlemlem2 ancom ax-a2 df-le2 2an an4 lor ax-r1 or12 lan leor fh3r lecon3 com2or ax-a3 ax-r5 le2an lbtr leo fh2 ortha or0 df2le2 lear leid ler2an lebi ) ACFZBDFZGZABGZABFZGZCDFZ VSGZVRCDGZGZFZFZWAWCGZFZVRWCFVQVTWBFZWDFZWGFZWHVRWAFZVSGZWLWCGZFZWIWDWGFZ FVQWKWMWIWNWPVSVRWAVSABABHABIJZVSWAVSWAKZELMZUAWAWCVRWACDCDHCDIJVRWAVRWAV RWRVRVSWRABBNZEOLMZPUBUCVQWLVSWCFZGZWOVRWAWCVSFZGFZWLVRXDFZGZVQXCVRWAXDXA VRXDVRVSWCWTUDLUEZVQVSCFZAWAFZGZVSDFZBWAFZGZGZXEVQVQVQXOVQUFZXPXKVOXNVPAB CDEUGABCDEUHULSXOXIXLGZXJXMGZGXRXQGZXEXIXJXLXMUMXQXRUIXCXGXSXEXBXFWLXBXDW CVRVSFZFZXFVSWCUJYAXDXTVSWCVRVSWTUKUNUOWCVRVSUPQUQZXCXSWLXRXBXQWAABAWAAWA AWRAVSWRABVFEOLMPBWABWABWRBVSWRBAUREOLMPUSVSCDCVSCVSCVSKZCWAYCCDVFVSWAEUT ZOLMPDVSDVSDYCDWAYCDCURYDOLMPUEULUOXHSQRYBSVSWLWCVSVRWAWQWSVAWCVSWCVSWCYC WCWAYCCDDNZYDOLMPVGRWIWDWGVBSWJWFWGVTWBWDVBVCRWFVRWGWCWFVTTFVTVRWETVTWEVS WAGZTWDWBFWBWEYFWDWBWDYFWBVRVSWCWAWTYEVDVSWAUIZVEUKWBWDUJYGSVSWAEVHRUNVTV IVRVSWTVJQWGWCWAWCVKWCWAWCYEWCVLVMVNUCR $. $( [10-Mar-02] $) $} ${ mhlem1.1 $e |- a C b $. mhlem1.2 $e |- c C b $. $( Lemma for Marsden-Herman distributive law. $) mhlem1 $p |- ( ( a v b ) ^ ( b ' v c ) ) = ( ( a ^ b ' ) v ( b ^ c ) ) $= ( wo wn wa wt lan comcom2 fh1 ax-a2 wf comcom lor ax-r1 3tr comcom6 ax-r5 df-t an1 comor2 comid comcom3 fh1r dff or0 ancom anabs 2or comorr comanr2 3tr2 ran fh2rc leao2 df2le2 ax-r2 or0r ) ABFZBGZCFZHAVBHZBFZVCHZVDBVCHZFZ VDBCHZFVAVEVCVAIHVABVBFZHZVAVEIVJVABUAJVAUBVKVABHZVAVBHZFVMVLFVEVABVBABUC ZVABVNKLVLVMMVMVDVLBVMVDBVBHZFZVDNFZVDVBABAVBABDKOBBBUDZUEUFVQVPNVOVDBUGZ PQVDUHRVLBVAHBBAFZHBVABUIVAVTBABMJBAUJRUKRUNUOVFVDVCHZVGFVHBVCVDBVCVBCULS BVDAVBUMSUPWAVDVGVDVCVBACUQURTUSVGVIVDVGVOVIFZNVIFZVIBVBCBBVRKCBEOLWCWBNV OVIVSTQVIUTRPR $. $( [10-Mar-02] $) $} ${ mh.1 $e |- a C c $. mh.2 $e |- a C d $. mh.3 $e |- b C c $. mh.4 $e |- b C d $. $( Lemma for Marsden-Herman distributive law. $) mhlem2 $p |- ( ( ( a v c ) ^ ( c ' v b ' ) ) ^ ( ( b v d ) ^ ( a ' v d ' ) ) ) = ( ( ( a ^ c ' ) ^ ( b ^ d ' ) ) v ( ( c ^ b ' ) ^ ( d ^ a ' ) ) ) $= ( wo wn wa comcom3 mhlem1 ax-a2 ax-r2 2an leao2 leao3 ler2an oran2 lel2or lan anor3 lbtr mhlem ) ACICJZBJZIKZBDIZAJZDJZIZKZKAUFKZCUGKZIZBUKKZDUJKZI ZKUNUQKUOURKIUHUPUMUSACUGEBCGLMUMUIUKUJIZKUSULUTUIUJUKNUBBDUJHADFLMOPUNUQ UOURUNUQIUFBIZUKAIZKZUOURIJZUNVCUQUNVAVBUFABQAUFUKRSUQVAVBBUKUFRUKBAQSUAV CUOJZURJZKVDVAVEVBVFCBTDATPUOURUCOUDUEO $. $( [10-Mar-02] $) $( Marsden-Herman distributive law. Lemma 7.2 of Kalmbach, p. 91. $) mh $p |- ( ( a v c ) ^ ( b v d ) ) = ( ( ( a ^ b ) v ( a ^ d ) ) v ( ( c ^ b ) v ( c ^ d ) ) ) $= ( wa wo leao1 leao2 ler2an leao4 lel2or wn ax-r1 ax-r2 lea ax-a3 leao3 wf anass an4 mhlem2 le2an leo letr leor bltr leran anor3 ax-a2 or12 3tr 3tr1 lor ax-r4 oran3 2an ran lan dff le3tr1 le0 lebi oml3 ) ABIZADIZJZCBIZCDIZ JZJZACJZBDJZIZVNVQVJVQVMVHVQVIVHVOVPABCKBADLMVIVOVPADCKDABNMOVKVQVLVKVOVP CBAUABCDLMVLVOVPCDAUADCBNMOOVQVNPZIZUBVQCPZBPZJZAPZDPZJZIZVHVLJZPZIZIZWGW HIZVSUBWJVQWFIZWHIZWKWMWJVQWFWHUCQWLWGWHWLAVTIZBWDIZIZCWAIZDWCIZIZJZWGWLV OWBIVPWEIIWTVOVPWBWEUDABCDEFGHUERWPWGWSWPVHWGWNAWOBAVTSBWDSUFVHVLUGUHWSVL WGWQCWRDCWASDWCSUFVLVHUIUHOUJUKUJVRWIVQVKVIJZWGJZPZXAPZWHIZVRWIXEXCXAWGUL QVNXBVNVMVJJZXBVJVMUMVKVLVJJZJVKVIWGJZJXFXBXGXHVKXGVHVLVIJJZWGVIJZXHVLVHV IUNXJXIVHVLVITQWGVIUMUOUQVKVLVJTVKVIWGTUPRURWFXDWHWFVKPZVIPZIXDWBXKWEXLCB USADUSUTVKVIULRVAUPVBWGVCVDVSVEVFVGQ $. $( [10-Mar-02] $) $} ${ marsden.1 $e |- a C b $. marsden.2 $e |- b C c $. marsden.3 $e |- c C d $. marsden.4 $e |- d C a $. $( Lemma for Marsden-Herman distributive law. $) marsdenlem1 $p |- ( ( a v b ) ^ ( a ' v d ' ) ) = ( ( a ' ^ ( a v b ) ) v ( d ' ^ ( a v b ) ) ) $= ( wo wn wa ancom comorr comcom3 comcom4 comcom fh2r ax-r2 ) ABIZAJZDJZIZK UBSKTSKUASKISUBLTSUAASABMNUATDAHOPQR $. $( [26-Feb-02] $) $( Lemma for Marsden-Herman distributive law. $) marsdenlem2 $p |- ( ( c v d ) ^ ( b ' v c ' ) ) = ( ( ( b ' ^ c ) v ( c ' ^ d ) ) v ( b ' ^ d ) ) $= ( wo wn wa ancom comorr comcom3 comcom4 comcom fh2 wf ax-r2 3tr fh2rc dff comcom6 comid comcom2 ax-r5 ax-r1 or0r 2or or32 ) CDIZBJZCJZIZKUNUKKULUKK ZUMUKKZIZULCKZUMDKZIULDKZIZUKUNLUMUKULCUKCDMNULUMBCFOPZUAUQURUTIZUSIVAUOV CUPUSCULDCULVBUCGQUPUMCKZUSIZRUSIZUSCUMDCCCUDUEGQVFVERVDUSRCUMKVDCUBCUMLS UFUGUSUHTUIURUTUSUJST $. $( [26-Feb-02] $) $( Lemma for Marsden-Herman distributive law. $) marsdenlem3 $p |- ( ( ( b ' ^ c ) v ( c ' ^ d ) ) ^ ( b ^ d ' ) ) = 0 $= ( wn wa wo wf lea lecom comcom7 comcom an4 dff ax-r1 3tr lecon lear oran2 lel lerr lbtr fh1r ancom ax-r2 ran an0r lan an0 2or or0 ) BIZCJZCIZDJZKBD IZJZJUQVAJZUSVAJZKLLKLVAUQUSUQVAUQVAUQVAIZUPVDCVABBUTMUAUDNOPUSVAUSVAUSVD USUPDKVDUSDUPURDUBUEBDUCUFNOPUGVBLVCLVBUPBJZCUTJZJLVFJLUPCBUTQVELVFVEBUPJ ZLUPBUHLVGBRSUIUJVFUKTVCURBJZDUTJZJVHLJLURDBUTQVILVHLVIDRSULVHUMTUNLUOT $. $( [26-Feb-02] $) $( Lemma for Marsden-Herman distributive law. $) marsdenlem4 $p |- ( ( ( a ' ^ b ) v ( a ^ d ' ) ) ^ ( b ' ^ d ) ) = 0 $= ( wn wa wo wf lbtr lecom comcom7 ancom lan an4 dff 3tr leao3 fh1r an0 2or oran1 leao4 oran2 ax-r1 ax-r2 or0 ) AIZBJZADIZJZKBIZDJZJULUPJZUNUPJZKLLKL UPULUNUPULUPULIZUPAUOKUSUODAUAABUEMNOUPUNUPUNIZUPUKDKUTDUOUKUFADUGMNOUBUQ LURLUQULDUOJZJUKDJZBUOJZJZLUPVAULUODPQUKBDUORVDVBLJZLVEVDLVCVBBSQUHVBUCUI TURAUOJZUMDJZJVFLJLAUMUODRVGLVFVGDUMJZLUMDPLVHDSUHUIQVFUCTUDLUJT $. $( [26-Feb-02] $) $( Marsden-Herman distributive law. Corollary 3.3 of Beran, p. 259. $) mh2 $p |- ( ( a v b ) ^ ( c v d ) ) = ( ( ( a ^ c ) v ( a ^ d ) ) v ( ( b ^ c ) v ( b ^ d ) ) ) $= ( comcom mh ) ACBDEDAHIBCFIGJ $. $( [10-Mar-02] $) $} $( Lemma for OML proof of Mladen's conjecture, $) mlaconjolem $p |- ( ( a == c ) v ( b == c ) ) =< ( ( c ^ ( a v b ) ) v ( c ' ^ ( a ' v b ' ) ) ) $= ( tb wo wa wi2 wi1 wn orbile df-i2 oran3 ran lor ax-r1 ax-r2 df-i1 2an 3tr ancom comor1 comcom2 leao1 lecom comcom fh1 omlan df2le2 2or ax-a2 lbtr ) A CDBCDEABFZCGZCABEZHZFZCUNFZCIZAIBIEZFZEZABCJUPCUSURFZEZURUQEZFVCURFZVCUQFZE ZVAUMVCUOVDUMCULIZURFZEZVCULCKVCVJVBVICUSVHURABLMNOPCUNQRVCURUQVCCCVBUAUBUQ VCUQVCCUNVBUCZUDUEUFVGUTUQEVAVEUTVFUQVECUTEZURFURVLFUTVCVLURVBUTCUSURTNMVLU RTCUSUGSVFUQVCFUQVCUQTUQVCVKUHPUIUTUQUJPSUK $. $( [10-Mar-02] $) $( OML proof of Mladen's conjecture. $) mlaconjo $p |- ( ( a == b ) ^ ( ( a == c ) v ( b == c ) ) ) =< ( a == c ) $= ( tb wo wa wn dfb le2an lea leao1 lbtr lecom comcom7 lor ax-r2 an12 lan dff wf bile mlaconjolem le2or oran leor df-a oran1 lear oran3 ax-r1 an0 3tr or0 mh ax-r5 or0r 2or le3tr1 letr ) ABDZACDZBCDEZFABFZAGZBGZFZEZCABEZFZCGZVDVEE ZFZEZFZVAUTVGVBVMUTVGABHUAABCUBIVCVIFZVFVLFZEZACFZVDVJFZEVNVAVOVRVPVSVCAVIC ABJCVHJIVFVDVLVJVDVEJVJVKJIUCVNVOVCVLFZEZVFVIFZVPEZEVQVCVIVFVLVCVFVCVFGZVCV HWDABBKABUDZLMNVCVLVCVLGZVCCVCEZWFVCCUEWGCVKGZEZWFVCWHCABUFOCVKUGZPLMNVIVFV IWDVIVHWDCVHUHWELMNVIVLVIWFVIWIWFCVHWHKWJLMNUNWAVOWCVPWAVOTEVOVTTVOVTVJVCVK FZFVJTFTVCVJVKQWKTVJWKVCVCGZFZTVKWLVCABUIRTWMVCSUJPRVJUKULOVOUMPWCTVPEVPWBT VPWBCVFVHFZFCTFTVFCVHQWNTCWNVFWDFZTVHWDVFWERTWOVFSUJPRCUKULUOVPUPPUQPACHURU S $. $( [10-Mar-02] $) $( Distributive law for identity. $) distid $p |- ( ( a == b ) ^ ( ( a == c ) v ( b == c ) ) ) = ( ( ( a == b ) ^ ( a == c ) ) v ( ( a == b ) ^ ( b == c ) ) ) $= ( tb wo wa lea mlaconjo ler2an bicom ax-a2 2an bltr ler2or ledi lebi ) ABDZ ACDZBCDZEZFZQRFZQSFZEUAUBUCUAQRQTGZABCHIUAQSUDUABADZSREZFSQUETUFABJRSKLBACH MINQRSOP $. $( [17-Mar-02] $) $( Corollary of Marsden-Herman Lemma. $) mhcor1 $p |- ( ( ( ( a ->1 b ) ^ ( b ->2 c ) ) ^ ( c ->1 d ) ) ^ ( d ->2 a ) ) = ( ( ( a == b ) ^ ( b == c ) ) ^ ( c == d ) ) $= ( wa wn wo tb anass ancom ax-r2 lbtr lecom comcom7 wf ran lan 3tr ax-r1 2or wi2 wi1 imp3 2an leao3 oran comcom leao2 mh2 an4 3tr1 dff an0r 3tr2 an0 or0 or0r ax-a2 bi4 ) BCUAZCDUBZEZABUBZEZDAUAZEZABEZCEDEZAFZBFZEZCFZEDFZEZGZVCUT EVAEZVEEABHBCHECDHEVFVBVCVEEZEVJVLEZCDEZGZVMVIEZVGGZEZVOVBVCVEIVBVTVQWBBCDU CVQVEVCEWBVCVEJDABUCKUDWCVRWAEZVRVGEZGZVSWAEZVSVGEZGZGVNVHGVOVRVSWAVGVSVRVS VRVSVRFZVSBCGZWJCDBUEBCUFZLMNUGVSWAVSWAFZVSDAGZWMDCAUHDAUFZLMNVGWAVGWAVGWMV GWNWMABDUEWOLMNUGVGVRVGWJVGWKWJBACUHWLLMNUIWFVNWIVHWFVNOGVNWDVNWEOVLVMEZVKE ZVKWPEWDVNWPVKJWDVLVJEZWAEWPVJVIEZEWQVRWRWAVJVLJPVLVJVMVIUJWSVKWPVJVIJQRVKV LVMIUKWEVGVREABVREZEZOVRVGJABVRIXAAOEOWTOABVJEZVLEZOVLEZWTOXDXCOXBVLBULPSBV JVLIVLUMUNQAUOKRTVNUPKWIOVHGVHWGOWHVHWGCDWAEZECOEOCDWAIXEOCXEDVMEZVIEZOXGXE DVMVIISOXGOOVIEZXGXHOVIUMSOXFVIDULPKSKQCUORWHVGVSEZVHVSVGJVHXIVGCDISKTVHUQK TVNVHURRRVPVDVEVPVCVBEVDVCUTVAIVCVBJKPABCDUSUK $. $( [26-Jun-03] $) $( Equation (3.29) of "Equations, states, and lattices..." paper. This shows that it holds in all OMLs, not just 4GO. $) oago3.29 $p |- ( ( a ->1 b ) ^ ( ( b ->2 c ) ^ ( c ->1 a ) ) ) =< ( a == c ) $= ( wi1 wi2 wa tb anass i2id 2an ax-r1 an1 mhcor1 3tr2 lear bicom lbtr bltr wt ) ABDZBCEZCADZFFZABGBCGFZCAGZFZACGZUCSFZTUAFUBFZAAEZFZUCUFUKUHUIUCUJSTUA UBHAIJKUCLABCAMNUFUEUGUDUEOCAPQR $. $( [22-Jun-03] $) $( 4-variable extension of Equation (3.21) of "Equations, states, and lattices..." paper. This shows that it holds in all OMLs, not just 4GO. $) oago3.21x $p |- ( ( ( ( a ->5 b ) ^ ( b ->5 c ) ) ^ ( c ->5 d ) ) ^ ( d ->5 a ) ) = ( ( ( a == b ) ^ ( b == c ) ) ^ ( c == d ) ) $= ( wi5 wa tb wi1 wi2 i5lei1 i5lei2 le2an mhcor1 lbtr eqtr4 u5lembi ax-r1 lea leid bltr bicom ler2an letr lebi ) ABEZBCEZFZCDEZFZDAEZFZABGZBCGZFZCDGZFZUK ABHZBCIZFZCDHZFZDAIZFUPUIVAUJVBUGUSUHUTUEUQUFURABJBCKLCDJLDAKLABCDMNUPUPDAG ZFUKUPUPVCUPSUPADGVCABCDOADUANUBUPUIVCUJUNUGUOUHULUEUMUFULUEBAEZFZUEVEULABP QUEVDRTUMUFCBEZFZUFVGUMBCPQUFVFRTLUOUHDCEZFZUHVIUOCDPQUHVHRTLVCUJADEZFZUJVK VCDAPQUJVJRTLUCUD $. $( [26-Jun-03] $) ${ cancel.1 $e |- ( ( d v ( a ->1 c ) ) ->1 c ) = ( ( d v ( b ->1 c ) ) ->1 c ) $. $( Lemma for cancellation law eliminating ` ->1 ` consequent. $) cancellem $p |- ( d v ( a ->1 c ) ) =< ( d v ( b ->1 c ) ) $= ( wi1 wo wn i1abs ax-r1 leo df-i1 ax-r2 lbtr lecon2 ran 3tr lel2or bltr wa leor lear ler2an coman2 coman1 comcom2 fh2rc 3tr1 leao4 lerr lor ax-r4 id an12 anor1 lan anor3 ancom anass le3tr1 lea lel letr ) DACFGZVDCFZHZVD CTZGZDBCFZGZVHVDVDCIJVFVJVGVJVEVJHZVKVJCTZGZVEVKVLKVEVMVEVJCFZVMEVJCLZMJN OVGVNCTZVJVGVNCVGVDHZVGGZVNVGVQUAVRVEVNVEVRVDCLJEMNVDCUBUCVPVKCTZVLCTZGZV JVMCTWAVPWAVLCVKVJCUDVLVJVJCUEUFUGVNVMCVOPWAUMUHVSVJVTDHZBCTZHZTZWCTZDBHZ WCGZGZVSVJWFWHDWCWEWGUIUJVSWEBTZCTWFVKWJCVKWIHZBWETZWJVJWIVIWHDBCLUKZULWL WKWLWBBWDTZTWBWHHZTWKBWBWDUNWNWOWBBWCUOUPDWHUQQJBWEURQPWEBCUSMWMUTVLVJCVJ CVAVBRSVCRS $. $( [21-Feb-02] $) $( Cancellation law eliminating ` ->1 ` consequent. $) cancel $p |- ( d v ( a ->1 c ) ) = ( d v ( b ->1 c ) ) $= ( wi1 wo cancellem ax-r1 lebi ) DACFGZDBCFGZABCDEHBACDKCFLCFEIHJ $. $( [21-Feb-02] $) $} ${ kb10iii.1 $e |- b ' =< ( a ->1 c ) $. $( Exercise 10(iii) of Kalmbach p. 30 (in a rewritten form). $) kb10iii $p |- c ' =< ( a ->1 b ) $= ( wi1 wn wo wa ud1lem0c omln u1lem9b lel2or bltr lelan ancom lbtr u1lemaa womaon le3tr2 lear letr lecon2 ) ABEZCUCFAAFZBFZGZHZCABIUGACHZCAUDUGGZHZA CEZAHZUGUHUJAUKHULUIUKAUIUFUKAUEJUDUKUEACKDLMNAUKOPAUERACQSACTUAMUB $. $( [9-Jan-04] $) $} ${ e2ast2.1 $e |- a =< b ' $. e2ast2.2 $e |- c =< d ' $. e2ast2.3 $e |- a =< c ' $. $( Show that the E*_2 derivative on p. 23 of Mayet, "Equations holding in Hilbert lattices" IJTP 2006, holds in all OMLs. $) e2ast2 $p |- ( ( a v b ) ^ ( c v d ) ) =< ( ( b v d ) v ( a v c ) ' ) $= ( wo wa wn leror lecon3 lecom comcom df-le2 ax-r2 ax-r1 lor ax-a3 ax-r5 le2an comcom2 fh4c lan anor3 leao4 com2or fh4 or32 lear 3tr2 df2le2 ax-a2 2an ancom 3tr 3tr1 lbtr ) ABHZCDHZICJZBHZAJZDHZIZBDHACHJZHZUSVBUTVDAVABGK CVCDACGLKUABDVCHZVAIZHZBDVFHZHVEVGVIVKBVIDVCVAIZHZVKVMVIVMVHDVAHZIVIVADVC DVADVACDFLZMNZVAAAVAAVAGMNUBZUCVNVAVHDVAVOOUDPQVLVFDACUERPRVEBVCIZVIHZVJV SVEVSVRVHHZVRVAHZIVDVBIVEVHVRVAVRVHVRVHVCBDUFMNVAVHVADVCVPVQUGNUHVTVDWAVB VRDHVCHVRVCHZDHVTVDVRDVCUIVRDVCSWBVCDVRVCBVCUJOTUKWABVAHVBVRBVABVCABELULZ TBVAUMPUNVDVBUOUPQVRBVIWCTPBDVFSUQUR $. $( [24-Jun-2006] $) $} ${ e2ast.1 $e |- a =< b ' $. e2ast.2 $e |- c =< d ' $. e2ast.3 $e |- r =< a ' $. e2ast.4 $e |- a =< c ' $. e2ast.5 $e |- c =< r ' $. $( Lemma towards a possible proof that E*_2 on p. 23 of Mayet, "Equations holding in Hilbert lattices" IJTP 2006, holds in all OMLs. $) e2astlem1 $p |- ( ( ( a v b ) ^ ( c v d ) ) ^ ( ( a v c ) v r ) ) = ( ( a v ( b ^ ( c v r ) ) ) ^ ( c v ( d ^ ( a v r ) ) ) ) $= ( wo wa ler lecom wn comcom7 fh2r df2le2 wf ax-r2 leo ax-a3 comcom com2or anandir lan fh2 lecon3 ortha ax-r5 or0r 3tr 2or leor or32 fh2c lor or0 2an ) ABKZCDKZLACKZEKZLUTVCLZVAVCLZLABCEKZLZKZCDAEKZLZKZLUTVAVCUEVDVHVEVK VDAVCLZBVCLZKVHAVCBAVCAVBEACUAMZNABABOFNPZQVLAVMVGAVCVNRVMBAVFKZLZSVGKZVG VCVPBACEUBUFVQBALZVGKVRABVFVOACEACACOINPZEAEAEAOHNPUCUDUGVSSVGBAABFUHUIUJ TVGUKULUMTVECVCLZDVCLZKVKCVCDCVCCVBECAUNMZNCDCDOGNPZQWACWBVJCVCWCRWBDVICK ZLVJDCLZKZVJVCWEDACEUOUFCDVIWDCAEACVTUCCECEOJNPUDUPWGVJSKVJWFSVJDCCDGUHUI UQVJURTULUMTUST $. $( [25-Jun-2006] $) $( Show that E*_2 on p. 23 of Mayet, "Equations holding in Hilbert lattices" IJTP 2006, holds in all OMLs. $) $( e2ast $p |- ( ( ( a v b ) ^ ( c v d ) ) ^ ( ( a v c ) v r ) ) =< ( ( b v d ) v r ) $= ( wo wa wn ax-a3 comor1 bctr comcom3 comcom7 comorr2 comcom6 com2an mh2 ax-r2 lbtr wf anass ax-r1 anor3 ran ancom dff lan an0 an0r le0 bltr lel2or letr ) ABKCDKLACKEKLZBEKZCKZMZDEBMZKZLZLZVBCEAKMZLZLZKZBVELZBVHLZK ZKZBDKEKZUS?VN??VBBKVEVHKLVN?VBBVEVHVABVABECKZKBBECNBVPOPQBDVDBD?RBVDEVCS TUA??UBUCUDVJVOVMVFVOVI?VIUEVOVIVBCLZVGLZUEVRVIVBCVGUFUGVRUEVGLUEVQUEVGVQ UTMZCMZLZCLZUEWBVQWAVBCUTCUHUIUGWBVSVTCLZLZUEVSVTCUFWDVSUELUEWCUEVSWCCVTL ZUEVTCUJUEWECUKUGUCULVSUMUCUCUCUIVGUNUCUCVOUOUPUQVKVOVL??UQUQUR $. $) $( [25-Jun-2006] $) $} $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= OML Lemmas for studying Godowski equations. =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) ${ govar.1 $e |- a =< b ' $. govar.2 $e |- b =< c ' $. $( Lemma for converting n-variable Godowski equations to 2n-variable equations. $) govar $p |- ( ( a v b ) ^ ( a ->2 c ) ) =< ( b v c ) $= ( wo wi2 wa wn df-i2 lan ax-a2 ran lecom comcom7 comcom comcom2 lor 3tr wf com2an com2or fh2r ax-r2 coman1 fh2c dff ax-r1 anass an0r 3tr2 or0 lea coman2 lear le2or bltr ) ABFZACGZHZBCAIZCIZHZFZHZACHZFZBCFUTURVDHZVEAVDHZ FZVGUSVDURACJKVHBAFZVDHVJURVKVDABLMBVDABCVCBCBVBENZOBVAVBBAABABABIDNOPZQV LUAUBVMUCUDVIVFVEVIVFAVCHZFVFTFVFVCACVCAVAVBUEOVCCVAVBUNOUFVNTVFAVAHZVBHZ TVBHZVNTVQVPTVOVBAUGMUHAVAVBUIVBUJUKRVFULSRSVEBVFCBVDUMACUOUPUQ $. $( [19-Nov-99] $) $( Lemma for converting n-variable to 2n-variable Godowski equations. $) govar2 $p |- ( a v b ) =< ( c ->2 a ) $= ( wo wn wa wi2 lecon3 ler2an lelor df-i2 ax-r1 lbtr ) ABFACGZAGZHZFZCAIZB RABPQEABDJKLTSCAMNO $. $( [19-Nov-99] $) ${ gon2n.3 $e |- ( ( c ->2 a ) ^ d ) =< ( a ->2 c ) $. gon2n.4 $e |- e =< d $. $( Lemma for converting n-variable to 2n-variable Godowski equations. $) gon2n $p |- ( ( a v b ) ^ e ) =< ( b v c ) $= ( wo wa wi2 lea govar2 le2an letr ler2an govar ) ABJZEKZSACLZKBCJTSUASE MTCALZDKUASUBEDABCFGNIOHPQABCFGRP $. $( [19-Nov-99] $) $} $} ${ go2n4.1 $e |- a =< b ' $. go2n4.2 $e |- b =< c ' $. go2n4.3 $e |- c =< d ' $. go2n4.4 $e |- d =< e ' $. go2n4.5 $e |- e =< f ' $. go2n4.6 $e |- f =< g ' $. go2n4.7 $e |- g =< h ' $. go2n4.8 $e |- h =< a ' $. ${ go2n4.9 $e |- ( ( ( c ->2 a ) ^ ( a ->2 g ) ) ^ ( ( g ->2 e ) ^ ( e ->2 c ) ) ) =< ( a ->2 c ) $. $( 8-variable Godowski equation derived from 4-variable one. The last hypothesis is the 4-variable Godowski equation. $) go2n4 $p |- ( ( ( a v b ) ^ ( c v d ) ) ^ ( ( e v f ) ^ ( g v h ) ) ) =< ( b v c ) $= ( wo wa wi2 anass ancom lan ax-r2 an32 ax-r1 bltr govar2 le2an gon2n ) ABRZCDRZSEFRZGHRZSZSZUKUOULSZSZBCRUPUKULUOSZSURUKULUOUAUSUQUKULUOUBUCUD ABCGETZAGTZSZECTZSZUQIJCATZVDSZVEVASUTVCSZSZACTVHVFVHVEVAVGSZSVFVEVAVGU AVIVDVEVIVGVASVDVAVGUBUTVCVAUEUDUCUDUFQUGUOVBULVCUMUTUNVAEFGMNUHGHAOPUH UICDEKLUHUIUJUG $. $( [19-Nov-99] $) $} ${ gomaex4.9 $e |- ( ( ( a ->2 g ) ^ ( g ->2 e ) ) ^ ( ( e ->2 c ) ^ ( c ->2 a ) ) ) =< ( g ->2 a ) $. gomaex4.10 $e |- ( ( ( e ->2 c ) ^ ( c ->2 a ) ) ^ ( ( a ->2 g ) ^ ( g ->2 e ) ) ) =< ( c ->2 e ) $. $( Proof of Mayet Example 4 from 4-variable Godowski equation. R. Mayet, "Equational bases for some varieties of orthomodular lattices related to states," Algebra Universalis 23 (1986), 167-195. $) gomaex4 $p |- ( ( ( ( a v b ) ^ ( c v d ) ) ^ ( ( e v f ) ^ ( g v h ) ) ) ^ ( ( a v h ) ->1 ( d v e ) ' ) ) = 0 $= ( wo wa wn wi1 wf go2n4 an4 ancom ran ax-r2 3tr ax-a2 le3tr1 lan ler2an 2an bltr leran go1 lbtr le0 lebi ) ABSZCDSZTZEFSZGHSZTZTZAHSZDESZUAUBZT ZUCVKVHVITZVJTUCVGVLVJVGVHVIVEVATZVBVDTZTZHASVGVHGHABCDEFOPIJKLMNQUDVGV AVDTZVBVETZTZVEVBTZVPTZVOVAVBVDVEUEVRVQVPTVTVPVQUFVQVSVPVBVEUFUGUHVEVBV AVDUEUIAHUJUKVGVNVMTZVIVGVAVETZVDVBTZTZVOWAVGVCVEVDTZTWBVNTWDVFWEVCVDVE UFULVAVBVEVDUEVNWCWBVBVDUFULUIWBVMWCVNVAVEUFVDVBUFUNVMVNUFUICDEFGHABKLM NOPIJRUDUOUMUPVHVIUQURVKUSUT $. $( [19-Nov-99] $) $} $} ${ go2n6.1 $e |- g =< h ' $. go2n6.2 $e |- h =< i ' $. go2n6.3 $e |- i =< j ' $. go2n6.4 $e |- j =< k ' $. go2n6.5 $e |- k =< m ' $. go2n6.6 $e |- m =< n ' $. go2n6.7 $e |- n =< u ' $. go2n6.8 $e |- u =< w ' $. go2n6.9 $e |- w =< x ' $. go2n6.10 $e |- x =< y ' $. go2n6.11 $e |- y =< z ' $. go2n6.12 $e |- z =< g ' $. go2n6.13 $e |- ( ( ( i ->2 g ) ^ ( g ->2 y ) ) ^ ( ( ( y ->2 w ) ^ ( w ->2 n ) ) ^ ( ( n ->2 k ) ^ ( k ->2 i ) ) ) ) =< ( g ->2 i ) $. $( 12-variable Godowski equation derived from 6-variable one. The last hypothesis is the 6-variable Godowski equation. $) go2n6 $p |- ( ( ( g v h ) ^ ( i v j ) ) ^ ( ( ( k v m ) ^ ( n v u ) ) ^ ( ( w v x ) ^ ( y v z ) ) ) ) =< ( h v i ) $= ( wo anass ancom lan 3tr ran ax-r2 ax-r1 3tr2 3tr1 wi2 govar2 le2an gon2n wa bltr ) ABUFZECUFZUTDFUFZGHUFZUTZIJUFZKLUFZUTZUTZUTZVBVHVGVEUTZVDVCUTZU TZUTZUTZBEUFVKVBVHUTVNUTZVPVBVCVJUTZUTVPVKVQVRVOVBVCVFUTZVIUTZVNVHUTZVRVO WAVTWAVSVGUTZVHUTVTVNWBVHVNVGVEVMUTZUTVGVSUTWBVGVEVMUGWCVSVGWCVEVCVDUTZUT WDVEUTVSVMWDVEVDVCUHUIVEWDUHVCVDVEUGUJUIVGVSUHUJUKVSVGVHUGULUMVCVFVIUGVNV HUHUNUIVBVCVJUGVBVHVNUGZUOWEULABEAKUPZKIUPZIGUPZUTZGDUPZDEUPZUTZUTZUTZVOM NEAUPZWNUTZWOWFUTWMUTZAEUPWQWPWOWFWMUGUMUEVAVHWFVNWMKLAUCUDUQVLWIVMWLVGWG VEWHIJKUAUBUQGHISTUQURVDWJVCWKDFGQRUQECDOPUQURURURUSVA $. $( [29-Nov-99] $) $} ${ gomaex3h1.1 $e |- a =< b ' $. gomaex3h1.12 $e |- g = a $. gomaex3h1.13 $e |- h = b $. $( Hypothesis for Godowski 6-var -> Mayet Example 3. $) gomaex3h1 $p |- g =< h ' $= ( wn ax-r4 le3tr1 ) ABHCDHEFDBGIJ $. $( [29-Nov-99] $) $} ${ gomaex3h2.2 $e |- b =< c ' $. gomaex3h2.13 $e |- h = b $. gomaex3h2.14 $e |- i = c $. $( Hypothesis for Godowski 6-var -> Mayet Example 3. $) gomaex3h2 $p |- h =< i ' $= ( wn ax-r4 le3tr1 ) ABHCDHEFDBGIJ $. $( [29-Nov-99] $) $} ${ gomaex3h3.14 $e |- i = c $. gomaex3h3.15 $e |- j = ( c v d ) ' $. $( Hypothesis for Godowski 6-var -> Mayet Example 3. $) gomaex3h3 $p |- i =< j ' $= ( wo wn leo ax-a1 lbtr ax-r4 le3tr1 ) AABGZHZHZDCHANPABINJKECOFLM $. $( [29-Nov-99] $) $} ${ gomaex3h4.11 $e |- r = ( ( p ' ->1 q ) ' ^ ( c v d ) ) $. gomaex3h4.15 $e |- j = ( c v d ) ' $. gomaex3h4.16 $e |- k = r $. $( Hypothesis for Godowski 6-var -> Mayet Example 3. $) gomaex3h4 $p |- j =< k ' $= ( wo wn wi1 wa lear bltr lecon ax-r4 le3tr1 ) ABKZLGLCDLGTGELFMLZTNTHUATO PQIDGJRS $. $( [29-Nov-99] $) $} ${ gomaex3h5.11 $e |- r = ( ( p ' ->1 q ) ' ^ ( c v d ) ) $. gomaex3h5.16 $e |- k = r $. gomaex3h5.17 $e |- m = ( p ' ->1 q ) $. $( Hypothesis for Godowski 6-var -> Mayet Example 3. $) gomaex3h5 $p |- k =< m ' $= ( wn wi1 wo wa lea bltr ax-r4 le3tr1 ) GEKFLZKZCDKGTABMZNTHTUAOPIDSJQR $. $( [29-Nov-99] $) $} ${ gomaex3h6.17 $e |- m = ( p ' ->1 q ) $. gomaex3h6.18 $e |- n = ( p ' ->1 q ) ' $. $( Hypothesis for Godowski 6-var -> Mayet Example 3. $) gomaex3h6 $p |- m =< n ' $= ( wn wi1 leid ax-a1 lbtr ax-r4 le3tr1 ) CGDHZNGZGZABGNNPNINJKEBOFLM $. $( [29-Nov-99] $) $} ${ gomaex3h7.18 $e |- n = ( p ' ->1 q ) ' $. gomaex3h7.19 $e |- u = ( p ' ^ q ) $. $( Hypothesis for Godowski 6-var -> Mayet Example 3. $) gomaex3h7 $p |- n =< u ' $= ( wn wi1 wa wo leor df-i1 ax-r1 lbtr lecon ax-r4 le3tr1 ) BGZCHZGRCIZGADG TSTRGZTJZSTUAKSUBRCLMNOEDTFPQ $. $( [29-Nov-99] $) $} ${ gomaex3h8.19 $e |- u = ( p ' ^ q ) $. gomaex3h8.20 $e |- w = q ' $. $( Hypothesis for Godowski 6-var -> Mayet Example 3. $) gomaex3h8 $p |- u =< w ' $= ( wn wa lear ax-a1 lbtr ax-r4 le3tr1 ) AGZBHZBGZGZCDGOBQNBIBJKEDPFLM $. $( [29-Nov-99] $) $} ${ gomaex3h9.20 $e |- w = q ' $. gomaex3h9.21 $e |- x = q $. $( Hypothesis for Godowski 6-var -> Mayet Example 3. $) gomaex3h9 $p |- w =< x ' $= ( wn leid ax-r4 le3tr1 ) AFZJBCFJGDCAEHI $. $( [29-Nov-99] $) $} ${ gomaex3h10.10 $e |- q = ( ( e v f ) ->1 ( b v c ) ' ) ' $. gomaex3h10.21 $e |- x = q $. gomaex3h10.22 $e |- y = ( e v f ) ' $. $( Hypothesis for Godowski 6-var -> Mayet Example 3. $) gomaex3h10 $p |- x =< y ' $= ( wo wn wa lea wi1 df-i1 ax-r4 ax-r1 ax-r2 le3tr1 anor1 ax-a1 ) ECDKZLZLZ FGLUCUCABKLZMZLZMZUCEUEUCUHNEUCUFOZLZUIHUKUDUGKZLZUIUJULUCUFPQUIUMUCUGUAR SSUCUEUCUBRTIGUDJQT $. $( [29-Nov-99] $) $} ${ gomaex3h11.22 $e |- y = ( e v f ) ' $. gomaex3h11.23 $e |- z = f $. $( Hypothesis for Godowski 6-var -> Mayet Example 3. $) gomaex3h11 $p |- y =< z ' $= ( wo wn leor lecon ax-r4 le3tr1 ) ABGZHBHCDHBMBAIJEDBFKL $. $( [29-Nov-99] $) $} ${ gomaex3h12.6 $e |- f =< a ' $. gomaex3h12.12 $e |- g = a $. gomaex3h12.23 $e |- z = f $. $( Hypothesis for Godowski 6-var -> Mayet Example 3. $) gomaex3h12 $p |- z =< g ' $= ( wn ax-r4 le3tr1 ) BAHDCHEGCAFIJ $. $( [29-Nov-99] $) $} ${ gomaex3lem1.3 $e |- c =< d ' $. $( Lemma for Godowski 6-var -> Mayet Example 3. $) gomaex3lem1 $p |- ( c v ( c v d ) ' ) = d ' $= ( wn wa wo comid comcom2 lecom fh3 anor3 lor wt ancom df-le2 df-t 2an an1 ax-r1 3tr 3tr2 ) AADZBDZEZFAUBFZAUCFZEZAABFDZFUCAUBUCAAAGHAUCCIJUDUHAABKL UGUFUEEZUCMEZUCUEUFNUJUIUCUFMUEUFUCAUCCOSAPQSUCRTUA $. $( [29-Nov-99] $) $} ${ gomaex3lem2.5 $e |- e =< f ' $. $( Lemma for Godowski 6-var -> Mayet Example 3. $) gomaex3lem2 $p |- ( ( e v f ) ' v f ) = e ' $= ( wo wn wt lecon3 lecom comid comcom2 fh3r anor3 ax-r5 ax-r1 anabs df2le1 wa leid lel2or ax-r2 lebi df-t ax-a2 2an 3tr1 an1 ) ABDEZBDZAEZFQZUIUIBEZ QZBDZUIBDZUKBDZQUHUJBUIUKBUIABCGZHBBBIJKUMUHULUGBABLMNUIUNFUOUIUNUIUNUIBO PUIUIBUIRUPSUAFBUKDUOBUBBUKUCTUDUEUIUFT $. $( [29-Nov-99] $) $} $( Lemma for Godowski 6-var -> Mayet Example 3. $) gomaex3lem3 $p |- ( ( p ' ->1 q ) ' v ( p ' ^ q ) ) = p ' $= ( wn wi1 wa wo anor1 ax-r1 df-i1 ax-r4 3tr1 ax-r5 coman1 comid comcom2 fh3r id wt orabs ax-r2 ax-a2 df-t 2an an1 3tr ) ACZBDZCZUFBEZFUFUICZEZUIFUFUIFZU JUIFZEZUFUHUKUIUFCUIFZCZUKUHUKUKUPUFUIGHUGUOUFBIJUKQKLUIUFUJUFBMUIUIUINOPUN UFREUFULUFUMRUFBSUMUIUJFZRUJUIUARUQUIUBHTUCUFUDTUE $. $( [29-Nov-99] $) ${ gomaex3lem4.9 $e |- p = ( ( a v b ) ->1 ( d v e ) ' ) ' $. $( Lemma for Godowski 6-var -> Mayet Example 3. $) gomaex3lem4 $p |- ( ( a v b ) ^ ( d v e ) ' ) =< p ' $= ( wo wn wa leor wi1 ax-a1 df-i1 ax-r1 ax-r4 3tr1 lbtr ) ABGZCDGHZIZRHZTGZ EHZTUAJRSKZUDHZHUBUCUDLUDUBRSMNEUEFOPQ $. $( [29-Nov-99] $) $} ${ gomaex3lem5.1 $e |- a =< b ' $. gomaex3lem5.2 $e |- b =< c ' $. gomaex3lem5.3 $e |- c =< d ' $. gomaex3lem5.5 $e |- e =< f ' $. gomaex3lem5.6 $e |- f =< a ' $. gomaex3lem5.8 $e |- ( ( ( i ->2 g ) ^ ( g ->2 y ) ) ^ ( ( ( y ->2 w ) ^ ( w ->2 n ) ) ^ ( ( n ->2 k ) ^ ( k ->2 i ) ) ) ) =< ( g ->2 i ) $. gomaex3lem5.9 $e |- p = ( ( a v b ) ->1 ( d v e ) ' ) ' $. gomaex3lem5.10 $e |- q = ( ( e v f ) ->1 ( b v c ) ' ) ' $. gomaex3lem5.11 $e |- r = ( ( p ' ->1 q ) ' ^ ( c v d ) ) $. gomaex3lem5.12 $e |- g = a $. gomaex3lem5.13 $e |- h = b $. gomaex3lem5.14 $e |- i = c $. gomaex3lem5.15 $e |- j = ( c v d ) ' $. gomaex3lem5.16 $e |- k = r $. gomaex3lem5.17 $e |- m = ( p ' ->1 q ) $. gomaex3lem5.18 $e |- n = ( p ' ->1 q ) ' $. gomaex3lem5.19 $e |- u = ( p ' ^ q ) $. gomaex3lem5.20 $e |- w = q ' $. gomaex3lem5.21 $e |- x = q $. gomaex3lem5.22 $e |- y = ( e v f ) ' $. gomaex3lem5.23 $e |- z = f $. $( Lemma for Godowski 6-var -> Mayet Example 3. $) gomaex3lem5 $p |- ( ( ( g v h ) ^ ( i v j ) ) ^ ( ( ( k v m ) ^ ( n v u ) ) ^ ( ( w v x ) ^ ( y v z ) ) ) ) =< ( h v i ) $= ( gomaex3h1 gomaex3h2 gomaex3h3 gomaex3h4 gomaex3h5 gomaex3h10 gomaex3h11 gomaex3h6 gomaex3h7 gomaex3h8 gomaex3h9 gomaex3h12 go2n6 ) GHIJKLMQRSTUAA BGHUBUKULVCBCHKUCULUMVDCDIKUMUNVECDIJNOPUJUNUOVFCDJLNOPUJUOUPVGLMNOUPUQVJ MNOQUQURVKNOQRURUSVLORSUSUTVMBCEFOSTUIUTVAVHEFTUAVAVBVIAFGUAUFUKVBVNUGVO $. $( [29-Nov-99] $) $( Lemma for Godowski 6-var -> Mayet Example 3. $) gomaex3lem6 $p |- ( ( ( a v b ) ^ ( c v ( c v d ) ' ) ) ^ ( ( ( r v ( p ' ->1 q ) ) ^ ( ( p ' ->1 q ) ' v ( p ' ^ q ) ) ) ^ ( ( q ' v q ) ^ ( ( e v f ) ' v f ) ) ) ) =< ( b v c ) $= ( wo wa wn wi1 gomaex3lem5 2or 2an le3tr2 ) GHVCZKIVCZVDZJLVCZMQVCZVDZRSV CZTUAVCZVDZVDZVDHKVCABVCZCCDVCVEZVCZVDZPNVEZOVFZVCZWFVEZWEOVDZVCZVDZOVEZO VCZEFVCVEZFVCZVDZVDZVDBCVCABCDEFGHIJKLMNOPQRSTUAUBUCUDUEUFUGUHUIUJUKULUMU NUOUPUQURUSUTVAVBVGVMWDVTWQVKWAVLWCGAHBUKULVHKCIWBUMUNVHVIVPWKVSWPVNWGVOW JJPLWFUOUPVHMWHQWIUQURVHVIVQWMVRWORWLSOUSUTVHTWNUAFVAVBVHVIVIVIHBKCULUMVH VJ $. $( [29-Nov-99] $) $( Lemma for Godowski 6-var -> Mayet Example 3. $) gomaex3lem7 $p |- ( ( ( a v b ) ^ d ' ) ^ ( ( ( r v ( p ' ->1 q ) ) ^ p ' ) ^ e ' ) ) =< ( b v c ) $= ( wo wn wa wi1 gomaex3lem1 gomaex3lem3 ancom gomaex3lem2 ax-a2 df-t ax-r1 lan wt ax-r2 2an an1 3tr gomaex3lem6 bltr ) ABVCZDVDZVEZPNVDZOVFZVCZWEVEZ EVDZVEZVEZWBCCDVCVDVCZVEZWGWFVDWEOVEVCZVEZOVDZOVCZEFVCVDFVCZVEZVEZVEZBCVC XAWKWMWDWTWJWLWCWBCDUDVGVNWOWHWSWIWNWEWGNOVHVNWSWRWQVEWIVOVEWIWQWRVIWRWIW QVOEFUEVJWQOWPVCZVOWPOVKVOXBOVLVMVPVQWIVRVSVQVQVMABCDEFGHIJKLMNOPQRSTUAUB UCUDUEUFUGUHUIUJUKULUMUNUOUPUQURUSUTVAVBVTWA $. $( [29-Nov-99] $) $( Lemma for Godowski 6-var -> Mayet Example 3. $) gomaex3lem8 $p |- ( ( ( a v b ) ^ ( d v e ) ' ) ^ ( ( r v ( p ' ->1 q ) ) ^ p ' ) ) =< ( b v c ) $= ( wo wn wa wi1 an32 anor3 lan ran an4 3tr2 gomaex3lem7 bltr ) ABVCZDEVCVD ZVEZPNVDZOVFVCVRVEZVEZVODVDZVEVSEVDZVEVEZBCVCVOWAWBVEZVEZVSVEVOVSVEWDVEVT WCVOWDVSVGWEVQVSWDVPVODEVHVIVJVOVSWAWBVKVLABCDEFGHIJKLMNOPQRSTUAUBUCUDUEU FUGUHUIUJUKULUMUNUOUPUQURUSUTVAVBVMVN $. $( [29-Nov-99] $) $( Lemma for Godowski 6-var -> Mayet Example 3. $) gomaex3lem9 $p |- ( ( ( a v b ) ^ ( d v e ) ' ) ^ ( r v ( p ' ->1 q ) ) ) =< ( b v c ) $= ( wo wn wi1 ancom gomaex3lem4 df2le2 ax-r1 lan an12 3tr gomaex3lem8 bltr wa ) ABVCDEVCVDVOZPNVDZOVEVCZVOZVPVRVQVOVOZBCVCVSVRVPVOVRVPVQVOZVOVTVPVRV FVPWAVRWAVPVPVQABDENUHVGVHVIVJVRVPVQVKVLABCDEFGHIJKLMNOPQRSTUAUBUCUDUEUFU GUHUIUJUKULUMUNUOUPUQURUSUTVAVBVMVN $. $( [29-Nov-99] $) $( Lemma for Godowski 6-var -> Mayet Example 3. $) gomaex3lem10 $p |- ( ( ( a v b ) ^ ( d v e ) ' ) ^ ( r v ( p ' ->1 q ) ) ) =< ( ( b v c ) v ( e v f ) ' ) $= ( wo wn wa wi1 gomaex3lem9 leo letr ) ABVCDEVCVDVEPNVDOVFVCVEBCVCZVJEFVCV DZVCABCDEFGHIJKLMNOPQRSTUAUBUCUDUEUFUGUHUIUJUKULUMUNUOUPUQURUSUTVAVBVGVJV KVHVI $. $( [29-Nov-99] $) $} ${ gomaex3.1 $e |- a =< b ' $. gomaex3.2 $e |- b =< c ' $. gomaex3.3 $e |- c =< d ' $. gomaex3.5 $e |- e =< f ' $. gomaex3.6 $e |- f =< a ' $. gomaex3.8 $e |- ( ( ( i ->2 g ) ^ ( g ->2 y ) ) ^ ( ( ( y ->2 w ) ^ ( w ->2 n ) ) ^ ( ( n ->2 k ) ^ ( k ->2 i ) ) ) ) =< ( g ->2 i ) $. gomaex3.9 $e |- p = ( ( a v b ) ->1 ( d v e ) ' ) ' $. gomaex3.10 $e |- q = ( ( e v f ) ->1 ( b v c ) ' ) ' $. gomaex3.11 $e |- r = ( ( p ' ->1 q ) ' ^ ( c v d ) ) $. gomaex3.12 $e |- g = a $. gomaex3.14 $e |- i = c $. gomaex3.16 $e |- k = r $. gomaex3.18 $e |- n = ( p ' ->1 q ) ' $. gomaex3.20 $e |- w = q ' $. gomaex3.22 $e |- y = ( e v f ) ' $. $( Proof of Mayet Example 3 from 6-variable Godowski equation. R. Mayet, "Equational bases for some varieties of orthomodular lattices related to states," Algebra Universalis 23 (1986), 167-195. $) gomaex3 $p |- ( ( ( a v b ) ^ ( d v e ) ' ) ^ ( ( ( ( a v b ) ->1 ( d v e ) ' ) ->1 ( ( e v f ) ->1 ( b v c ) ' ) ' ) ' ->1 ( c v d ) ) ) =< ( ( b v c ) v ( e v f ) ' ) $= ( wo wn wa wi1 df-i1 ax-a2 con2 ud1lem0ab ax-a1 ax-r2 ax-r4 ran 2or ax-r1 lan id gomaex3lem10 bltr ) ABUKZDEUKULZUMZVIVJUNZEFUKZBCUKZULUNULZUNZULZC DUKZUNZUMVKMKULZLUNZUKZUMVNVMULUKVSWBVKVSVQULZVQVRUMZUKZWBVQVRUOWBWEWBWAM UKWEMWAUPWAWCMWDWAVPWCVTVLLVOKVLUBUQUCURZVPUSUTMWAULZVRUMWDUDWGVQVRWAVPWF VAVBUTVCUTVDUTVEABCDEFGBVRULZHIWAJKLMVTLUMZNLOFPQRSTUAUBUCUDUEBVFUFWHVFUG WAVFUHWIVFUILVFUJFVFVGVH $. $( [27-May-00] $) $} $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= OML Lemmas for studying orthoarguesian laws =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) ${ oas.1 $e |- ( a ' ^ ( a v b ) ) =< c $. $( "Strengthening" lemma for studying the orthoarguesian law. $) oas $p |- ( ( a ->1 c ) ^ ( a v b ) ) =< c $= ( wi1 wo wa oml ax-r1 lea ler2an lelor bltr lelan u1lemc1 lbtr letr ax-r2 wn lear comanr1 comcom6 fh2 u1lemaa ancom leo df-i1 df2le2 2or lel2or ) A CEZABFZGZACGZASZCGZFZCUMUKAUPFZGZUQULURUKULAUOULGZFZURVAULABHIUTUPAUTUOCU OULJDKLMNUSUKAGZUKUPGZFUQAUKUPACOAUPUOCUAUBUCVBUNVCUPACUDVCUPUKGUPUKUPUEU PUKUPUOUKUOCJUOUOUNFZUKUOUNUFUKVDACUGIPQUHRUIRPUNCUPACTUOCTUJQ $. $( [25-Dec-98] $) $} ${ oasr.1 $e |- ( ( a ->1 c ) ^ ( a v b ) ) =< c $. $( Reverse of ~ oas lemma for studying the orthoarguesian law. $) oasr $p |- ( a ' ^ ( a v b ) ) =< c $= ( wn wo wa wi1 u1lem9b leran letr ) AEZABFZGACHZMGCLNMACIJDK $. $( [28-Dec-98] $) $} ${ oat.1 $e |- ( a ' ^ ( a v b ) ) =< c $. $( Transformation lemma for studying the orthoarguesian law. $) oat $p |- b =< ( a ' ->1 c ) $= ( wn wa wo wi1 leor oml ax-r1 lea lelor bltr letr ax-a1 ax-r5 df-i1 ax-r2 ler2an lbtr ) BAAEZCFZGZUBCHZBABGZUDBAIUFAUBUFFZGZUDUHUFABJKUGUCAUGUBCUBU FLDTMNOUDUBEZUCGZUEAUIUCAPQUEUJUBCRKSUA $. $( [26-Dec-98] $) $} ${ oatr.1 $e |- b =< ( a ' ->1 c ) $. $( Reverse transformation lemma for studying the orthoarguesian law. $) oatr $p |- ( a ' ^ ( a v b ) ) =< c $= ( wn wo wa leo df-i1 ax-a1 ax-r5 ax-r1 ax-r2 lbtr lel2or lelan omlan lear wi1 letr ) AEZABFZGZUACGZCUCUAAUDFZGUDUBUEUAAUEBAUDHBUACSZUEDUFUAEZUDFZUE UACIUEUHAUGUDAJKLMNOPACQNUACRT $. $( [26-Dec-98] $) $} ${ oau.1 $e |- ( a ^ ( ( a ->1 c ) v b ) ) =< c $. $( Transformation lemma for studying the orthoarguesian law. $) oau $p |- b =< ( a ->1 c ) $= ( wi1 wo ax-a2 wa lea ler2an u1lemaa ax-r1 lelor wt u1lemc1 comcom comorr lbtr fh3 ax-r2 u1lemoa ax-a3 oridm ax-r5 2an ancom an1 3tr orabs leo lebi le3tr2 df-le1 ) BACEZBUNFUNBFZUNBUNGUOUNUNAUOHZFZUNUNAHZFUOUNUPURUNUPACHZ URUPACAUOIDJURUSACKLRMUQUNAFZUNUOFZHNUOHZUOUNAUOAUNACOPUNBQSUTNVAUOACUAVA UNUNFZBFZUOVDVAUNUNBUBLVCUNBUNUCUDTUEVBUONHUONUOUFUOUGTUHUNAUIULUNBUJUKTU M $. $( [28-Dec-98] $) $} ${ oaur.1 $e |- b =< ( a ->1 c ) $. $( Transformation lemma for studying the orthoarguesian law. $) oaur $p |- ( a ^ ( ( a ->1 c ) v b ) ) =< c $= ( wi1 wo wa leid lel2or lelan ancom u1lemaa ax-r2 lbtr lear letr ) AACEZB FZGZACGZCSAQGZTRQAQQBQHDIJUAQAGTAQKACLMNACOP $. $( [28-Dec-98] $) $} ${ oaidlem2.1 $e |- ( ( d v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ' v ( ( a ->1 c ) ->1 ( b ->1 c ) ) ) = 1 $. $( Lemma for identity-like OA law. $) oaidlem2 $p |- ( ( a ->1 c ) ^ ( d v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) =< ( b ->1 c ) $= ( wi1 wa wo anidm ax-r1 ran anass ax-r2 leor lelan bltr df-le2 wn ax-a3 wt ax-a2 oran3 ax-r5 df-i1 lor 3tr2 lem3.1 bile lear letr ) ACFZDUKBCFZGZ HZGZUMULUOUMUMUOUMUOUMUOUMUKUMGZUOUMUKUKGZULGUPUKUQULUQUKUKIJKUKUKULLMUMU NUKUMDNOPQUNRZUKRZHZUMHURUSUMHZHZUORZUMHTURUSUMSUTVCUMUTUSURHVCURUSUAUKUN UBMUCVBURUKULFZHZTVEVBVDVAURUKULUDUEJEMUFUGJUHUKULUIUJ $. $( [22-Jan-99] $) $} ${ oaidlem2g.1 $e |- ( ( c v ( a ^ b ) ) ' v ( a ->1 b ) ) = 1 $. $( Lemma for identity-like OA law (generalized). $) oaidlem2g $p |- ( a ^ ( c v ( a ^ b ) ) ) =< b $= ( wa wo anidm ax-r1 ran anass ax-r2 leor lelan bltr df-le2 wn ax-a3 ax-a2 wt oran3 ax-r5 wi1 df-i1 lor 3tr2 lem3.1 bile lear letr ) ACABEZFZEZUJBUL UJUJULUJULUJULUJAUJEZULUJAAEZBEUMAUNBUNAAGHIAABJKUJUKAUJCLMNOUKPZAPZFZUJF UOUPUJFZFZULPZUJFSUOUPUJQUQUTUJUQUPUOFUTUOUPRAUKTKUAUSUOABUBZFZSVBUSVAURU OABUCUDHDKUEUFHUGABUHUI $. $( [18-Feb-02] $) $} ${ oa6v4v.1 $e |- ( ( ( a v b ) ^ ( c v d ) ) ^ ( e v f ) ) =< ( b v ( a ^ ( c v ( ( ( a v c ) ^ ( b v d ) ) ^ ( ( ( a v e ) ^ ( b v f ) ) v ( ( c v e ) ^ ( d v f ) ) ) ) ) ) ) $. oa6v4v.2 $e |- e = 0 $. oa6v4v.3 $e |- f = 1 $. $( 6-variable OA to 4-variable OA. $) oa6v4v $p |- ( ( a v b ) ^ ( c v d ) ) =< ( b v ( a ^ ( c v ( ( a v c ) ^ ( b v d ) ) ) ) ) $= ( wo wa wt wf 2or ax-r2 lan an1 lor or0 or1 or0r 2an an32 anidm le3tr2 ran ) ABJCDJKZEFJZKZBACACJZBDJZKZAEJZBFJZKZCEJZDFJZKZJZKZJZKZJUGBACULJZKZ JGUIUGLKUGUHLUGUHMLJLEMFLHINLUAOPUGQOVBVDBVAVCAUTULCUTULUJKZULUSUJULUOAUR CUOALKAUMAUNLUMAMJAEMAHRASOUNBLJLFLBIRBTOUBAQOURCLKCUPCUQLUPCMJCEMCHRCSOU QDLJLFLDIRDTOUBCQONPVEUJUJKZUKKULUJUKUJUCVFUJUKUJUDUFOORPRUE $. $( [29-Nov-98] $) $} ${ oa4v3v.1 $e |- d =< b ' $. oa4v3v.2 $e |- e =< c ' $. oa4v3v.3 $e |- ( ( d v b ) ^ ( e v c ) ) =< ( b v ( d ^ ( e v ( ( d v e ) ^ ( b v c ) ) ) ) ) $. oa4v3v.4 $e |- d = ( a ->2 b ) ' $. oa4v3v.5 $e |- e = ( a ->2 c ) ' $. $( 4-variable OA to 3-variable OA (Godowski/Greechie Eq. IV). $) oa4v3v $p |- ( b ' ^ ( ( a ->2 b ) v ( ( a ->2 c ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) ) =< ( ( b ' ^ ( a ->2 b ) ) v ( c ' ^ ( a ->2 c ) ) ) $= ( wn wi2 wa wo ax-a2 lor oran1 3tr 2an ax-r2 anor3 ancom 2or oran3 le3tr2 lan anor1 lecon1 ) BKZABLZMZCKACLZMZNZUIUJULBCNZKUJULMZNZMZNZMZDBNZECNZMZ BDEDENZUOMZNZMZNZUNKZUTKZHVCUKKZUMKZMVIVAVKVBVLVABDNBUJKZNVKDBODVMBIPBUJQ RVBCENCULKZNVLECOEVNCJPCULQRSUKUMUATVHBUSKZNVJVGVOBVGVMURKZMVODVMVFVPIVFV NUQKZNVPEVNVEVQJVEUOVDMUOUPKZMVQVDUOUBVDVRUOVDVMVNNVRDVMEVNIJUCUJULUDTUFU OUPUGRUCULUQUDTSUJURUATPBUSQTUEUH $. $( [28-Nov-98] $) $} ${ oal42.1 $e |- ( b ' ^ ( ( a ->2 b ) v ( ( a ->2 c ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) ) =< ( ( b ' ^ ( a ->2 b ) ) v ( c ' ^ ( a ->2 c ) ) ) $. $( Derivation of Godowski/Greechie Eq. II from Eq. IV. $) oal42 $p |- ( b ' ^ ( ( a ->2 b ) v ( ( a ->2 c ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) ) =< a ' $= ( wn wi2 wo wa ancom u2lemanb ax-r2 2or lbtr lea lel2or letr ) BEZABFZACF ZBCGERSHGHGHZAEZQHZUACEZHZGZUATQRHZUCSHZGUEDUFUBUGUDUFRQHUBQRIABJKUGSUCHU DUCSIACJKLMUBUAUDUAQNUAUCNOP $. $( [25-Nov-98] $) $} ${ oa23.1 $e |- ( c ' ^ ( ( a ->2 c ) v ( ( a ->2 b ) ^ ( ( c v b ) ' v ( ( a ->2 c ) ^ ( a ->2 b ) ) ) ) ) ) =< a ' $. $( Derivation of OA from Godowski/Greechie Eq. II. $) oa23 $p |- ( ( a ->2 b ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) =< ( a ->2 c ) $= ( wi2 wo wn wa ax-a2 ax-r4 ancom 2or lan ax-r5 wt ax-a3 ax-r1 oridm ax-r2 u2lemonb 2an an1 comorr u2lemc1 comcom comcom2 fh3 3tr1 lea ler2an le3tr1 u2lemanb lelor orabs lbtr bltr leo lebi 3tr df-le1 ) ABEZBCFZGZVAACEZHZFZ HZVDVGVDFVACBFZGZVDVAHZFZHZVDFVDVLFZVDVGVLVDVFVKVAVCVIVEVJVBVHBCIJVAVDKLM NVLVDIVMVDVMVDVMCGZHZFZVDVMOHZVDVMFZVDVNFZHZVMVPVTVQVRVMVSOVRVDVDFZVLFZVM WBVRVDVDVLPQWAVDVLVDRNSACTUAQVQVMVMUBQVDVMVNVDVLUCVDCCVDACUDUEUFUGUHVPVDV DVNHZFVDVOWCVDVNVMHZAGZVNHVOWCWDWEVNDVNVMUIUJVMVNKACULUKUMVDVNUNUOUPVDVLU QURUSUT $. $( [25-Nov-98] $) $} ${ oa4lem1.1 $e |- a =< b ' $. oa4lem1.2 $e |- c =< d ' $. $( Lemma for 3-var to 4-var OA. $) oa4lem1 $p |- ( a v b ) =< ( ( a v c ) ' ->2 b ) $= ( wo wn wa wi2 leo ax-a1 lbtr ler2an lelor ax-a2 df-i2 le3tr1 ) BAGBACGZH ZHZBHZIZGABGTBJAUCBAUAUBASUAACKSLMENOABPTBQR $. $( [27-Nov-98] $) $( Lemma for 3-var to 4-var OA. $) oa4lem2 $p |- ( c v d ) =< ( ( a v c ) ' ->2 d ) $= ( wo wn wa wi2 leor ax-a1 lbtr ler2an lelor ax-a2 df-i2 le3tr1 ) DCGDACGZ HZHZDHZIZGCDGTDJCUCDCUAUBCSUACAKSLMFNOCDPTDQR $. $( [27-Nov-98] $) $( Lemma for 3-var to 4-var OA. $) oa4lem3 $p |- ( ( a v b ) ^ ( c v d ) ) =< ( ( b v d ) ' v ( ( ( a v c ) ' ->2 b ) ^ ( ( a v c ) ' ->2 d ) ) ) $= ( wo wa wn wi2 oa4lem1 oa4lem2 le2an leor letr ) ABGZCDGZHACGIZBJZRDJZHZB DGIZUAGPSQTABCDEFKABCDEFLMUAUBNO $. $( [27-Nov-98] $) $} ${ $( Substitutions into OA distributive law. $) distoa.1 $e |- d = ( a ->2 b ) $. distoa.2 $e |- e = ( ( b v c ) ->1 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $. distoa.3 $e |- f = ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $. $( Satisfaction of distributive law hypothesis. $) distoah1 $p |- d =< ( a ->2 b ) $= ( wi2 bile ) DABJGK $. $( [29-Nov-98] $) $( Satisfaction of distributive law hypothesis. $) distoah2 $p |- e =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $= ( wo wi2 wa wi1 wi0 leo ax-r1 u12lem le3tr2 ) BCJZABKACKLZMZUASTKZJESTNUA UBOEUAHPSTQR $. $( [29-Nov-98] $) $( Satisfaction of distributive law hypothesis. $) distoah3 $p |- f =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $= ( wo wi2 wa wi1 wi0 leor ax-r1 u12lem le3tr2 ) BCJZABKACKLZKZSTMZUAJFSTNU AUBOFUAIPSTQR $. $( [29-Nov-98] $) $( Satisfaction of distributive law hypothesis. $) distoah4 $p |- ( d ^ ( a ->2 c ) ) =< f $= ( wi2 wa wo wn leo ran df-i2 ax-r2 le3tr1 ) ABJZACJZKZUABCLZMUAMKZLZDTKFU AUCNDSTGOFUBUAJUDIUBUAPQR $. $( [29-Nov-98] $) ${ $( OA distributive law as hypothesis. $) distoa.4 $e |- ( d ^ ( e v f ) ) = ( ( d ^ e ) v ( d ^ f ) ) $. $( Derivation in OM of OA, assuming OA distributive law ~ oadistd . $) distoa $p |- ( ( a ->2 b ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) =< ( a ->2 c ) $= ( wi2 wo wa wi1 wn 1oa 2oath1 2or 2an ax-r2 lear bltr le2or 3tr2 u12lem ax-r1 wi0 df-i0 lan oridm le3tr2 ) ABKZBCLZULACKZMZNZMZULUMUOKZMZLZUNUN LULUMOUOLZMZUNUQUNUSUNABCPUSUOUNABCQULUNUAUBUCUTULUPURLZMZVBVDUTDEFLZMD EMZDFMZLVDUTJDULVEVCGEUPFURHIRSVFUQVGUSDULEUPGHSDULFURGISRUDUFVCVAULVCU MUOUGVAUMUOUEUMUOUHTUITUNUJUK $. $( [29-Nov-98] $) $} $} ${ oa3to4lem.1 $e |- a ' =< b $. oa3to4lem.2 $e |- c ' =< d $. oa3to4lem.3 $e |- g = ( ( a ^ b ) v ( c ^ d ) ) $. $( Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable proof). $) oa3to4lem1 $p |- b =< ( a ->1 g ) $= ( wn wa wo wi1 leor comid comcom3 wt ax-r2 ran ax-r1 lbtr lecom fh3 ancom df-t ax-a2 an1 3tr2 anidm anass lor leo lelan lelor letr ud1lem0a df-i1 ) BAIZAABJZCDJZKZJZKZAELZBUQAURJZKZVBBUQBKZVEBUQMVFUQURKZVEVGVFVGUQAKZVFJZV FUQABAAANOUQBFUAUBPVFJVFPJVIVFPVFUCPVHVFPAUQKVHAUDAUQUEQRVFUFUGQSURVDUQUR AAJZBJZVDVKURVJABAUHRSAABUIQUJQTVDVAUQURUTAURUSUKULUMUNVCVBVCAUTLVBEUTAHU OAUTUPQST $. $( [19-Dec-98] $) $( Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable proof). $) oa3to4lem2 $p |- d =< ( c ->1 g ) $= ( wn wa wo wi1 leor comid comcom3 wt ax-r2 ran ax-r1 lbtr lecom fh3 ancom df-t ax-a2 an1 3tr2 anidm anass lor lelan lelor letr ud1lem0a df-i1 ) DCI ZCABJZCDJZKZJZKZCELZDUPCURJZKZVADUPDKZVDDUPMVEUPURKZVDVFVEVFUPCKZVEJZVEUP CDCCCNOUPDGUAUBPVEJVEPJVHVEPVEUCPVGVEPCUPKVGCUDCUPUEQRVEUFUGQSURVCUPURCCJ ZDJZVCVJURVICDCUHRSCCDUIQUJQTVCUTUPURUSCURUQMUKULUMVBVAVBCUSLVAEUSCHUNCUS UOQST $. $( [19-Dec-98] $) $( Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable proof). $) oa3to4lem3 $p |- ( a ^ ( b v ( d ^ ( ( a ^ c ) v ( b ^ d ) ) ) ) ) =< ( a ^ ( ( a ->1 g ) v ( ( c ->1 g ) ^ ( ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) ) ) ) $= ( wa wo wi1 oa3to4lem1 oa3to4lem2 le2an lelor le2or lelan ) BDACIZBDIZJZI ZJAEKZCEKZRUBUCIZJZIZJABUBUAUFABCDEFGHLZDUCTUEABCDEFGHMZSUDRBUBDUCUGUHNON PQ $. $( [19-Dec-98] $) ${ $( Godowski/Greechie 3-variable OA as hypothesis $) oa3to4lem.oa3 $e |- ( a ^ ( ( a ->1 g ) v ( ( c ->1 g ) ^ ( ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) ) ) ) =< ( ( a ^ g ) v ( c ^ g ) ) $. $( Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable proof). $) oa3to4lem4 $p |- ( a ^ ( b v ( d ^ ( ( a ^ c ) v ( b ^ d ) ) ) ) ) =< g $= ( wa wo wi1 oa3to4lem3 lear lel2or letr ) ABDACJZBDJKJKJAAELZCELZQRSJKJ KJZEABCDEFGHMTAEJZCEJZKEIUAEUBAENCENOPP $. $( [19-Dec-98] $) $} $} ${ oa3to4lem5.1 $e |- ( ( a v b ) ^ ( c v d ) ) =< ( a v ( b ^ ( d v ( ( a v c ) ^ ( b v d ) ) ) ) ) $. $( Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable proof). $) oa3to4lem5 $p |- ( ( b v a ) ^ ( d v c ) ) =< ( a v ( b ^ ( d v ( ( b v d ) ^ ( a v c ) ) ) ) ) $= ( wo wa ax-a2 2an ancom lor lan le3tr1 ) ABFZCDFZGABDACFZBDFZGZFZGZFBAFZD CFZGABDQPGZFZGZFEUANUBOBAHDCHIUETAUDSBUCRDQPJKLKM $. $( [19-Dec-98] $) $} ${ oa3to4lem6.oa4.1 $e |- a =< b ' $. oa3to4lem6.oa4.2 $e |- c =< d ' $. $( Variable substitutions to make into the 4-variable OA. $) oa3to4lem6.3 $e |- g = ( ( a ' ^ b ' ) v ( c ' ^ d ' ) ) $. oa3to4lem6.4 $e |- e = a ' $. oa3to4lem6.5 $e |- f = c ' $. $( Godowski/Greechie 3-variable OA as hypothesis $) oa3to4lem6.oa3 $e |- ( e ^ ( ( e ->1 g ) v ( ( f ->1 g ) ^ ( ( e ^ f ) v ( ( e ->1 g ) ^ ( f ->1 g ) ) ) ) ) ) =< ( ( e ^ g ) v ( f ^ g ) ) $. $( Orthoarguesian law (Godowski/Greechie 3-variable to 4-variable). The first 2 hypotheses are those for 4-OA. The next 3 are variable substitutions into 3-OA. The last is the 3-OA. The proof uses OM logic only. $) oa3to4lem6 $p |- ( ( a v b ) ^ ( c v d ) ) =< ( a v ( b ^ ( d v ( ( a v c ) ^ ( b v d ) ) ) ) ) $= ( wo wa wn 2an 2or anor3 ax-r2 lecon3 lecon id wi1 ud1lem0ab le3tr2 oran3 oa3to4lem4 lan lor lecon1 ) ABDACNZBDNZOZNZOZNZABNZCDNZOZAPZBPZDPZVACPZOZ VBVCOZNZOZNZOZVAVBOZVDVCOZNZUQPZUTPZVAVBVDVCVMBVAABHUAUBDVDCDIUAUBVMUCEEG UDZFGUDZEFOZVPVQOZNZOZNZOEGOZFGOZNVAVAVMUDZVDVMUDZVEWEWFOZNZOZNZOVAVMOZVD VMOZNMEVAWBWJKVPWEWAWIEVAGVMKJUEZVQWFVTWHFVDGVMLJUEZVRVEVSWGEVAFVDKLQVPWE VQWFWMWNQRQRQWCWKWDWLEVAGVMKJQFVDGVMLJQRUFUHVJVAUPPZOVNVIWOVAVIVBUOPZNWOV HWPVBVHVCUNPZOWPVGWQVCVGULPZUMPZNWQVEWRVFWSACSBDSRULUMUGTUIDUNSTUJBUOUGTU IAUPSTVMURPZUSPZNVOVKWTVLXAABSCDSRURUSUGTUFUK $. $( [19-Dec-98] $) $} ${ oa3to4.oa4.1 $e |- a =< b ' $. oa3to4.oa4.2 $e |- c =< d ' $. $( Variable substitutions to make into the 4-variable OA. $) oa3to4.3 $e |- g = ( ( b ' ^ a ' ) v ( d ' ^ c ' ) ) $. oa3to4.4 $e |- e = b ' $. oa3to4.5 $e |- f = d ' $. $( Godowski/Greechie 3-variable OA as hypothesis $) oa3to4.oa3 $e |- ( e ^ ( ( e ->1 g ) v ( ( f ->1 g ) ^ ( ( e ^ f ) v ( ( e ->1 g ) ^ ( f ->1 g ) ) ) ) ) ) =< ( ( e ^ g ) v ( f ^ g ) ) $. $( Orthoarguesian law (Godowski/Greechie 3-variable to 4-variable). The first 2 hypotheses are those for 4-OA. The next 3 are variable substitutions into 3-OA. The last is the 3-OA. The proof uses OM logic only. $) oa3to4 $p |- ( ( a v b ) ^ ( c v d ) ) =< ( b v ( a ^ ( c v ( ( a v c ) ^ ( b v d ) ) ) ) ) $= ( lecon3 oa3to4lem6 oa3to4lem5 ) BADCBADCEFGABHNCDINJKLMOP $. $( [19-Dec-98] $) $} ${ oa6todual.1 $e |- ( ( ( a ' v b ' ) ^ ( c ' v d ' ) ) ^ ( e ' v f ' ) ) =< ( b ' v ( a ' ^ ( c ' v ( ( ( a ' v c ' ) ^ ( b ' v d ' ) ) ^ ( ( ( a ' v e ' ) ^ ( b ' v f ' ) ) v ( ( c ' v e ' ) ^ ( d ' v f ' ) ) ) ) ) ) ) $. $( Conventional to dual 6-variable OA law. $) oa6todual $p |- ( b ^ ( a v ( c ^ ( ( ( a ^ c ) v ( b ^ d ) ) v ( ( ( a ^ e ) v ( b ^ f ) ) ^ ( ( c ^ e ) v ( d ^ f ) ) ) ) ) ) ) =< ( ( ( a ^ b ) v ( c ^ d ) ) v ( e ^ f ) ) $= ( wn wo wa lecon ax-a1 df-a 2or oran3 ax-r2 2an anor3 le3tr1 ) BHZAHZCHZU AUBIZTDHZIZJZUAEHZIZTFHZIZJZUBUGIZUDUIIZJZIZJZIZJZIZHZUATIZUBUDIZJZUGUIIZ JZHZBACACJZBDJZIZAEJZBFJZIZCEJZDFJZIZJZIZJZIZJZABJZCDJZIZEFJZIZVEUSGKVTTH ZURHZJUTBWFVSWGBLVSUAHZUQHZIWGAWHVRWIALVRUBHZUPHZJWICWJVQWKCLVQUFHZUOHZIW KVIWLVPWMVIUCHZUEHZIWLVGWNVHWOACMBDMNUCUEOPVPUKHZUNHZJWMVLWPVOWQVLUHHZUJH ZIWPVJWRVKWSAEMBFMNUHUJOPVOULHZUMHZIWQVMWTVNXACEMDFMNULUMOPQUKUNRPNUFUOOP QUBUPRPNUAUQOPQTURRPWEVCHZVDHZIVFWCXBWDXCWCVAHZVBHZIXBWAXDWBXEABMCDMNVAVB OPEFMNVCVDOPS $. $( [22-Dec-98] $) $} ${ oa6fromdual.1 $e |- ( b ' ^ ( a ' v ( c ' ^ ( ( ( a ' ^ c ' ) v ( b ' ^ d ' ) ) v ( ( ( a ' ^ e ' ) v ( b ' ^ f ' ) ) ^ ( ( c ' ^ e ' ) v ( d ' ^ f ' ) ) ) ) ) ) ) =< ( ( ( a ' ^ b ' ) v ( c ' ^ d ' ) ) v ( e ' ^ f ' ) ) $. $( Dual to conventional 6-variable OA law. $) oa6fromdual $p |- ( ( ( a v b ) ^ ( c v d ) ) ^ ( e v f ) ) =< ( b v ( a ^ ( c v ( ( ( a v c ) ^ ( b v d ) ) ^ ( ( ( a v e ) ^ ( b v f ) ) v ( ( c v e ) ^ ( d v f ) ) ) ) ) ) ) $= ( wn wa wo lecon oran 2an anor3 ax-r2 ax-a1 2or oran3 le3tr1 ) AHZBHZIZCH ZDHZIZJZEHZFHZIZJZHZUATUCTUCIZUAUDIZJZTUGIZUAUHIZJZUCUGIZUDUHIZJZIZJZIZJZ IZHZABJZCDJZIZEFJZIZBACACJZBDJZIZAEJZBFJZIZCEJZDFJZIZJZIZJZIZJZVEUJGKVKUF HZUIHZIUKVIWFVJWGVIUBHZUEHZIWFVGWHVHWIABLCDLMUBUENOEFLMUFUINOWEUAHZVDHZJV FBWJWDWKBPWDTHZVCHZIWKAWLWCWMAPWCUCHZVBHZJWMCWNWBWOCPWBUNHZVAHZIWOVNWPWAW QVNULHZUMHZIWPVLWRVMWSACLBDLMULUMNOWAUQHZUTHZJWQVQWTVTXAVQUOHZUPHZIWTVOXB VPXCAELBFLMUOUPNOVTURHZUSHZIXAVRXDVSXECELDFLMURUSNOQUQUTROMUNVANOQUCVBROM TVCNOQUAVDROS $. $( [22-Dec-98] $) $} ${ oa6fromdualn.1 $e |- ( b ^ ( a v ( c ^ ( ( ( a ^ c ) v ( b ^ d ) ) v ( ( ( a ^ e ) v ( b ^ f ) ) ^ ( ( c ^ e ) v ( d ^ f ) ) ) ) ) ) ) =< ( ( ( a ^ b ) v ( c ^ d ) ) v ( e ^ f ) ) $. $( Dual to conventional 6-variable OA law. $) oa6fromdualn $p |- ( ( ( a ' v b ' ) ^ ( c ' v d ' ) ) ^ ( e ' v f ' ) ) =< ( b ' v ( a ' ^ ( c ' v ( ( ( a ' v c ' ) ^ ( b ' v d ' ) ) ^ ( ( ( a ' v e ' ) ^ ( b ' v f ' ) ) v ( ( c ' v e ' ) ^ ( d ' v f ' ) ) ) ) ) ) ) $= ( wn wa wo ax-a1 2an 2or le3tr2 oa6fromdual ) AHZBHZCHZDHZEHZFHZBACACIZBD IZJZAEIZBFIZJZCEIZDFIZJZIZJZIZJZIABIZCDIZJZEFIZJQHZPHZRHZUTVAIZUSSHZIZJZU TTHZIZUSUAHZIZJZVAVFIZVCVHIZJZIZJZIZJZIUTUSIZVAVCIZJZVFVHIZJGBUSUNVQBKZAU TUMVPAKZCVAULVOCKZUDVEUKVNUBVBUCVDAUTCVAWCWDLBUSDVCWBDKZLMUGVJUJVMUEVGUFV IAUTEVFWCEKZLBUSFVHWBFKZLMUHVKUIVLCVAEVFWDWFLDVCFVHWEWGLMLMLMLUQVTURWAUOV RUPVSAUTBUSWCWBLCVADVCWDWELMEVFFVHWFWGLMNO $. $( [24-Dec-98] $) $} ${ $( Substitutions into 6-variable OA law. $) oa6to4.1 $e |- b ' = ( a ->1 g ) ' $. oa6to4.2 $e |- d ' = ( c ->1 g ) ' $. oa6to4.3 $e |- f ' = ( e ->1 g ) ' $. $( Satisfaction of 6-variable OA law hypothesis. $) oa6to4h1 $p |- a ' =< b ' ' $= ( wn wa wo leo wi1 df-i1 ax-r4 ax-r2 ax-r1 con3 lbtr ) AKZUBAGLZMZBKZKUBU CNUDUEUEUDKZUEAGOZKUFHUGUDAGPQRSTUA $. $( [22-Dec-98] $) $( Satisfaction of 6-variable OA law hypothesis. $) oa6to4h2 $p |- c ' =< d ' ' $= ( wn wa wo leo wi1 df-i1 ax-r4 ax-r2 ax-r1 con3 lbtr ) CKZUBCGLZMZDKZKUBU CNUDUEUEUDKZUECGOZKUFIUGUDCGPQRSTUA $. $( [22-Dec-98] $) $( Satisfaction of 6-variable OA law hypothesis. $) oa6to4h3 $p |- e ' =< f ' ' $= ( wn wa wo leo wi1 df-i1 ax-r4 ax-r2 ax-r1 con3 lbtr ) EKZUBEGLZMZFKZKUBU CNUDUEUEUDKZUEEGOZKUFJUGUDEGPQRSTUA $. $( [22-Dec-98] $) ${ $( 6-variable OA law as hypothesis. $) oa6to4.oa6 $e |- ( ( ( a ' v b ' ) ^ ( c ' v d ' ) ) ^ ( e ' v f ' ) ) =< ( b ' v ( a ' ^ ( c ' v ( ( ( a ' v c ' ) ^ ( b ' v d ' ) ) ^ ( ( ( a ' v e ' ) ^ ( b ' v f ' ) ) v ( ( c ' v e ' ) ^ ( d ' v f ' ) ) ) ) ) ) ) $. $( Derivation of 4-variable proper OA law, assuming 6-variable OA law. $) oa6to4 $p |- ( ( a ->1 g ) ^ ( a v ( c ^ ( ( ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^ ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) ) =< ( ( ( a ^ g ) v ( c ^ g ) ) v ( e ^ g ) ) $= ( wa wo wi1 con1 2an lor 2or lan ancom oa6todual u1lemaa 3tr le3tr2 ) B ACACLZBDLZMZAELZBFLZMZCELZDFLZMZLZMZLZMZLABLZCDLZMZEFLZMAGNZACUEVBCGNZL ZMZUHVBEGNZLZMZUKVCVFLZMZLZMZLZMZLAGLZCGLZMZEGLZMABCDEFKUABVBUQVNBVBHOZ UPVMAUOVLCUGVEUNVKUFVDUEBVBDVCVSDVCIOZPQUJVHUMVJUIVGUHBVBFVFVSFVFJOZPQU LVIUKDVCFVFVTWAPQPRSQPUTVQVAVRURVOUSVPURAVBLVBALVOBVBAVSSAVBTAGUBUCUSCV CLVCCLVPDVCCVTSCVCTCGUBUCRVAEVFLVFELVRFVFEWASEVFTEGUBUCRUD $. $( [22-Dec-98] $) $} $} ${ oa4b.1 $e |- ( ( a ->1 g ) ^ ( a v ( c ^ ( ( ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^ ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) ) =< ( ( ( a ^ g ) v ( c ^ g ) ) v ( e ^ g ) ) $. $( Derivation of 4-OA law variant. $) oa4b $p |- ( ( a ->1 g ) ^ ( a v ( c ^ ( ( ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^ ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) ) =< g $= ( wi1 wa wo lear lel2or letr ) ADFZABABGLBDFZGHACGLCDFZGHBCGMNGHGHGHGADGZ BDGZHZCDGZHDEQDRODPADIBDIJCDIJK $. $( [22-Dec-98] $) $} ${ oa4to6lem.1 $e |- a ' =< b $. oa4to6lem.2 $e |- c ' =< d $. oa4to6lem.3 $e |- e ' =< f $. oa4to6lem.4 $e |- g = ( ( ( a ^ b ) v ( c ^ d ) ) v ( e ^ f ) ) $. $( Lemma for orthoarguesian law (4-variable to 6-variable proof). $) oa4to6lem1 $p |- b =< ( a ->1 g ) $= ( wn wa wo wi1 wt ax-r2 ran ax-r1 lbtr leor comid comcom3 lecom fh3 ancom df-t ax-a2 an1 3tr2 anidm anass lor ax-a3 lelan lelor letr ud1lem0a df-i1 leo ) BALZAABMZCDMZNEFMZNZMZNZAGOZBVAAVBMZNZVGBVABNZVJBVAUAVKVAVBNZVJVLVK VLVAANZVKMZVKVAABAAAUBUCVABHUDUEPVKMVKPMVNVKPVKUFPVMVKPAVANVMAUGAVAUHQRVK UIUJQSVBVIVAVBAAMZBMZVIVPVBVOABAUKRSAABULQUMQTVIVFVAVBVEAVBVBVCVDNZNZVEVB VQUTVEVRVBVCVDUNSTUOUPUQVHVGVHAVEOVGGVEAKURAVEUSQST $. $( [18-Dec-98] $) $( Lemma for orthoarguesian law (4-variable to 6-variable proof). $) oa4to6lem2 $p |- d =< ( c ->1 g ) $= ( wa wo wi1 leor wt ax-r2 ran ax-r1 lbtr wn comid comcom3 lecom fh3 ancom df-t ax-a2 an1 3tr2 anidm anass lor or32 lelan lelor letr ud1lem0a df-i1 ) DCUAZCABLZCDLZMEFLZMZLZMZCGNZDUTCVBLZMZVFDUTDMZVIDUTOVJUTVBMZVIVKVJVKUT CMZVJLZVJUTCDCCCUBUCUTDIUDUEPVJLVJPLVMVJPVJUFPVLVJPCUTMVLCUGCUTUHQRVJUIUJ QSVBVHUTVBCCLZDLZVHVOVBVNCDCUKRSCCDULQUMQTVHVEUTVBVDCVBVAVCMZVBMVDVBVPOVA VCVBUNTUOUPUQVGVFVGCVDNVFGVDCKURCVDUSQST $. $( [18-Dec-98] $) $( Lemma for orthoarguesian law (4-variable to 6-variable proof). $) oa4to6lem3 $p |- f =< ( e ->1 g ) $= ( wa wo wi1 leor wt ax-r2 ran ax-r1 lbtr wn comid comcom3 lecom fh3 ancom df-t ax-a2 an1 3tr2 anidm anass lor lelan lelor letr ud1lem0a df-i1 ) FEU AZEABLCDLMZEFLZMZLZMZEGNZFUSEVALZMZVDFUSFMZVGFUSOVHUSVAMZVGVIVHVIUSEMZVHL ZVHUSEFEEEUBUCUSFJUDUEPVHLVHPLVKVHPVHUFPVJVHPEUSMVJEUGEUSUHQRVHUIUJQSVAVF USVAEELZFLZVFVMVAVLEFEUKRSEEFULQUMQTVFVCUSVAVBEVAUTOUNUOUPVEVDVEEVBNVDGVB EKUQEVBURQST $. $( [18-Dec-98] $) $( Lemma for orthoarguesian law (4-variable to 6-variable proof). $) oa4to6lem4 $p |- ( b ^ ( a v ( c ^ ( ( ( a ^ c ) v ( b ^ d ) ) v ( ( ( a ^ e ) v ( b ^ f ) ) ^ ( ( c ^ e ) v ( d ^ f ) ) ) ) ) ) ) =< ( ( a ->1 g ) ^ ( a v ( c ^ ( ( ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^ ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) ) $= ( wi1 wa wo oa4to6lem1 oa4to6lem2 le2an lelor oa4to6lem3 le2or lelan ) BA GLZACACMZBDMZNZAEMZBFMZNZCEMZDFMZNZMZNZMZNACUCUBCGLZMZNZUFUBEGLZMZNZUIUOU RMZNZMZNZMZNABCDEFGHIJKOZUNVEAUMVDCUEUQULVCUDUPUCBUBDUOVFABCDEFGHIJKPZQRU HUTUKVBUGUSUFBUBFURVFABCDEFGHIJKSZQRUJVAUIDUOFURVGVHQRQTUARQ $. $( [18-Dec-98] $) ${ $( Proper 4-variable OA as hypothesis $) oa4to6lem.oa4 $e |- ( ( a ->1 g ) ^ ( a v ( c ^ ( ( ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^ ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) ) =< g $. $( Lemma for orthoarguesian law (4-variable to 6-variable proof). $) oa4to6dual $p |- ( b ^ ( a v ( c ^ ( ( ( a ^ c ) v ( b ^ d ) ) v ( ( ( a ^ e ) v ( b ^ f ) ) ^ ( ( c ^ e ) v ( d ^ f ) ) ) ) ) ) ) =< g $= ( wa wo wi1 oa4to6lem4 letr ) BACACMZBDMNAEMZBFMNCEMZDFMNMNMNMAGOZACRUA CGOZMNSUAEGOZMNTUBUCMNMNMNMGABCDEFGHIJKPLQ $. $( [19-Dec-98] $) $} $} ${ oa4to6.oa6.1 $e |- a =< b ' $. oa4to6.oa6.2 $e |- c =< d ' $. oa4to6.oa6.3 $e |- e =< f ' $. $( Variable substitutions to make into the 4-variable OA. $) oa4to6.4 $e |- g = ( ( ( a ' ^ b ' ) v ( c ' ^ d ' ) ) v ( e ' ^ f ' ) ) $. oa4to6.5 $e |- h = a ' $. oa4to6.6 $e |- j = c ' $. oa4to6.7 $e |- k = e ' $. $( Proper 4-variable OA as hypothesis $) oa4to6.oa4 $e |- ( ( h ->1 g ) ^ ( h v ( j ^ ( ( ( h ^ j ) v ( ( h ->1 g ) ^ ( j ->1 g ) ) ) v ( ( ( h ^ k ) v ( ( h ->1 g ) ^ ( k ->1 g ) ) ) ^ ( ( j ^ k ) v ( ( j ->1 g ) ^ ( k ->1 g ) ) ) ) ) ) ) ) =< g $. $( Orthoarguesian law (4-variable to 6-variable proof). The first 3 hypotheses are those for 6-OA. The next 4 are variable substitutions into 4-OA. The last is the 4-OA. The proof uses OM logic only. $) oa4to6 $p |- ( ( ( a v b ) ^ ( c v d ) ) ^ ( e v f ) ) =< ( b v ( a ^ ( c v ( ( ( a v c ) ^ ( b v d ) ) ^ ( ( ( a v e ) ^ ( b v f ) ) v ( ( c v e ) ^ ( d v f ) ) ) ) ) ) ) $= ( wa wo lecon3 lecon wi1 ud1lem0ab 2an 2or le3tr2 oa4to6dual oa6fromdual wn id ) ABCDEFAUJZBUJZCUJZDUJZEUJZFUJZULUMSUNUOSTUPUQSTZBULABKUAUBDUNCDLU AUBFUPEFMUAUBURUKHGUCZHIHISZUSIGUCZSZTZHJSZUSJGUCZSZTZIJSZVAVESZTZSZTZSZT ZSGULURUCZULUNULUNSZVOUNURUCZSZTZULUPSZVOUPURUCZSZTZUNUPSZVQWASZTZSZTZSZT ZSURRUSVOVNWJHULGURONUDZHULVMWIOIUNVLWHPVCVSVKWGUTVPVBVRHULIUNOPUEUSVOVAV QWKIUNGURPNUDZUEUFVGWCVJWFVDVTVFWBHULJUPOQUEUSVOVEWAWKJUPGURQNUDZUEUFVHWD VIWEIUNJUPPQUEVAVQVEWAWLWMUEUFUEUFUEUFUENUGUHUI $. $( [19-Dec-98] $) $} ${ oa4btoc.1 $e |- ( ( a ->1 g ) ^ ( a v ( c ^ ( ( ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^ ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) ) =< g $. $( Derivation of 4-OA law variant. $) oa4btoc $p |- ( a ' ^ ( a v ( c ^ ( ( ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^ ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) ) =< g $= ( wn wa wi1 wo leo df-i1 ax-r1 lbtr leid lelor lelan le2an letr ) AFZABAB GADHZBDHZGIZACGTCDHZGIBCGUAUCGIGZIZGZIZGTUGGDSTUGUGSSADGZIZTSUHJTUIADKLMU FUFAUEUEBUDUDUBUDNOPOQER $. $( [22-Dec-98] $) $} ${ oa4ctob.1 $e |- ( a ' ^ ( a v ( c ^ ( ( ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^ ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) ) =< g $. $( Derivation of 4-OA law variant. $) oa4ctob $p |- ( ( a ->1 g ) ^ ( a v ( c ^ ( ( ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^ ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) ) =< g $= ( wa wi1 wo oas ) ABABFADGZBDGZFHACFJCDGZFHBCFKLFHFHFDEI $. $( [22-Dec-98] $) $} ${ oa4ctod.1 $e |- ( a ' ^ ( a v ( b ^ ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^ ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) ) ) =< d $. $( Derivation of 4-OA law variant. $) oa4ctod $p |- ( b ^ ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^ ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) =< ( a ' ->1 d ) $= ( wa wi1 wo oat ) ABABFADGZBDGZFHACFJCDGZFHBCFKLFHFHFDEI $. $( [24-Dec-98] $) $} ${ oa4dtoc.1 $e |- ( b ^ ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^ ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) =< ( a ' ->1 d ) $. $( Derivation of 4-OA law variant. $) oa4dtoc $p |- ( a ' ^ ( a v ( b ^ ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^ ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) ) ) =< d $= ( wa wi1 wo oatr ) ABABFADGZBDGZFHACFJCDGZFHBCFKLFHFHFDEI $. $( [24-Dec-98] $) $} $( Lemma commuting terms. $) oa4dcom $p |- ( b ^ ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^ ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) = ( b ^ ( ( ( b ^ a ) v ( ( b ->1 d ) ^ ( a ->1 d ) ) ) v ( ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ^ ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) $= ( wa wi1 wo ancom 2or lan ) ABEZADFZBDFZEZGZACELCDFZEGZBCEMPEGZEZGBAEZMLEZG ZRQEZGBOUBSUCKTNUAABHLMHIQRHIJ $. $( [24-Dec-98] $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 5OA law =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) ${ oa8to5.1 $e |- ( ( ( a ' v b ' ) ^ ( c ' v d ' ) ) ^ ( ( e ' v f ' ) ^ ( g ' v h ' ) ) ) =< ( b ' v ( a ' ^ ( c ' v ( ( ( ( a ' v c ' ) ^ ( b ' v d ' ) ) ^ ( ( ( a ' v g ' ) ^ ( b ' v h ' ) ) v ( ( c ' v g ' ) ^ ( d ' v h ' ) ) ) ) ^ ( ( ( ( a ' v e ' ) ^ ( b ' v f ' ) ) ^ ( ( ( a ' v g ' ) ^ ( b ' v h ' ) ) v ( ( e ' v g ' ) ^ ( f ' v h ' ) ) ) ) v ( ( ( c ' v e ' ) ^ ( d ' v f ' ) ) ^ ( ( ( c ' v g ' ) ^ ( d ' v h ' ) ) v ( ( e ' v g ' ) ^ ( f ' v h ' ) ) ) ) ) ) ) ) ) $. $( Conventional to dual 8-variable OA law. $) oa8todual $p |- ( b ^ ( a v ( c ^ ( ( ( ( a ^ c ) v ( b ^ d ) ) v ( ( ( a ^ g ) v ( b ^ h ) ) ^ ( ( c ^ g ) v ( d ^ h ) ) ) ) v ( ( ( ( a ^ e ) v ( b ^ f ) ) v ( ( ( a ^ g ) v ( b ^ h ) ) ^ ( ( e ^ g ) v ( f ^ h ) ) ) ) ^ ( ( ( c ^ e ) v ( d ^ f ) ) v ( ( ( c ^ g ) v ( d ^ h ) ) ^ ( ( e ^ g ) v ( f ^ h ) ) ) ) ) ) ) ) ) =< ( ( ( a ^ b ) v ( c ^ d ) ) v ( ( e ^ f ) v ( g ^ h ) ) ) $= ( wn wo wa lecon ax-a1 df-a 2or oran3 ax-r2 2an anor3 le3tr1 ) BJZAJZCJZU CUDKZUBDJZKZLZUCGJZKZUBHJZKZLZUDUIKZUFUKKZLZKZLZUCEJZKZUBFJZKZLZUMUSUIKZV AUKKZLZKZLZUDUSKZUFVAKZLZUPVFKZLZKZLZKZLZKZJZUCUBKZUDUFKZLZUSVAKZUIUKKZLZ LZJZBACACLZBDLZKZAGLZBHLZKZCGLZDHLZKZLZKZAELZBFLZKZWMEGLZFHLZKZLZKZCELZDF LZKZWPXDLZKZLZKZLZKZLZABLZCDLZKZEFLZGHLZKZKZWFVRIMXPUBJZVQJZLVSBYDXOYEBNX OUCJZVPJZKYEAYFXNYGANXNUDJZVOJZLYGCYHXMYICNXMURJZVNJZKYIWRYJXLYKWRUHJZUQJ ZKYJWJYLWQYMWJUEJZUGJZKYLWHYNWIYOACOBDOPUEUGQRWQUMJZUPJZLYMWMYPWPYQWMUJJZ ULJZKYPWKYRWLYSAGOBHOPUJULQRZWPUNJZUOJZKYQWNUUAWOUUBCGODHOPUNUOQRZSUMUPTR PUHUQQRXLVHJZVMJZLYKXFUUDXKUUEXFVCJZVGJZKUUDXAUUFXEUUGXAUTJZVBJZKUUFWSUUH WTUUIAEOBFOPUTVBQRXEYPVFJZLUUGWMYPXDUUJYTXDVDJZVEJZKUUJXBUUKXCUULEGOFHOPV DVEQRZSUMVFTRPVCVGQRXKVKJZVLJZKUUEXIUUNXJUUOXIVIJZVJJZKUUNXGUUPXHUUQCEODF OPVIVJQRXJYQUUJLUUOWPYQXDUUJUUCUUMSUPVFTRPVKVLQRSVHVMTRPURVNQRSUDVOTRPUCV PQRSUBVQTRYCWBJZWEJZKWGXSUURYBUUSXSVTJZWAJZKUURXQUUTXRUVAABOCDOPVTWAQRYBW CJZWDJZKUUSXTUVBYAUVCEFOGHOPWCWDQRPWBWEQRUA $. $( [8-May-00] $) ${ $( Substitutions into 8-variable 5OA law. $) oa8to5.2 $e |- b ' = ( a ->1 j ) ' $. oa8to5.3 $e |- d ' = ( c ->1 j ) ' $. oa8to5.4 $e |- f ' = ( e ->1 j ) ' $. oa8to5.5 $e |- h ' = ( g ->1 j ) ' $. $( Orthoarguesian law 5OA converted from 8 to 5 variables. $) oa8to5 $p |- ( ( a ->1 j ) ^ ( a v ( c ^ ( ( ( ( a ^ c ) v ( ( a ->1 j ) ^ ( c ->1 j ) ) ) v ( ( ( a ^ g ) v ( ( a ->1 j ) ^ ( g ->1 j ) ) ) ^ ( ( c ^ g ) v ( ( c ->1 j ) ^ ( g ->1 j ) ) ) ) ) v ( ( ( ( a ^ e ) v ( ( a ->1 j ) ^ ( e ->1 j ) ) ) v ( ( ( a ^ g ) v ( ( a ->1 j ) ^ ( g ->1 j ) ) ) ^ ( ( e ^ g ) v ( ( e ->1 j ) ^ ( g ->1 j ) ) ) ) ) ^ ( ( ( c ^ e ) v ( ( c ->1 j ) ^ ( e ->1 j ) ) ) v ( ( ( c ^ g ) v ( ( c ->1 j ) ^ ( g ->1 j ) ) ) ^ ( ( e ^ g ) v ( ( e ->1 j ) ^ ( g ->1 j ) ) ) ) ) ) ) ) ) ) =< ( ( ( a ^ j ) v ( c ^ j ) ) v ( ( e ^ j ) v ( g ^ j ) ) ) $= ( wa wo 2an lor 2or lan wi1 oa8todual con1 ancom u1lemaa 3tr le3tr2 ) B ACACOZBDOZPZAGOZBHOZPZCGOZDHOZPZOZPZAEOZBFOZPZUMEGOZFHOZPZOZPZCEOZDFOZP ZUPVDOZPZOZPZOZPZOABOZCDOZPZEFOZGHOZPZPAIUAZACUHWBCIUAZOZPZUKWBGIUAZOZP ZUNWCWFOZPZOZPZUSWBEIUAZOZPZWHVBWMWFOZPZOZPZVGWCWMOZPZWJWQOZPZOZPZOZPZO AIOZCIOZPZEIOZGIOZPZPABCDEFGHJUBBWBVOXGBWBKUCZVNXFAVMXECURWLVLXDUJWEUQW KUIWDUHBWBDWCXNDWCLUCZQRUMWHUPWJULWGUKBWBHWFXNHWFNUCZQRZUOWIUNDWCHWFXOX PQRZQSVFWSVKXCVAWOVEWRUTWNUSBWBFWMXNFWMMUCZQRUMWHVDWQXQVCWPVBFWMHWFXSXP QRZQSVIXAVJXBVHWTVGDWCFWMXOXSQRUPWJVDWQXRXTQSQSTRQVRXJWAXMVPXHVQXIVPAWB OWBAOXHBWBAXNTAWBUDAIUEUFVQCWCOWCCOXIDWCCXOTCWCUDCIUEUFSVSXKVTXLVSEWMOW MEOXKFWMEXSTEWMUDEIUEUFVTGWFOWFGOXLHWFGXPTGWFUDGIUEUFSSUG $. $( [8-May-00] $) $} $} $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= "Godowski/Greechie" form of proper 4-OA =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) ${ oa4to4u.1 $e |- ( ( e ->1 d ) ^ ( e v ( f ^ ( ( ( e ^ f ) v ( ( e ->1 d ) ^ ( f ->1 d ) ) ) v ( ( ( e ^ g ) v ( ( e ->1 d ) ^ ( g ->1 d ) ) ) ^ ( ( f ^ g ) v ( ( f ->1 d ) ^ ( g ->1 d ) ) ) ) ) ) ) ) =< ( ( ( e ^ d ) v ( f ^ d ) ) v ( g ^ d ) ) $. $( Substitutions into 4-variable OA law. $) oa4to4u.2 $e |- e = ( a ' ->1 d ) $. oa4to4u3 $e |- f = ( b ' ->1 d ) $. oa4to4u.4 $e |- g = ( c ' ->1 d ) $. $( A "universal" 4-OA. The hypotheses are the standard proper 4-OA and substitutions into it. $) oa4to4u $p |- ( ( a ->1 d ) ^ ( ( a ' ->1 d ) v ( ( b ' ->1 d ) ^ ( ( ( ( a ->1 d ) ^ ( b ->1 d ) ) v ( ( a ' ->1 d ) ^ ( b ' ->1 d ) ) ) v ( ( ( ( a ->1 d ) ^ ( c ->1 d ) ) v ( ( a ' ->1 d ) ^ ( c ' ->1 d ) ) ) ^ ( ( ( b ->1 d ) ^ ( c ->1 d ) ) v ( ( b ' ->1 d ) ^ ( c ' ->1 d ) ) ) ) ) ) ) ) =< ( ( ( ( a ->1 d ) ^ ( a ' ->1 d ) ) v ( ( b ->1 d ) ^ ( b ' ->1 d ) ) ) v ( ( c ->1 d ) ^ ( c ' ->1 d ) ) ) $= ( wn wi1 wa wo 2an 2or ran ax-a2 ax-r2 ud1lem0b u1lem11 ax-r5 lan u1lemab le3tr2 lor u1lem8 ax-a1 3tr ax-r1 ) ALZDMZDMZUMBLZDMZUMUPNZUNUPDMZNZOZUMC LZDMZNZUNVBDMZNZOZUPVBNZURVDNZOZNZOZNZOZNZUMDNZUPDNZOZVBDNZOZADMZUMUPVTBD MZNZUQOZVTCDMZNZVCOZWAWDNZVGOZNZOZNZOZNVTUMNZWAUPNZOZWDVBNZOEDMZEFEFNZWQF DMZNZOZEGNZWQGDMZNZOZFGNZWSXCNZOZNZOZNZOZNEDNZFDNZOZGDNZOVNVSHWQUNXLVMEUM DIUAZEUMXKVLIFUPXJVKJXAUTXIVJWRUQWTUSEUMFUPIJPWQUNWSURXQFUPDJUAZPQXEVFXHV IXBVCXDVEEUMGVBIKPWQUNXCVDXQGVBDKUAZPQXFVGXGVHFUPGVBJKPWSURXCVDXRXSPQPQPQ PXOVQXPVRXMVOXNVPEUMDIRFUPDJRQGVBDKRQUFUNVTVMWLADUBZVLWKUMVKWJUPUTWCVJWIU TUSUQOWCUQUSSUSWBUQUNVTURWAXTBDUBZPUCTVFWFVIWHVFVEVCOWFVCVESVEWEVCUNVTVDW DXTCDUBZPUCTVIVHVGOWHVGVHSVHWGVGURWAVDWDYAYBPUCTPQUDUGPVQWOVRWPVOWMVPWNVO ULDNZULLZDNZOZWMULDUEWMYFWMADNZYCOYCYGOYFADUHYGYCSYGYEYCAYDDAUIRUGUJUKTVP UODNZUOLZDNZOZWNUODUEWNYKWNBDNZYHOYHYLOYKBDUHYLYHSYLYJYHBYIDBUIRUGUJUKTQV RVADNZVALZDNZOZWPVADUEWPYPWPCDNZYMOYMYQOYPCDUHYQYMSYQYOYMCYNDCUIRUGUJUKTQ UF $. $( [28-Dec-98] $) $( A weaker-looking "universal" proper 4-OA. $) oa4to4u2 $p |- ( ( a ->1 d ) ^ ( ( a ' ->1 d ) v ( ( b ' ->1 d ) ^ ( ( ( ( a ->1 d ) ^ ( b ->1 d ) ) v ( ( a ' ->1 d ) ^ ( b ' ->1 d ) ) ) v ( ( ( ( a ->1 d ) ^ ( c ->1 d ) ) v ( ( a ' ->1 d ) ^ ( c ' ->1 d ) ) ) ^ ( ( ( b ->1 d ) ^ ( c ->1 d ) ) v ( ( b ' ->1 d ) ^ ( c ' ->1 d ) ) ) ) ) ) ) ) =< d $= ( wi1 wn wa wo oa4to4u u1lem8 lear lel2or bltr letr ) ADLZAMZDLZBMZDLZUBB DLZNUDUFNOUBCDLZNUDCMZDLZNOUGUHNUFUJNONONONUBUDNZUGUFNZOZUHUJNZODABCDEFGH IJKPUMDUNUKDULUKADNZUCDNZODADQUODUPADRUCDRSTULBDNZUEDNZODBDQUQDURBDRUEDRS TSUNCDNZUIDNZODCDQUSDUTCDRUIDRSTSUA $. $( [29-Dec-98] $) $} ${ oa4uto4g.1 $e |- ( ( b ' ->1 d ) ^ ( ( b ' ' ->1 d ) v ( ( a ' ' ->1 d ) ^ ( ( ( ( b ' ->1 d ) ^ ( a ' ->1 d ) ) v ( ( b ' ' ->1 d ) ^ ( a ' ' ->1 d ) ) ) v ( ( ( ( b ' ->1 d ) ^ ( c ' ->1 d ) ) v ( ( b ' ' ->1 d ) ^ ( c ' ' ->1 d ) ) ) ^ ( ( ( a ' ->1 d ) ^ ( c ' ->1 d ) ) v ( ( a ' ' ->1 d ) ^ ( c ' ' ->1 d ) ) ) ) ) ) ) ) =< d $. $( Expression involving 4th variable. $) oa4uto4g.4 $e |- h = ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^ ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) $. $( Derivation of "Godowski/Greechie" 4-variable proper OA law variant from "universal" variant ~ oa4to4u2 . $) oa4uto4g $p |- ( ( a ->1 d ) ^ ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v h ) ) =< ( b ->1 d ) $= ( wi1 wa wo ancom 2or lan lor wn u1lem9a lecon1 le2an leror 2an bltr letr ax-r5 le2or lelan lelor ax-a1 ud1lem0b ax-r2 oau ) BADHZABIZUKBDHZIZJZEJZ IZDBUMUQJZIBUMUKBAIZUMUKIZJZEJZIZJZIZDURVDBUQVCUMUPVBUKUOVAEULUSUNUTABKUK UMKLUCMNMVEBOZDHZUMUKVGAOZDHZIZUTJZVICOZDHZIZUKCDHZIZJZVGVMIZUMVOIZJZIZJZ IZJZIZDBVGVDWDVGBBDPQZVCWCUMVBWBUKVAVKEWAUSVJUTBVGAVIWFVIAADPQZRSEACIZVPJ ZBCIZVSJZIWAGWIVQWKVTWHVNVPAVICVMWGVMCCDPQZRSWJVRVSBVGCVMWFWLRSRUAUDUEUFR WEVGVFOZDHZVHOZDHZVJWNWPIZJZVRWNVLOZDHZIZJZVNWPWTIZJZIZJZIZJZIDWDXHVGUMWN WCXGBWMDBUGUHZUKWPWBXFAWODAUGUHZVKWRWAXEUTWQVJUMWNUKWPXIXJTNWAVTVQIXEVQVT KVTXBVQXDVSXAVRUMWNVOWTXICWSDCUGUHZTNVPXCVNUKWPVOWTXJXKTNTUILTLMFUAUBUAUJ $. $( [28-Dec-98] $) $} ${ oa4gto4u.1 $e |- ( ( e ->1 d ) ^ ( ( ( e ^ f ) v ( ( e ->1 d ) ^ ( f ->1 d ) ) ) v ( ( ( e ^ g ) v ( ( e ->1 d ) ^ ( g ->1 d ) ) ) ^ ( ( f ^ g ) v ( ( f ->1 d ) ^ ( g ->1 d ) ) ) ) ) ) =< ( f ->1 d ) $. $( Substitutions into 4-variable OA law. $) oa4gto4u.2 $e |- f = ( a ->1 d ) $. oa4gto4u3 $e |- e = ( b ->1 d ) $. oa4gto4u.4 $e |- g = ( c ->1 d ) $. $( A "universal" 4-OA derived from the Godowski/Greechie form. The hypotheses are the Godowski/Greechie form of the proper 4-OA and substitutions into it. $) oa4gto4u $p |- ( ( a ->1 d ) ^ ( ( a ' ->1 d ) v ( ( b ' ->1 d ) ^ ( ( ( ( a ->1 d ) ^ ( b ->1 d ) ) v ( ( a ' ->1 d ) ^ ( b ' ->1 d ) ) ) v ( ( ( ( a ->1 d ) ^ ( c ->1 d ) ) v ( ( a ' ->1 d ) ^ ( c ' ->1 d ) ) ) ^ ( ( ( b ->1 d ) ^ ( c ->1 d ) ) v ( ( b ' ->1 d ) ^ ( c ' ->1 d ) ) ) ) ) ) ) ) =< d $= ( wi1 wn wa wo ud1lem0b u1lem12 ax-r2 2an 2or ancom ax-r1 oaur bltr ) ADL ZAMDLZBMDLZUEBDLZNZUFUGNZOZUECDLZNZUFCMDLZNZOZUHULNZUGUNNZOZNZOZNZOZNZFFD LZEDLZEFNZVFVENZOZEGNZVFGDLZNZOZFGNZVEVKNZOZNZOZNZOZNZDWAVDFUEVTVCIVEUFVS VBVEUEDLUFFUEDIPADQRZVFUGVRVAVFUHDLUGEUHDJPBDQRZVIUKVQUTVGUIVHUJVGFENUIEF UAFUEEUHIJSRVHVEVFNUJVFVEUAVEUFVFUGWBWCSRTVQVPVMNUTVMVPUAVPUPVMUSVNUMVOUO FUEGULIKSVEUFVKUNWBVKULDLUNGULDKPCDQRZSTVJUQVLUREUHGULJKSVFUGVKUNWCWDSTSR TSTSUBFVSDHUCUD $. $( [30-Dec-98] $) $} ${ oa4uto4.1 $e |- ( ( a ->1 d ) ^ ( ( a ' ->1 d ) v ( ( b ' ->1 d ) ^ ( ( ( ( a ->1 d ) ^ ( b ->1 d ) ) v ( ( a ' ->1 d ) ^ ( b ' ->1 d ) ) ) v ( ( ( ( a ->1 d ) ^ ( c ->1 d ) ) v ( ( a ' ->1 d ) ^ ( c ' ->1 d ) ) ) ^ ( ( ( b ->1 d ) ^ ( c ->1 d ) ) v ( ( b ' ->1 d ) ^ ( c ' ->1 d ) ) ) ) ) ) ) ) =< d $. $( Derivation of standard 4-variable proper OA law from "universal" variant ~ oa4to4u2 . $) oa4uto4 $p |- ( ( a ->1 d ) ^ ( a v ( b ^ ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^ ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) ) ) =< d $= ( wi1 wa wo wn u1lem9a lecon1 ax-a2 le2an lelor bltr le2or lelan letr ) A DFZABABGZSBDFZGZHZACGZSCDFZGZHZBCGZUAUEGZHZGZHZGZHZGSAIDFZBIDFZUBUOUPGZHZ UFUOCIDFZGZHZUIUPUSGZHZGZHZGZHZGDUNVGSAUOUMVFUOAADJKZBUPULVEUPBBDJKZUCURU KVDUCUBTHURTUBLTUQUBAUOBUPVHVIMNOUGVAUJVCUGUFUDHVAUDUFLUDUTUFAUOCUSVHUSCC DJKZMNOUJUIUHHVCUHUILUHVBUIBUPCUSVIVJMNOMPMPQER $. $( [30-Dec-98] $) $} $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Some 3-OA inferences (derived under OM) =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( Lemma for 3-OA(2). Equivalence with substitution into 4-OA. $) oa3-2lema $p |- ( ( a ->1 c ) ^ ( a v ( b ^ ( ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) v ( ( ( a ^ 0 ) v ( ( a ->1 c ) ^ ( 0 ->1 c ) ) ) ^ ( ( b ^ 0 ) v ( ( b ->1 c ) ^ ( 0 ->1 c ) ) ) ) ) ) ) ) = ( ( a ->1 c ) ^ ( a v ( b ^ ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) $= ( wa wi1 wo wf ax-a3 an0 ax-r5 ax-a2 wt or0 0i1 lan an1 3tr 2an lor ax-r2 oridm ) ABABDZACEZBCEZDZFZAGDZUCGCEZDZFZBGDZUDUHDZFZDZFZDZFABUFDZFUCUPUQAUO UFBUOUBUEUNFZFUFUBUEUNHURUEUBURUEUEFUEUNUEUEUJUCUMUDUJGUIFUIGFZUCUGGUIAIJGU IKUSUIUCLDUCUIMUHLUCCNZOUCPQQUMGULFULGFZUDUKGULBIJGULKVAULUDLDUDULMUHLUDUTO UDPQQRSUEUATSTOSO $. $( [24-Dec-98] $) $( Lemma for 3-OA(2). Equivalence with substitution into 4-OA. $) oa3-2lemb $p |- ( ( a ->1 c ) ^ ( a v ( b ^ ( ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) v ( ( ( a ^ c ) v ( ( a ->1 c ) ^ ( c ->1 c ) ) ) ^ ( ( b ^ c ) v ( ( b ->1 c ) ^ ( c ->1 c ) ) ) ) ) ) ) ) = ( ( a ->1 c ) ^ ( a v ( b ^ ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) $= ( wa wi1 wo ax-a3 wt i1id lan an1 ax-r2 lor wn or12 oridm df-i1 3tr1 2an ) ABABDZACEZBCEZDZFZACDZUACCEZDZFZBCDZUBUFDZFZDZFZDZFABUDDZFUAUNUOAUMUDBUMTUC ULFZFUDTUCULGUPUCTUPUCUCFUCULUCUCUHUAUKUBUHUEUAFZUAUGUAUEUGUAHDUAUFHUACIZJU AKLMUEANZUEFZFZUTUQUAVAUSUEUEFZFUTUEUSUEOVBUEUSUEPMLUAUTUEACQZMVCRLUKUIUBFZ UBUJUBUIUJUBHDUBUFHUBURJUBKLMUIBNZUIFZFZVFVDUBVGVEUIUIFZFVFUIVEUIOVHUIVEUIP MLUBVFUIBCQZMVIRLSMUCPLMLJMJ $. $( [24-Dec-98] $) $( Lemma for 3-OA(6). Equivalence with substitution into 4-OA. $) oa3-6lem $p |- ( ( a ->1 c ) ^ ( a v ( b ^ ( ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) v ( ( ( a ^ 1 ) v ( ( a ->1 c ) ^ ( 1 ->1 c ) ) ) ^ ( ( b ^ 1 ) v ( ( b ->1 c ) ^ ( 1 ->1 c ) ) ) ) ) ) ) ) = ( ( a ->1 c ) ^ ( a v ( b ^ ( ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) $= ( wa wi1 wo wt wn an1 lan u1lemab ax-r2 2or ax-a3 ax-r1 orabs ax-r5 3tr 2an lor 1i1 or32 leo le2an df-le2 ax-a1 df-i1 ) ABABDZACEZBCEZDZFZAGDZUIGCEZDZF ZBGDZUJUNDZFZDZFZDZFABAHZCEZBHZCEZDZUKFZDZFUIVBVIAVAVHBVAULAVCCDZFZBVECDZFZ DZFUHVNFZUKFVHUTVNULUPVKUSVMUPAACDZVJFZFZAVPFZVJFZVKUMAUOVQAIUOUICDVQUNCUIC UAZJACKLMVTVRAVPVJNOVSAVJACPQRUSBBCDZVLFZFZBWBFZVLFZVMUQBURWCBIURUJCDWCUNCU JWAJBCKLMWFWDBWBVLNOWEBVLBCPQRSTUHUKVNUBVOVGUKVOVNVGUHVNAVKBVMAVJUCBVLUCUDU EVKVDVMVFVKVCHZVJFZVDAWGVJAUFQVDWHVCCUGOLVMVEHZVLFZVFBWIVLBUFQVFWJVECUGOLSL QRJTJ $. $( [24-Dec-98] $) $( Lemma for 3-OA(3). Equivalence with substitution into 6-OA dual. $) oa3-3lem $p |- ( a ' ^ ( a v ( b ^ ( ( ( a ^ b ) v ( a ' ^ b ' ) ) v ( ( ( a ^ 1 ) v ( a ' ^ c ) ) ^ ( ( b ^ 1 ) v ( b ' ^ c ) ) ) ) ) ) ) = ( a ' ^ ( a v ( b ^ ( ( a == b ) v ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) ) ) ) $= ( wa wn wo wt tb wi1 dfb ax-r1 an1 ax-a1 ax-r2 ax-r5 df-i1 2an 2or lan lor ) ABABDAEZBEZDFZAGDZUACDZFZBGDZUBCDZFZDZFZDZFABABHZUACIZUBCIZDZFZDZFUAULURA UKUQBUCUMUJUPUMUCABJKUFUNUIUOUFUAEZUEFZUNUDUSUEUDAUSALAMNOUNUTUACPKNUIUBEZU HFZUOUGVAUHUGBVABLBMNOUOVBUBCPKNQRSTS $. $( [24-Dec-98] $) $( Lemma for 3-OA(1). Equivalence with substitution into 6-OA dual. $) oa3-1lem $p |- ( 1 ^ ( 0 v ( a ^ ( ( ( 0 ^ a ) v ( 1 ^ ( a ->1 c ) ) ) v ( ( ( 0 ^ b ) v ( 1 ^ ( b ->1 c ) ) ) ^ ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) ) ) = ( a ^ ( ( a ->1 c ) v ( ( b ->1 c ) ^ ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) $= ( wt wf wa wi1 wo ancom an1 ax-a2 or0 an0 ax-r2 2or 3tr ax-r5 ran lor lan ) DEAEAFZDACGZFZHZEBFZDBCGZFZHZABFUBUFFHZFZHZFZHZFUMDFUMAUBUFUIFZHZFZDUMIUMJU MULEHULUPEULKULLUKUOAUKUBUJHUOUDUBUJUDEUBHUBEHUBUAEUCUBUAAEFEEAIAMNUCUBDFUB DUBIUBJNOEUBKUBLPQUJUNUBUHUFUIUHUGUEHUFEHUFUEUGKUGUFUEEUGUFDFUFDUFIUFJNUEBE FEEBIBMNOUFLPRSNTPP $. $( [25-Dec-98] $) $( Lemma for 3-OA(4). Equivalence with substitution into 6-OA dual. $) oa3-4lem $p |- ( a ' ^ ( a v ( b ^ ( ( ( a ^ b ) v ( a ' ^ b ' ) ) v ( ( ( a ^ c ) v ( a ' ^ 1 ) ) ^ ( ( b ^ c ) v ( b ' ^ 1 ) ) ) ) ) ) ) = ( a ' ^ ( a v ( b ^ ( ( a == b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) $= ( wa wn wo wt tb wi1 dfb ax-a2 df-i1 an1 lor 3tr1 2an 2or ax-r1 lan ) ABABD AEZBEZDFZACDZTGDZFZBCDZUAGDZFZDZFZDZFABABHZACIZBCIZDZFZDZFTUKUQAUJUPBUPUJUL UBUOUIABJUMUEUNUHTUCFUCTFUMUETUCKACLUDTUCTMNOUAUFFUFUAFUNUHUAUFKBCLUGUAUFUA MNOPQRSNS $. $( [25-Dec-98] $) $( Lemma for 3-OA(5). Equivalence with substitution into 6-OA dual. $) oa3-5lem $p |- ( ( a ->1 c ) ^ ( a v ( c ^ ( ( ( a ^ c ) v ( ( a ->1 c ) ^ 1 ) ) v ( ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ^ ( ( c ^ b ) v ( 1 ^ ( b ->1 c ) ) ) ) ) ) ) ) = ( ( a ->1 c ) ^ ( a v ( c ^ ( ( a ->1 c ) v ( ( b ->1 c ) ^ ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) ) ) $= ( wa wi1 wt wo or12 oridm lor ax-r2 an1 df-i1 3tr1 ancom ax-r5 3tr lan 2or wn ) ACACDZACEZFDZGZABDUBBCEZDGZCBDZFUEDZGZDZGZDZGACUBUEUFDZGZDZGUBULUOAUKU NCUDUBUJUMUAATZUAGZGZUQUDUBURUPUAUAGZGUQUAUPUAHUSUAUPUAIJKUCUQUAUCUBUQUBLAC MZKJUTNUJUFUEDUMUIUEUFUGBTZBCDZGZGZVCUIUEVDVAUGVBGZGVCUGVAVBHVEVBVAVEVBVBGV BUGVBVBCBOPVBIKJKUHVCUGUHUEFDUEVCFUEOUELBCMZQJVFNRUFUEOKSRJR $. $( [25-Dec-98] $) $( Lemma for a "universal" 3-OA. Equivalence with substitution into 6-OA dual. $) oa3-u1lem $p |- ( 1 ^ ( c v ( ( a ' ->1 c ) ^ ( ( ( c ^ ( a ' ->1 c ) ) v ( 1 ^ ( a ->1 c ) ) ) v ( ( ( c ^ ( b ' ->1 c ) ) v ( 1 ^ ( b ->1 c ) ) ) ^ ( ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) ) ) = ( c v ( ( a ' ->1 c ) ^ ( ( a ->1 c ) v ( ( b ->1 c ) ^ ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) ) ) ) ) $= ( wt wn wi1 wa wo ancom an1 lea leo letr leor lel2or df-le2 u1lemab lor 3tr 2or ax-a1 ax-r1 ran df-i1 3tr1 ax-a2 2an lan ) DCAEZCFZCUJGZDACFZGZHZCBEZCF ZGZDBCFZGZHZUJUPGZULURGZHZGZHZGZHZGVGDGVGCUJULURVBVAHZGZHZGZHDVGIVGJVFVKCVE VJUJUNULVDVIUICGZACGZHZUIVMHZHVOUNULVNVOVLVOVMVLUIVOUICKUIVMLMVMUINOPUKVNUM VOUKUJCGVLUIEZCGZHVNCUJIUICQVQVMVLVPACAVPAUAUBUCRSUMULDGULVODULIULJACUDZSTV RUEUTURVCVHUOCGZBCGZHZUOVTHZHWBUTURWAWBVSWBVTVSUOWBUOCKUOVTLMVTUONOPUQWAUSW BUQUPCGVSUOEZCGZHWACUPIUOCQWDVTVSWCBCBWCBUAUBUCRSUSURDGURWBDURIURJBCUDZSTWE UEVAVBUFUGTUHRS $. $( [26-Dec-98] $) $( Lemma for a "universal" 3-OA. Equivalence with substitution into 6-OA dual. $) oa3-u2lem $p |- ( ( a ->1 c ) ^ ( ( a ' ->1 c ) v ( c ^ ( ( ( ( a ' ->1 c ) ^ c ) v ( ( a ->1 c ) ^ 1 ) ) v ( ( ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ^ ( ( c ^ ( b ' ->1 c ) ) v ( 1 ^ ( b ->1 c ) ) ) ) ) ) ) ) = ( ( a ->1 c ) ^ ( ( a ' ->1 c ) v ( c ^ ( ( a ->1 c ) v ( ( b ->1 c ) ^ ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) ) ) ) ) ) $= ( wn wi1 wa wt u1lemab an1 2or lea ax-a1 ax-r1 leid leran le2or ax-r2 ancom wo bltr df-i1 lbtr df-le2 ax-a2 2an lan lor ) ADZCEZCUICFZACEZGFZSZUIBDZCEZ FZUKBCEZFZSZCUOFZGUQFZSZFZSZFZSUICUKUQURUPSZFZSZFZSUKVEVIUIVDVHCUMUKVCVGUMU HCFZUHDZCFZSZUKSUKUJVMULUKUHCHUKIJVMUKVMUHACFZSZUKVJUHVLVNUHCKVKACVKAAAVKAL MANTOPUKVOACUAMUBUCQVCVBUSFVGUSVBRVBUQUSVFVBUNCFZUNDZCFZSZUQSUQUTVSVAUQUTUO CFVSCUORUNCHQVAUQGFUQGUQRUQIQJVSUQVSUNBCFZSZUQVPUNVRVTUNCKVQBCVQBBBVQBLMBNT OPUQWABCUAMUBUCQUPURUDUEQJUFUGUF $. $( [27-Dec-98] $) ${ oa3-6to3.1 $e |- ( ( a ->1 c ) ^ ( a v ( b ^ ( ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) =< c $. $( Derivation of 3-OA variant (3) from (6). $) oa3-6to3 $p |- ( a ' ^ ( a v ( b ^ ( ( a == b ) v ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) ) ) ) =< c $= ( wn tb wi1 wa wo wt oa3-3lem ax-r1 leid wf df-f bltr ax-r2 dff 2or or0 le0 ancom an1 ax-a2 oa3-6lem oa4to6dual ) AEZABABFUGCGBEZCGHZIHIHZUGABABH ZUGUHHIAJHZUGCHIBJHZUHCHIHIHIHZCUNUJABCKLAUGBUHJCCUGMUHMJEZNCNUOOLCUAPCJC HZAUGHZBUHHZIZIZUSUPIUTCUTCNICUPCUSNUPCJHCJCUBCUCQUSNNIZNVAUSNUQNURARBRSL NTQSCTQLUPUSUDQACGZABUKVBBCGZHZIULVBJCGZHIUMVCVEHIHIHIHVBABUIVDIHIHCABCUE DPUFP $. $( [24-Dec-98] $) $} ${ oa3-2to4.1 $e |- ( ( a ->1 c ) ^ ( a v ( b ^ ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) =< c $. $( Derivation of 3-OA variant (4) from (2). $) oa3-2to4 $p |- ( a ' ^ ( a v ( b ^ ( ( a == b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) =< c $= ( wn tb wi1 wa wo wt oa3-4lem ax-r1 leid le1 wf dff 2or or0 ax-r2 bltr an1 ax-a2 oa3-2lemb oa4to6dual ) AEZABABFACGZBCGZHZIHIHZUEABABHZUEBEZHIAC HZUEJHIBCHZUKJHIHIHIHZCUNUIABCKLAUEBUKCJCUEMUKMCENCCJHZAUEHZBUKHZIZIZURUO IUSCUSCOICUOCUROCUAUROOIZOUTUROUPOUQAPBPQLORSQCRSLUOURUBSUFABUJUHIZULUFCC GZHIUMUGVBHIHIHIHUFABVAHIHCABCUCDTUDT $. $( [24-Dec-98] $) $} ${ oa3-2wto2.1 $e |- ( a ' ^ ( a v ( b ^ ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) =< c $. $( Derivation of 3-OA variant from weaker version. $) oa3-2wto2 $p |- ( ( a ->1 c ) ^ ( a v ( b ^ ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) =< c $= ( wa wi1 wo oas ) ABABEACFBCFEGECDH $. $( [25-Dec-98] $) $} ${ oa3-2to2s.1 $e |- ( ( a ->1 d ) ^ ( a v ( b ^ ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) ) ) ) =< d $. $( Substitution into weaker version. $) oa3-2to2s.2 $e |- d = ( ( a ^ c ) v ( b ^ c ) ) $. $( Derivation of 3-OA variant from weaker version. $) oa3-2to2s $p |- ( ( a ->1 c ) ^ ( a v ( b ^ ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) =< ( ( a ^ c ) v ( b ^ c ) ) $= ( wi1 wa wo wf wn id leo df-i1 ax-r1 ax-a1 ax-r2 lbtr 2an wt or0 lan omla 2or an1 0i1 oa3-2lema bltr oa4to6 oa6to4 ancom an0 lor le3tr2 ) ACGZABABH ZUOBCGZHIZAJHZUOJCGZHIBJHZUQUTHIHIHIHACHZBCHZIZJCHZIZUOABURHIHVDAUOBUQJUT CUOKZLUQKZLUTKZLAKZVGBKZVHJKZVIDABJVJVJVBIZVGKZVJVBMVMUOVNUOVMACNZOUOPZQR VKVKVCIZVHKZVKVCMVQUQVRUQVQBCNZOUQPZQRVLVLVEIZVIKZVLVEMWAUTWBUTWAJCNOUTPZ QRDDJIZVJKZVNHZVKKZVRHZIZVLKZWBHZIWDDDUAODWIJWKDVDWIFVBWFVCWHVBAUOHZWFWLV BWLAVMHVBUOVMAVOUBACUCQOAWEUOVNAPZVPSQVCBUQHZWHWNVCWNBVQHVCUQVQBVSUBBCUCQ OBWGUQVRBPZVTSQUDQJJTHZWKWPJJUEOJWJTWBJPZTUTWBUTTCUFOWCQSQUDQWMWOWQADGZAB UPWRBDGZHIZUSWRJDGZHIVAWSXAHIHIHIHWRABWTHIHDABDUGEUHUIUJABCUGVFVDJIVDVEJV DVECJHJJCUKCULQUMVDUAQUN $. $( [25-Dec-98] $) $} ${ oa3-u1.1 $e |- ( ( c ->1 c ) ^ ( c v ( ( a ' ->1 c ) ^ ( ( ( c ^ ( a ' ->1 c ) ) v ( ( c ->1 c ) ^ ( ( a ' ->1 c ) ->1 c ) ) ) v ( ( ( c ^ ( b ' ->1 c ) ) v ( ( c ->1 c ) ^ ( ( b ' ->1 c ) ->1 c ) ) ) ^ ( ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) v ( ( ( a ' ->1 c ) ->1 c ) ^ ( ( b ' ->1 c ) ->1 c ) ) ) ) ) ) ) ) =< c $. $( Derivation of a "universal" 3-OA. The hypothesis is a substitution instance of the proper 4-OA. $) oa3-u1 $p |- ( c v ( ( a ' ->1 c ) ^ ( ( a ->1 c ) v ( ( b ->1 c ) ^ ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) ) ) ) ) =< c $= ( wn wi1 wa wo wt oa3-u1lem ax-r1 u1lem9ab ax-a2 lear lel2or df-le2 ax-r2 ancom u1lem8 2or le1 an1 3tr oa4to6dual leid letr bltr ) CAEZCFZACFZBCFZU JUKGZUIBEZCFZGZHGHGHZICUICUIGIUJGHCUNGIUKGHUOULHGHGHGZCUQUPABCJKUQCCCIUIU JUNUKCCEUAACLBCLCCBCGZUMCGZHZHZCIGZUIUJGZHZUNUKGZHZVACVAUTCHCCUTMUTCURCUS BCNUMCNOPQKVFVAVDCVEUTVDCACGZUHCGZHZHVICHCVBCVCVICUBVCUJUIGVIUIUJRACSQTCV IMVICVGCVHACNUHCNOPUCVEUKUNGUTUNUKRBCSQTKQDUDCUEUFUG $. $( [27-Dec-98] $) $} ${ oa3-u2.1 $e |- ( ( ( a ' ->1 c ) ->1 c ) ^ ( ( a ' ->1 c ) v ( c ^ ( ( ( ( a ' ->1 c ) ^ c ) v ( ( ( a ' ->1 c ) ->1 c ) ^ ( c ->1 c ) ) ) v ( ( ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) v ( ( ( a ' ->1 c ) ->1 c ) ^ ( ( b ' ->1 c ) ->1 c ) ) ) ^ ( ( c ^ ( b ' ->1 c ) ) v ( ( c ->1 c ) ^ ( ( b ' ->1 c ) ->1 c ) ) ) ) ) ) ) ) =< c $. $( Derivation of a "universal" 3-OA. The hypothesis is a substitution instance of the proper 4-OA. $) oa3-u2 $p |- ( ( a ->1 c ) ^ ( ( a ' ->1 c ) v ( c ^ ( ( a ->1 c ) v ( ( b ->1 c ) ^ ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) ) ) ) ) ) =< c $= ( wi1 wn wa wo wt oa3-u2lem ax-r1 u1lem9ab le1 or32 ancom u1lem8 2or lear ax-r2 lel2or an1 df-le2 3tr oa4to6dual bltr ) ACEZAFZCEZCUFBCEZUFUIGZUHBF ZCEZGZHGHGHGZUFUHCUHCGUFIGHUMUJHCULGIUIGHGHGHGZCUOUNABCJKUHUFCIULUICACLCF MBCLUHUFGZCIGZHULUIGZHZCUSUPURHZUQHACGZUGCGZHZBCGZUKCGZHZHZCHCUPUQURNUTVG UQCUPVCURVFUPUFUHGVCUHUFOACPSURUIULGVFULUIOBCPSQCUAQVGCVCCVFVACVBACRUGCRT VDCVEBCRUKCRTTUBUCKDUDUE $. $( [27-Dec-98] $) $} ${ oa3-1to5.1 $e |- ( ( a ->1 c ) ^ ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) =< ( b ->1 c ) $. $( Derivation of an equivalent of the second "universal" 3-OA U2 from an equivalent of the first "universal" 3-OA U1. This shows that U2 is redundant in a system containg U1. The hypothesis is theorem ~ oal1 . $) oa3-1to5 $p |- ( c ^ ( ( b ->1 c ) v ( ( a ->1 c ) ^ ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) =< ( b ' ->1 c ) $= ( wi1 wa wo wn leid lel2or lelan ax-a1 ran ax-r5 ax-a2 ax-r2 u1lemab 3tr1 ancom lbtr lear letr ) CBCEZACEZABFUDUCFGFZGZFZCBHZCEZFZUIUGCUCFZUJUFUCCU CUCUEUCIDJKUCCFZUICFZUKUJBCFZUHCFZGZUOUHHZCFZGZULUMUPURUOGUSUNURUOBUQCBLM NURUOOPBCQUHCQRCUCSCUISRTCUIUAUB $. $( [1-Jan-99] $) $} $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# Derivation of 4-variable proper OA from OA distributive law #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# $) $( In this section, we postulate a temporary axiom (intended not to be used outside of this section) for the OA distributive law, and derive from it the proper 4-OA. This shows that the OA distributive law implies the proper 4-OA (and therefore the 6-OA). $) ${ oad.1 $e |- e = ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^ ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) $. oad.2 $e |- f = ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v e ) $. oad.3 $e |- h =< ( a ->1 d ) $. oad.4 $e |- j =< f $. oad.5 $e |- k =< f $. oad.6 $e |- ( h ^ ( b ->1 d ) ) =< k $. $( OA Distributive law. In this section, we postulate this temporary axiom (intended not to be used outside of this section) for the OA distributive law, and derive from it the 6-OA, in theorem ~ d6oa . This together with the derivation of the distributive law in theorem ~ 4oadist shows that the OA distributive law is equivalent to the 6-OA. $) ax-oadist $a |- ( h ^ ( j v k ) ) = ( ( h ^ j ) v ( h ^ k ) ) $. $} ${ d3oa.1 $e |- f = ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) $. $( Derivation of 3-OA from OA distributive law. $) d3oa $p |- ( ( a ->1 c ) ^ f ) =< ( b ->1 c ) $= ( wi1 wa wn wi2 wo lear bltr le2or id leid ax-r1 leo letr ax-r2 lbtr bile 1oai1 2oath1i1 df-i1 ax-a1 df-i2 ax-a2 lea ax-oadist wi0 u12lem df-i0 lan ax-r5 oridm le3tr2 ) ACFZABGZHZUQBCFZGZFZGZUQUSVAIZGZJZUTUTJUQDGZUTVCUTVE UTABCUBVEVAUTABCUCUQUTKLMVFUQVBVDJZGZVGVIVFABACAAGUQUQGJBAGUTUQGJGZURVAJZ VJJZUQVBVDVJNVLNUQOVBVKVLVBUSHZUSVAGZJVKUSVAUDVMURVNVAVMURURVMURUEZPZUAUS VAKMLVKVJQZRVDVKVLVDVMVAHZGZVAJZVKVDVAVSJZVTUSVAUFZVAVSUGSVSURVAVAVSVMURV MVRUHVPTVAOMLVQRVAWAVDVAVSQVDWAWBPTUIPVHDUQVHVKDVHVMVAJZVKVHUSVAUJWCUSVAU KUSVAULSVKWCURVMVAVOUNPSDVKEPSUMSUTUOUP $. $( [30-Dec-98] $) $} ${ d4oa.2 $e |- e = ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) $. d4oa.1 $e |- f = ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^ ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) $. $( Variant of proper 4-OA proved from OA distributive law. $) d4oa $p |- ( ( a ->1 d ) ^ ( e v f ) ) =< ( b ->1 d ) $= ( wi1 wo wa lan id 2or leor ax-r1 ax-r2 d3oa bltr ancom ax-a2 anass leran leid leo lbtr ax-oadist letr lel2or ) ADIZEFJZKZUJFKZUJEKZJZBDIZULUJFEJZK UOUKUQUJEFUALABCDACKUJCDIZKJZBCKZUPURKZJZKZUKUJFEVCMEABKZUJUPKZJZFVCGHNUJ UDFEOEFUEVEVFEVEVDOEVFGPUFUGQUMUPUNUMURVBKZUPUMUJUSKZVBKZVGUMUJVCKZVIFVCU JHLVIVJUJUSVBUBPQVHURVBACDUSUSMRUCSCBDVBUTCBKVAURUPKBCTUPURTNRUHABDEGRUIS $. $( [30-Dec-98] $) $} ${ d6oa.1 $e |- a =< b ' $. d6oa.2 $e |- c =< d ' $. d6oa.3 $e |- e =< f ' $. $( Derivation of 6-variable orthoarguesian law from OA distributive law. $) d6oa $p |- ( ( ( a v b ) ^ ( c v d ) ) ^ ( e v f ) ) =< ( b v ( a ^ ( c v ( ( ( a v c ) ^ ( b v d ) ) ^ ( ( ( a v e ) ^ ( b v f ) ) v ( ( c v e ) ^ ( d v f ) ) ) ) ) ) ) $= ( wn wa wo id wi1 d4oa oa4gto4u oa4uto4 oa4to6 ) ABCDEFAJZBJKCJZDJKLEJZFJ KLZSTUAGHIUBMSMTMUAMSTUAUBSTUAUBTUBNZSUBNZUAUBNZUCUDUEUBUCUDKUCUBNZUDUBNZ KLZUCUEKUFUEUBNZKLUDUEKUGUIKLKZUHMUJMOUDMUCMUEMPQR $. $( [30-Dec-98] $) $} $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# Orthoarguesian laws #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# $) $( R. Godowski and R. Greechie, Demonstratio Mathematica 17, 241 (1984) $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 3-variable orthoarguesian law =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( 3-variable consequence of the orthoarguesion law. $) ax-3oa $a |- ( ( a ->1 c ) ^ ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) =< ( b ->1 c ) $. $( Orthoarguesian law - ` ->2 ` version. $) oal2 $p |- ( ( a ->2 b ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) =< ( a ->2 c ) $= ( wn wi1 wa wo wi2 ax-3oa i2i1 anor3 ax-r1 2an 2or le3tr1 ) BDZADZEZPCDZFZR SQEZFZGZFUAABHZBCGDZUDACHZFZGZFUFPSQIUDRUHUCABJZUETUGUBTUEBCKLUDRUFUAUIACJZ MNMUJO $. $( [20-Jul-99] $) $( Orthoarguesian law - ` ->1 ` version derived from ` ->1 ` version. $) oal1 $p |- ( ( a ->1 c ) ^ ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) =< ( b ->1 c ) $= ( wn wi2 wo wa wi1 oal2 i1i2 df-a 2an 2or le3tr1 ) CDZADZEZPBDZFDZQOREZGZFZ GTACHZABGZUCBCHZGZFZGUEOPRIUCQUGUBACJZUDSUFUAABKUCQUETUHBCJZLMLUIN $. $( [25-Nov-98] $) $( Orthoarguesian law. Godowski/Greechie, Eq. III. $) oaliii $p |- ( ( a ->2 b ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) = ( ( a ->2 c ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) $= ( wi2 wo wn wa anass anidm lan ax-r2 ax-r1 oal2 leran ax-a2 ax-r4 ancom 2or bltr ran lebi ) ABDZBCEZFZUBACDZGZEZGZUEUGGZUHUHUGGZUIUJUHUJUBUGUGGZGUHUBUG UGHUKUGUBUGIZJKLUHUEUGABCMNSUIUECBEZFZUEUBGZEZGZUGGZUHURUIURUEUPUGGZGUIUEUP UGHUSUGUEUSUKUGUPUGUGUNUDUOUFUMUCCBOPUEUBQRTULKJKLUQUBUGACBMNSUA $. $( [22-Sep-98] $) $( Orthoarguesian law. Godowski/Greechie, Eq. II. This proof references ~ oaliii only. $) oalii $p |- ( b ' ^ ( ( a ->2 b ) v ( ( a ->2 c ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) ) =< a ' $= ( wn wi2 wo wa orabs oaliii lor df-i2 ancom ax-r2 3tr2 lan omlan lear bltr ) BDZABEZACEZBCFDTUAGFZGZFZGZSADZGZUFUESBUGFZGUGUDUHSTTUBGZFTUDUHTUBHUIUCTA BCIJTBUFSGZFUHABKUJUGBUFSLJMNOBUFPMSUFQR $. $( [22-Sep-98] $) $( Orthoarguesian law. Godowski/Greechie, Eq. IV. $) oaliv $p |- ( b ' ^ ( ( a ->2 b ) v ( ( a ->2 c ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) ) =< ( ( b ' ^ ( a ->2 b ) ) v ( c ' ^ ( a ->2 c ) ) ) $= ( wn wi2 wo lea oalii ler2an df-i2 ancom lor ax-r2 lan omlan ax-r1 lbtr leo wa letr ) BDZABEZACEZBCFDUBUCSFSFZSZUAUBSZUFCDUCSZFUEUAADZSZUFUEUAUHUAUDGAB CHIUFUIUFUABUIFZSUIUBUJUAUBBUHUASZFUJABJUKUIBUHUAKLMNBUHOMPQUFUGRT $. $( [25-Nov-98] $) $( OA theorem. $) oath1 $p |- ( ( a ->2 b ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) = ( ( a ->2 b ) ^ ( a ->2 c ) ) $= ( wi2 wo wn wa oaliii lan anidm ax-r1 anandir 3tr1 ax-a2 anabs 3tr ) ABDZBC EFZQACDZGZEZGZTUAGZTTREZGTUBUBGZUBSUAGZGUBUCUBUFUBABCHIUEUBUBJKQSUALMUAUDTR TNITROP $. $( [12-Oct-98] $) $( Lemma. $) oalem1 $p |- ( ( b v c ) v ( ( b v c ) ' ^ ( ( a ->2 b ) v ( ( a ->2 c ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) ) ) =< ( a ->2 ( b v c ) ) $= ( wo wn wi2 wa anidm ran ax-r1 anor3 an32 ax-r2 3tr2 anass oalii lelan bltr ancom lbtr lelor df-i2 ) BCDZUCEZABFZACFZUDUEUFGDGDZGZDUCAEZUDGZDZAUCFZUHUJ UCUHUDUIGZUJUHUDBEZGZUGGZUMUDUOUGUNCEZGZUNUNGZUQGZUDUOUTURUSUNUQUNHIJBCKZUT URUNGUOUNUNUQLURUDUNVAIMNIUPUDUNUGGZGUMUDUNUGOVBUIUDABCPQRRUDUISTUAULUKAUCU BJT $. $( [16-Oct-98] $) $( Lemma. $) oalem2 $p |- ( ( a ->2 b ) v ( ( a ->2 c ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) = ( a ->2 b ) $= ( wi2 wo wn wa ax-a2 ax-r4 ancom 2or lan oath1 ax-r2 lor orabs 3tr ) ABDZAC DZBCEZFZRSGZEZGZERSRGZERUBERUDUERUDSCBEZFZUEEZGUEUCUHSUAUGUBUETUFBCHIRSJKLA CBMNOUEUBRSRJORSPQ $. $( [16-Oct-98] $) ${ oadist2a.1 $e |- ( d v ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $. $( Distributive inference derived from OA. $) oadist2a $p |- ( ( a ->2 b ) ^ ( d v ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) = ( ( ( a ->2 b ) ^ d ) v ( ( a ->2 b ) ^ ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) $= ( wi2 wo wa ax-a2 lan wi0 bltr lelan wn df-i0 oath1 ax-r2 leo df-i2 ax-r1 lbtr letr distlem ) ABFZDBCGZUDACFHZFZGZHUDUGDGZHZUDDHZUDUGHZGZUHUIUDDUGI JUJULUKGUMUDUGDUJUDUEUFKZHZUGUIUNUDUIUHUNUGDIELMUOUFUGUOUDUENZUFGZHUFUNUQ UDUEUFOJABCPQUFUFUPUFNHZGZUGUFURRUGUSUEUFSTUALUBUCULUKIQQ $. $( [17-Nov-98] $) $} ${ oadist2b.1 $e |- d =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $. $( Distributive inference derived from OA. $) oadist2b $p |- ( ( a ->2 b ) ^ ( d v ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) = ( ( ( a ->2 b ) ^ d ) v ( ( a ->2 b ) ^ ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) $= ( wo wi2 wa wi1 wi0 u12lem ax-r1 lbtr leor lel2or oadist2a ) ABCDDBCFZABG ACGHZGZFQRIZSFZQRJZDUASDUBUAEUAUBQRKZLMSTNOUCMP $. $( [17-Nov-98] $) $} ${ oadist2.1 $e |- ( d v ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) = ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $. $( Distributive inference derived from OA. $) oadist2 $p |- ( ( a ->2 b ) ^ ( d v ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) = ( ( ( a ->2 b ) ^ d ) v ( ( a ->2 b ) ^ ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) $= ( wo wi2 wa wi0 bile oadist2a ) ABCDDBCFZABGACGHZGFLMIEJK $. $( [17-Nov-98] $) $} $( Distributive law derived from OA. $) oadist12 $p |- ( ( a ->2 b ) ^ ( ( ( b v c ) ->1 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) v ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) = ( ( ( a ->2 b ) ^ ( ( b v c ) ->1 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) v ( ( a ->2 b ) ^ ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) $= ( wo wi2 wa wi1 u12lem oadist2 ) ABCBCDZABEACEFZGJKHI $. $( [17-Nov-98] $) ${ oacom.1 $e |- d C ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $. oacom.2 $e |- ( d ^ ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) C ( a ->2 b ) $. $( Commutation law requiring OA. $) oacom $p |- d C ( ( a ->2 b ) ^ ( a ->2 c ) ) $= ( wi2 wo wa wi0 comcom ancom bctr gsth2 wn df-i0 lan oath1 ax-r2 cbtr ) D ABGZBCHZUAACGIZJZIZUCUEDUAUDDDUDEKUDDIZUAUFDUDIUAUDDLFMKNKUEUAUBOUCHZIUCU DUGUAUBUCPQABCRST $. $( [19-Nov-98] $) $} ${ oacom2.1 $e |- d =< ( ( a ->2 b ) ^ ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) $. $( Commutation law requiring OA. $) oacom2 $p |- d C ( ( a ->2 b ) ^ ( a ->2 c ) ) $= ( wo wi2 wa wi0 lear letr lecom lea oacom ) ABCDDBCFABGZACGHIZDOPHZPEOPJK LDPHZORDODPMDQOEOPMKKLN $. $( [19-Nov-98] $) $} ${ oacom3.1 $e |- ( d ^ ( a ->2 b ) ) C ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $. oacom3.2 $e |- d C ( a ->2 b ) $. $( Commutation law requiring OA. $) oacom3 $p |- d C ( ( a ->2 b ) ^ ( a ->2 c ) ) $= ( wo wi2 wa wi0 comcom ancom bctr gsth2 wn df-i0 ran oath1 3tr cbtr ) DBC GZABHZACHIZJZUBIZUCUEDUDUBDDUBFKUBDIZUDUFDUBIUDUBDLEMKNKUEUAOUCGZUBIUBUGI UCUDUGUBUAUCPQUGUBLABCRST $. $( [19-Nov-98] $) $} ${ oagen1.1 $e |- d =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $. $( "Generalized" OA. $) oagen1 $p |- ( ( a ->2 b ) ^ ( d v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) = ( ( a ->2 b ) ^ ( a ->2 c ) ) $= ( wi2 wa wo wn wi0 df-i0 lbtr leror ax-a3 oridm lor ax-r2 lelan oath1 lea leor ler2an lebi ) ABFZDUDACFZGZHZGZUFUHUDBCHZIZUFHZGUFUGUKUDUGUKUFHZUKDU KUFDUIUFJUKEUIUFKLMULUJUFUFHZHUKUJUFUFNUMUFUJUFOPQLRABCSLUFUDUGUDUETUFDUA UBUC $. $( [19-Nov-98] $) $} ${ oagen1b.1 $e |- d =< ( a ->2 b ) $. oagen1b.2 $e |- e =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $. $( "Generalized" OA. $) oagen1b $p |- ( d ^ ( e v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) = ( d ^ ( a ->2 c ) ) $= ( wi2 wa wo oagen1 lan anass ax-r1 df2le2 ran ax-r2 3tr2 ) DABHZESACHZIZJ ZIZIZDUAIZDUBIZDTIZUCUADABCEGKLUDDSIZUBIZUFUIUDDSUBMNUHDUBDSFOZPQUEUHTIZU GUKUEDSTMNUHDTUJPQR $. $( [21-Nov-98] $) $} ${ oagen2.1 $e |- d =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $. $( "Generalized" OA. $) oagen2 $p |- ( ( a ->2 b ) ^ d ) =< ( a ->2 c ) $= ( wi2 wa wo wn wi0 df-i0 lbtr lelan oal2 letr ) ABFZDGPBCHZIPACFZGZHZGRDT PDQSJTEQSKLMABCNO $. $( [19-Nov-98] $) $} ${ oagen2b.1 $e |- d =< ( a ->2 b ) $. oagen2b.2 $e |- e =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $. $( "Generalized" OA. $) oagen2b $p |- ( d ^ e ) =< ( a ->2 c ) $= ( wa wi2 leran oagen2 letr ) DEHABIZEHACIDMEFJABCEGKL $. $( [21-Nov-98] $) $} $( Mladen's OA $) mloa $p |- ( ( a == b ) ^ ( ( b == c ) v ( ( b v ( a == b ) ) ^ ( c v ( a == c ) ) ) ) ) =< ( c v ( a == c ) ) $= ( wi2 wa wn wo tb lea ax-a3 or12 anor3 ax-r2 leo df-i2 ax-r1 lbtr le2an 2an i2bi ax-r5 id bile lel2or lelor bltr oal2 letr u2lembi dfb 2or le3tr2 ) ABD ZBADZEZBCEZBFZCFZEZGZUMACDZEZGZEZVAABHZBCHZBVEGZCACHGZEZGZEVHVDUMBCGFZVBGZE VAUOUMVCVLUMUNIVCVKUPVBGZGZVLVCUPUSVBGGZVNUPUSVBJVOUSVMGVNUPUSVBKUSVKVMBCLU AMMVMVBVKUPVBVBBUMCVABBAFZUQEZGZUMBVQNUMVRABOPQCCVPUREZGZVACVSNVAVTACOPQRVB VBVBUBUCUDUEUFRABCUGUHUOVEVCVJABUIUTVFVBVIVFUTBCUJPUMVGVAVHABTACTZSUKSWAUL $. $( [20-Nov-98] $) ${ oadist.1 $e |- d =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $. $( Distributive law derived from OAL. $) oadist $p |- ( ( a ->2 b ) ^ ( d v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) = ( ( ( a ->2 b ) ^ d ) v ( ( a ->2 b ) ^ ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) $= ( wi2 wa oagen1 bile anidm ax-r1 ran anass ax-r2 leor bltr letr ledi lebi wo ) ABFZDUAACFZGZTGZUADGZUAUCGZTZUDUCUGUDUCABCDEHIUCUFUGUCUAUAGZUBGUFUAU HUBUHUAUAJKLUAUAUBMNUFUEOPQUADUCRS $. $( [20-Nov-98] $) $} ${ oadistb.2 $e |- d =< ( a ->2 b ) $. oadistb.1 $e |- e =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $. $( Distributive law derived from OAL. $) oadistb $p |- ( d ^ ( e v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) = ( ( d ^ e ) v ( d ^ ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) $= ( wi2 wa wo df2le2 ran ax-r1 anass oagen1 lan ax-r2 leor bltr ledi lebi ) DEABHZACHIZJZIZDEIZDUCIZJZUEUGUHUEDUBIZUDIZUGUJUEUIDUDDUBFKLMUJDUBUDIZIUG DUBUDNUKUCDABCEGOPQQUGUFRSDEUCTUA $. $( [20-Nov-98] $) $} ${ oadistc0.1 $e |- d =< ( ( a ->2 b ) ^ ( a ->2 c ) ) $. $( Note: inference of 2nd hyp. from 1st may be an OM theorem. $) oadistc0.2 $e |- ( ( a ->2 c ) ^ ( ( a ->2 b ) ^ ( ( b v c ) ' v d ) ) ) =< ( ( ( a ->2 b ) ^ ( b v c ) ' ) v d ) $. $( Pre-distributive law. $) oadistc0 $p |- ( ( a ->2 b ) ^ ( ( b v c ) ' v d ) ) = ( ( ( a ->2 b ) ^ ( b v c ) ' ) v d ) $= ( wi2 wo wn wa ancom lelor lelan oal2 letr df2le2 ax-r2 ax-r1 bltr ledior ax-a2 lea df-le2 ran lbtr lebi ) ABGZBCHIZDHZJZUGUHJDHZUJACGZUJJZUKUMUJUM UJULJUJULUJKUJULUJUGUHUGULJZHZJULUIUOUGDUNUHELMABCNOPQRFSUKUGDHZUIJUJDUGU HTUPUGUIUPDUGHUGUGDUADUGDUNUGEUGULUBOUCQUDUEUF $. $( [30-Nov-98] $) $} ${ oadistc.1 $e |- d =< ( ( a ->2 b ) ^ ( a ->2 c ) ) $. oadistc.2 $e |- ( ( a ->2 b ) ^ ( ( b v c ) ' v d ) ) =< ( ( ( a ->2 b ) ^ ( b v c ) ' ) v d ) $. $( Distributive law. $) oadistc $p |- ( ( a ->2 b ) ^ ( ( b v c ) ' v d ) ) = ( ( ( a ->2 b ) ^ ( b v c ) ' ) v ( ( a ->2 b ) ^ d ) ) $= ( wi2 wo wn wa lea letr df2le2 ax-r1 ancom ax-r2 lor lbtr ledi lebi ) ABG ZBCHIZDHJZUAUBJZUADJZHZUCUDDHUFFDUEUDDDUAJZUEUGDDUADUAACGZJUAEUAUHKLMNDUA OPQRUAUBDST $. $( [21-Nov-98] $) $} ${ oadistd.1 $e |- d =< ( a ->2 b ) $. oadistd.2 $e |- e =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $. oadistd.3 $e |- f =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $. oadistd.4 $e |- ( d ^ ( a ->2 c ) ) =< f $. $( OA distributive law. $) oadistd $p |- ( d ^ ( e v f ) ) = ( ( d ^ e ) v ( d ^ f ) ) $= ( wo wa wi2 lbtr df2le2 ax-r1 lan ax-r2 bltr letr le2or oridm lelan df-i0 wi0 wn leo oagen1b lear an32 lea leor ledi lebi ) DEFKZLZDELZDFLZKZUPURUS UPUPDACMZLZLZURUPUPDBCKZABMUTLZUEZLZLZVBVGUPUPVFUOVEDUOVEVEKVEEVEFVEHIUAV EUBNUCOPVFVAUPVFDVCUFZVDKZLVAVEVIDVCVDUDZQABCDVHGVHVIVEVHVDUGVEVIVJPNUHRQ RVBVAURUPVAUIVAURUTLZURVAVAFLZVKVLVAVAFJOPDUTFUJRURUTUKSTSURUQULTDEFUMUN $. $( [21-Nov-98] $) $} $( Alternate form for the 3-variable orthoarguesion law. $) 3oa2 $p |- ( ( a ->1 c ) ^ ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) ) =< ( b ->1 c ) $= ( wn wi1 wa wo ax-3oa u1lem11 ax-a2 2an ax-r5 ax-r2 le3tr2 ) ADCEZCEZOBDCEZ FZPQCEZFZGZFSACEZUBBCEZFZRGZFUCOQCHPUBUAUEACIZUATRGUERTJTUDRPUBSUCUFBCIZKLM KUGN $. $( [27-May-04] $) $( 3-variable orthoarguesion law expressed with the 3OA identity abbreviation. $) 3oa3 $p |- ( ( a ->1 c ) ^ ( a == c ==OA b ) ) =< ( b ->1 c ) $= ( wi1 wid3oa wa wn wo df-id3oa lan 3oa2 bltr ) ACDZABCEZFMMBCDZFAGCDBGCDFHZ FONPMABCIJABCKL $. $( [27-May-04] $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 4-variable orthoarguesian law =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) ${ oal4.1 $e |- a =< b ' $. oal4.2 $e |- c =< d ' $. $( Orthoarguesian law (4-variable version). $) ax-oal4 $a |- ( ( a v b ) ^ ( c v d ) ) =< ( b v ( a ^ ( c v ( ( a v c ) ^ ( b v d ) ) ) ) ) $. $} $( 4-variable OA closed equational form) $) oa4cl $p |- ( ( a v ( b ^ a ' ) ) ^ ( c v ( d ^ c ' ) ) ) =< ( ( b ^ a ' ) v ( a ^ ( c v ( ( a v c ) ^ ( ( b ^ a ' ) v ( d ^ c ' ) ) ) ) ) ) $= ( wn wa wo leor oran2 lbtr ax-oal4 ) ABAEFZCDCEFZABEZAGLEANHBAIJCDEZCGMECOH DCIJK $. $( [1-Dec-98] $) $( Derivation of 3-variable OA from 4-variable OA. $) oa43v $p |- ( ( a ->2 b ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) =< ( a ->2 c ) $= ( wi2 wn wo wa ud2lem0c lea bltr ax-oal4 id oa4v3v oal42 oa23 ) ABCACBACBAC DEZABDEZPCEZACFZGRACHRSIJZQBEZABFZGUAABHUAUBIJZPCQBTUCKPLQLMNO $. $( [28-Nov-98] $) ${ oa3moa3.1 $e |- a =< b ' $. oa3moa3.2 $e |- c =< d ' $. oa3moa3.3 $e |- d =< e ' $. oa3moa3.4 $e |- e =< c ' $. $( 4-variable 3OA to 5-variable Mayet's 3OA. $) oa3moa3 $p |- ( ( a v b ) ^ ( ( c v d ) v e ) ) =< ( a v ( ( ( b ^ ( c v ( ( b v c ) ^ ( ( a v d ) v e ) ) ) ) ^ ( d v ( ( b v d ) ^ ( ( a v c ) v e ) ) ) ) ^ ( e v ( ( b v e ) ^ ( ( a v c ) v d ) ) ) ) ) $= ( wo wa lecon3 wn lel2or lan lor lel lecom comcom7 comcom ax-a2 ax-a3 2an ax-oal4 orass le3tr1 ror tr ler2an fh3 cm anandi lbtr ax-r1 anass 3tr1 ) ABJZCDJZEJZKZABCBCJZADJEJZKZJZKZJZABDBDJZACJZEJZKZJZEBEJZVHDJZKZJZKZKZJZK ZAVEVKKVOKZJZUTVFVRBAJZCDEJZJZKABCVAAWCJZKZJZKZJUTVFBACWCABFLZWCCDCMECDGL INLUDUQWBUSWDABUAZCDEUBUCVEWHAVDWGBVCWFCVBWEVAADEUEOPOPUFUTABVKKZJZABVOKZ JZKZVRUTWLWNWBDCEJZJZKABDVGAWPJZKZJZKZJUTWLBADWPWIWPDCDMEGDEHLNLUDUQWBUSW QWJUSDCJZEJWQURXBECDUAUGDCEUEUHUCWKXAAVKWTBVJWSDVIWRVGACEUEOPOPUFWBEURJZK ABEVLAURJZKZJZKZJUTWNBAEURWIURECEMDECILHNLUDUQWBUSXCWJUREUAUCWMXGAVOXFBVN XEEVMXDVLACDUBOPOPUFUIWOAWKWMKZJZVRXIWOAWKWMWKAWKAWKAMZBXJVKWIQRSTWMAWMAW MXJBXJVOWIQRSTUJUKXHVQAVQXHBVKVOULUKPUHUMUIVSAVEVQKZJZWAXLVSAVEVQVEAVEAVE XJBXJVDWIQRSTVQAVQAVQXJBXJVPWIQRSTUJUNXKVTABVDVPKKZVEVPKZXKVTXNXMBVDVPUOU KXMXKBVDVPULUNVEVKVOUOUPPUHUM $. $( [31-Mar-2011] $) $( [3-Apr-2009] $) $} $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 6-variable orthoarguesian law =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) ${ oal6.1 $e |- a =< b ' $. oal6.2 $e |- c =< d ' $. oal6.3 $e |- e =< f ' $. $( Orthoarguesian law (6-variable version). $) ax-oa6 $a |- ( ( ( a v b ) ^ ( c v d ) ) ^ ( e v f ) ) =< ( b v ( a ^ ( c v ( ( ( a v c ) ^ ( b v d ) ) ^ ( ( ( a v e ) ^ ( b v f ) ) v ( ( c v e ) ^ ( d v f ) ) ) ) ) ) ) $. $} ${ oa64v.1 $e |- a =< b ' $. oa64v.2 $e |- c =< d ' $. $( Derivation of 4-variable OA from 6-variable OA. $) oa64v $p |- ( ( a v b ) ^ ( c v d ) ) =< ( b v ( a ^ ( c v ( ( a v c ) ^ ( b v d ) ) ) ) ) $= ( wf wt wn le0 ax-oa6 id oa6v4v ) ABCDGHABCDGHEFHIJKGLHLM $. $( [29-Nov-98] $) $} $( Derivation of 3-variable OA from 6-variable OA. $) oa63v $p |- ( ( a ->2 b ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) =< ( a ->2 c ) $= ( wi2 wn wo wa ud2lem0c lea bltr oa64v id oa4v3v oal42 oa23 ) ABCACBACBACDE ZABDEZPCEZACFZGRACHRSIJZQBEZABFZGUAABHUAUBIJZPCQBTUCKPLQLMNO $. $( [28-Nov-98] $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= The proper 4-variable orthoarguesian law =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( The proper 4-variable OA law. $) ax-4oa $a |- ( ( a ->1 d ) ^ ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^ ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) =< ( b ->1 d ) $. $( The proper 4-variable OA law. $) axoa4 $p |- ( a ' ^ ( a v ( b ^ ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^ ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) ) ) =< d $= ( wn wa wi1 wo u1lem9b leran ax-4oa id oa4gto4u oa4uto4 letr ) AEZABABFADGZ BDGZFHACFQCDGZFHBCFRSFHFHFHZFQTFDPQTADIJABCDABCDRQSRQSDKQLRLSLMNO $. $( [20-Jul-99] $) $( Proper 4-variable OA law variant. $) axoa4b $p |- ( ( a ->1 d ) ^ ( a v ( b ^ ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^ ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) ) ) =< d $= ( axoa4 oa4ctob ) ABCDABCDEF $. $( [22-Dec-98] $) ${ oa6.1 $e |- a =< b ' $. oa6.2 $e |- c =< d ' $. oa6.3 $e |- e =< f ' $. $( Derivation of 6-variable orthoarguesian law from 4-variable version. $) oa6 $p |- ( ( ( a v b ) ^ ( c v d ) ) ^ ( e v f ) ) =< ( b v ( a ^ ( c v ( ( ( a v c ) ^ ( b v d ) ) ^ ( ( ( a v e ) ^ ( b v f ) ) v ( ( c v e ) ^ ( d v f ) ) ) ) ) ) ) $= ( wn wa wo id axoa4b oa4to6 ) ABCDEFAJZBJKCJZDJKLEJZFJKLZPQRGHISMPMQMRMPQ RSNO $. $( [18-Dec-98] $) $} $( Proper 4-variable OA law variant. $) axoa4a $p |- ( ( a ->1 d ) ^ ( a v ( b ^ ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^ ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) ) ) =< ( ( ( a ^ d ) v ( b ^ d ) ) v ( c ^ d ) ) $= ( wi1 wn id wa wo leo df-i1 ax-r1 ax-a1 ax-r2 lbtr oa6 oa6to4 ) AADEZBBDEZC CDEZDRFZGSFZGTFZGAFZUABFZUBCFZUCUDUDADHZIZUAFZUDUGJUHRUIRUHADKLRMNOUEUEBDHZ IZUBFZUEUJJUKSULSUKBDKLSMNOUFUFCDHZIZUCFZUFUMJUNTUOTUNCDKLTMNOPQ $. $( [22-Dec-98] $) $( Proper 4-variable OA law variant. $) axoa4d $p |- ( a ^ ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^ ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) =< ( b ' ->1 d ) $= ( wa wi1 wo wn oa4dcom ax-r1 axoa4 oa4ctod bltr ) AABEADFZBDFZEGACENCDFZEGZ BCEOPEGZEGEZABAEONEGRQEGEZBHDFTSBACDIJBACDBACDKLM $. $( [24-Dec-98] $) ${ 4oa.1 $e |- e = ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^ ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) $. $( Generalized "alpha" expression. $) 4oa.2 $e |- f = ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v e ) $. $( Variant of proper 4-OA. $) 4oa $p |- ( ( a ->1 d ) ^ f ) =< ( b ->1 d ) $= ( wi1 wa wo lan wn axoa4a id oa4to4u2 oa4uto4g bltr ) ADIZFJSABJSBDIZJKEK ZJTFUASHLABCDEBMZAMZCMZDUBMDIZUCMDIZUDMDIZUEUFUGDNUEOUFOUGOPGQR $. $( [29-Dec-98] $) $( Proper OA analog to Godowski/Greechie, Eq. III. $) 4oaiii $p |- ( ( a ->1 d ) ^ f ) = ( ( b ->1 d ) ^ f ) $= ( wi1 wa 4oa lear ler2an wo ancom ax-r2 2or ax-r5 lebi ) ADIZFJZBDIZFJZUA UBFABCDEFGHKTFLMUCTFBACDEFEACJTCDIZJNZBCJUBUDJNZJUFUEJGUEUFOPFABJZTUBJZNZ ENBAJZUBTJZNZENHUIULEUGUJUHUKABOTUBOQRPKUBFLMS $. $( [29-Dec-98] $) $( Proper 4-OA theorem. $) 4oath1 $p |- ( ( a ->1 d ) ^ f ) = ( ( a ->1 d ) ^ ( b ->1 d ) ) $= ( wi1 wa wo 4oaiii lan or32 ax-r2 2an anidm ax-r1 anandir 3tr1 ax-a2 3tr anabs ) ADIZFJZUDBDIZJZABJZEKZUGKZJZUGUGUIKZJUGUEUEJZUDUJJZUFUJJZJZUEUKUM UEUFFJZJUPUEUQUEABCDEFGHLMUEUNUQUOFUJUDFUHUGKEKUJHUHUGENOZMFUJUFURMPOUMUE UEQRUDUFUJSTUJULUGUIUGUAMUGUIUCUB $. $( [29-Dec-98] $) ${ 4oagen1.1 $e |- g =< f $. $( "Generalized" 4-OA. $) 4oagen1 $p |- ( ( a ->1 d ) ^ ( g v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) ) = ( ( a ->1 d ) ^ ( b ->1 d ) ) $= ( wi1 wa wo or32 ax-r2 lbtr leror ax-a3 oridm lor ax-r1 4oath1 lea leor lelan ler2an lebi ) ADKZGUHBDKZLZMZLZUJULUHFLUJUKFUHUKABLZEMZUJMZUJMZFG UOUJGFUOJFUMUJMEMUOIUMUJENOZPQUPUNUJUJMZMZFUNUJUJRUSUOFURUJUNUJSTFUOUQU AOOPUEABCDEFHIUBPUJUHUKUHUIUCUJGUDUFUG $. $( [29-Dec-98] $) $} ${ 4oagen1b.1 $e |- g =< f $. 4oagen1b.2 $e |- h =< ( a ->1 d ) $. $( "Generalized" OA. $) 4oagen1b $p |- ( h ^ ( g v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) ) = ( h ^ ( b ->1 d ) ) $= ( wi1 wa wo 4oagen1 anass ax-r1 ran ax-r2 lan df2le2 3tr2 ) HADMZGUDBDM ZNZOZNZNZHUFNZHUGNZHUENZUHUFHABCDEFGIJKPUAUIHUDNZUGNZUKUNUIHUDUGQRUMHUG HUDLUBZSTUJUMUENZULUPUJHUDUEQRUMHUEUOSTUC $. $( [29-Dec-98] $) $} ${ 4oadist.1 $e |- h =< ( a ->1 d ) $. 4oadist.2 $e |- j =< f $. 4oadist.3 $e |- k =< f $. 4oadist.4 $e |- ( h ^ ( b ->1 d ) ) =< k $. $( OA Distributive law. This is equivalent to the 6-variable OA law, as shown by theorem ~ d6oa . $) 4oadist $p |- ( h ^ ( j v k ) ) = ( ( h ^ j ) v ( h ^ k ) ) $= ( wo wa wi1 ax-r1 ax-r2 le2or oridm lbtr lelan df2le2 or32 lan 4oagen1b leo lear an32 lea bltr letr leor ledi lebi ) GHIPZQZGHQZGIQZPZUSVAVBUSU SGBDRZQZQZVAUSUSGFQZQZVEVGUSUSVFURFGURFFPFHFIFMNUAFUBUCUDUESVFVDUSVFGAB QZEPZADRVCQZPZQVDFVKGFVHVJPEPVKKVHVJEUFTZUGABCDEFVIGJKVIVKFVIVJUIFVKVLS UCLUHTUGTVEVDVAUSVDUJVDVAVCQZVAVDVDIQZVMVNVDVDIOUESGVCIUKTVAVCULUMUNUMV AUTUOUNGHIUPUQ $. $( [29-Dec-98] $) $} $} $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# Other stronger-than-OML laws #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= New state-related equation =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( New equation that holds in Hilbert space, discovered by Pavicic and Megill (unpublished). $) ax-newstateeq $a |- ( ( ( a ->1 b ) ->1 ( c ->1 b ) ) ^ ( ( a ->1 c ) ^ ( b ->1 a ) ) ) =< ( c ->1 a ) $. $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# Contributions of Roy Longton #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Roy's first section =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) ${ lem3.3.2.1 $e |- a = 1 $. lem3.3.2.2 $e |- ( a ->0 b ) = 1 $. $( Equation 3.2 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.2 $p |- b = 1 $= ( wn wo wi0 wt df-i0 ax-r1 ax-r2 skr0 ) ABCAEBFZABGZHNMABIJDKL $. $( [3-Jul-05] $) $( [27-Jun-05] $) $} $( Define asymmetrical identity (for "Non-Orthomodular Models..." paper). $) df-id5 $a |- ( a ==5 b ) = ( ( a ^ b ) v ( a ' ^ b ' ) ) $. $( Define biconditional for ` ->1 ` . $) df-b1 $a |- ( a <->1 b ) = ( ( a ->1 b ) ^ ( b ->1 a ) ) $. $( Lemma for ~ lem3.3.3 . $) lem3.3.3lem1 $p |- ( a ==5 b ) =< ( a ->1 b ) $= ( wa wn wo wid5 wi1 ax-a2 lea leror bltr df-id5 df-i1 le3tr1 ) ABCZADZBDZCZ EZPOEZABFABGSROETORHRPOPQIJKABLABMN $. $( [3-Jul-05] $) $( [27-Jun-05] $) $( Lemma for ~ lem3.3.3 . $) lem3.3.3lem2 $p |- ( a ==5 b ) =< ( b ->1 a ) $= ( wa wn wo wid5 wi1 lear leror ax-a2 ancom lor le3tr1 df-id5 df-i1 ) ABCZAD ZBDZCZEZRBACZEZABFBAGSPERPETUBSRPQRHIPSJUAPRBAKLMABNBAOM $. $( [3-Jul-05] $) $( [27-Jun-05] $) $( Lemma for ~ lem3.3.3 . $) lem3.3.3lem3 $p |- ( a ==5 b ) =< ( ( a ->1 b ) ^ ( b ->1 a ) ) $= ( wid5 wi1 lem3.3.3lem1 lem3.3.3lem2 ler2an ) ABCABDBADABEABFG $. $( [3-Jul-05] $) $( [27-Jun-05] $) $( Equation 3.3 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.3 $p |- ( ( a ==5 b ) ->0 ( a <->1 b ) ) = 1 $= ( wid5 wb1 wi0 wn wo wi1 wa wt df-i0 df-b1 lor lem3.3.3lem3 sklem 3tr ) ABC ZABDZEQFZRGSABHBAHIZGJQRKRTSABLMQTABNOP $. $( [3-Jul-05] $) $( [27-Jun-05] $) ${ lem3.3.4.1 $e |- ( b ->2 a ) = 1 $. $( Equation 3.4 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.4 $p |- ( a ->2 ( a ==5 b ) ) = ( a ==5 b ) $= ( wid5 wi2 wn wa wo df-i2 df-id5 ax-r4 lan anor3 ax-r1 ax-r2 lor 3tr1 3tr wf wt oran3 oran 2an anabs ran anass con2 ancom oran1 con3 df-f 3tr2 or0r ax-a2 ) AABDZEUOAFZUOFZGZHZSUOHZUOAUOIUSUOSHUTURSUOURUPABGZUPBFZGZHZFZGUP UPVBHZABHZGZGZSUQVEUPUOVDABJKLVEVHUPVEVAFZVCFZGZVHVLVEVAVCMNVJVFVKVGVFVJA BUANVGVKABUBZNUCOLUPVFGZVGGUPVGGZVISVNUPVGUPVBUDUEUPVFVGUFBAEZFTFVOSVPTCK VOVPAVGFZHZAVBUPGZHVOFZVPVQVSAVQVCVSVGVCVMUGUPVBUHOPVRVTAVGUINBAIQUJUKQUL RPUOSUNOUOUMR $. $( [3-Jul-05] $) $( [28-Jun-05] $) $} ${ lem3.3.5lem.1 $e |- 1 =< a $. $( A fundamental property in quantum logic. Lemma for ~ lem3.3.5 . $) lem3.3.5lem $p |- a = 1 $= ( wt le1 lebi ) ACADBE $. $( [3-Jul-05] $) $( [28-Jun-05] $) $} ${ lem3.3.5.1 $e |- ( a ==5 b ) = 1 $. $( Equation 3.5 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.5 $p |- ( a ->1 ( b v c ) ) = 1 $= ( wo wi1 wb1 wn wa wt df-b1 lea bltr df-i1 lbtr leo lelan lelor letr wid5 lem3.3.3 lem3.3.2 ax-r1 le3tr1 lem3.3.5lem ) ABCEZFZABGZAHZAUFIZEZJUGUHUI ABIZEZUKUHABFZUMUHUNBAFZIUNABKUNUOLMABNOULUJUIBUFABCPQRSUHJABTUHDABUAUBUC AUFNUDUE $. $( [3-Jul-05] $) $( [28-Jun-05] $) $} $( Equation 3.6 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.6 $p |- ( a ->2 ( b v c ) ) = ( ( a v c ) ->2 ( b v c ) ) $= ( wo wn wa wi2 anor3 ax-r1 lan anandir anass 2an 3tr2 ax-r2 lor df-i2 3tr1 ) BCDZAEZSEZFZDSACDZEZUAFZDASGUCSGUBUESUBTBEZCEZFZFZUEUAUHTUHUABCHZIJTUFFUG FTUGFZUHFUIUETUFUGKTUFUGLUKUDUHUAACHUJMNOPASQUCSQR $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 0, and this is the first part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i0e1 $p |- ( a ->0 ( a ^ b ) ) = ( a ==0 ( a ^ b ) ) $= ( wn wa wo wi0 wid0 or1 ax-r1 lan an1 df-t lor 3tr2 ax-a2 ax-a3 ax-r5 oran3 wt 3tr df-i0 df-id0 3tr1 ) ACZABDZEZUFUECZAEZDZAUEFAUEGUFUFBCZUDEZAEZDZUFUD UJEZAEZDUIUFUFUJAUDEZEZDZUFUJUDAEZEZDUMUFSDUFUJSEZDUFURSVAUFVASUJHIJUFKVAUQ UFSUPUJALMJNUQUTUFUPUSUJAUDOMJUTULUFULUTUJUDAPIJTULUOUFUKUNAUJUDOQJUOUHUFUN UGAABRQJTAUEUAAUEUBUC $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 0, and this is the second part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i0e2 $p |- ( a ==0 ( a ^ b ) ) = ( ( a ^ b ) ==0 a ) $= ( wn wa wo wid0 ancom df-id0 3tr1 ) ACABDZEZJCAEZDLKDAJFJAFKLGAJHJAHI $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 0, and this is the third part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i0e3 $p |- ( a ->0 ( a ^ b ) ) = ( a ->1 b ) $= ( nom10 ) ABC $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 1, and this is the first part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i1e1 $p |- ( a ->1 ( a ^ b ) ) = ( a ==1 ( a ^ b ) ) $= ( wn wa wo wi1 wid1 or1r ax-r1 ran an1r df-t ax-r5 3tr2 ax-a3 oran3 lor 3tr wt df-i1 df-id1 3tr1 ) ACZAABDZDEZAUDCZEZUEDZAUDFAUDGUEAUCEZBCZEZUEDZAUCUJE ZEZUEDUHSUEDSUJEZUEDUEULSUOUEUOSUJHIJUEKUOUKUESUIUJALMJNUKUNUEAUCUJOJUNUGUE UMUFAABPQJRAUDTAUDUAUB $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 1, and this is the second part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i1e2 $p |- ( a ==1 ( a ^ b ) ) = ( ( a ^ b ) ==1 a ) $= ( wa wn wo wid1 oran3 ax-r1 lor ran ax-a3 wt df-t ax-r5 anass ax-a2 lan 3tr or1r df-id1 an1r anidm an1 ancom 3tr1 ) AABCZDZEZADZAUFCZEZCZUFUIEZUGUFACZE ZCZAUFFUFAFULAUIBDZEZEZUKCAUIEZUQEZUKCZUPUHUSUKUGURAURUGABGHIJUSVAUKVAUSAUI UQKHJVBLUQEZUKCLUKCZUPVAVCUKUTLUQLUTAMHNJVCLUKUQSJVDUKUIAACZBCZEZUPUKUAUJVF UIVFUJAABOZHIVGUIUFEZUMUGABACZCZEZCZUPVFUFUIVEABAUBZJIVIUMUGVFEZCZUMUGUJEZC VMVIUMUFUGEZCZUMUGUFEZCVPVIUMUMLCZVSUIUFPWAUMUMUCHLVRUMUFMQRVRVTUMUFUGPQVTV OUMUFVFUGAVEBVEAVNHJIQRVOVQUMVFUJUGVHIQVQVLUMUJVKUGUFVJAABUDQIQRVLUOUMVKUNU GUNVKABAOHIQRRRRAUFTUFATUE $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 1, and this is the third part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i1e3 $p |- ( a ->1 ( a ^ b ) ) = ( a ->1 b ) $= ( nom11 ) ABC $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 2, and this is the first part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i2e1 $p |- ( a ->2 ( a ^ b ) ) = ( a ==2 ( a ^ b ) ) $= ( wa wn wo wi2 wid2 or1r ax-r1 ran an1r df-t ax-r5 3tr2 ax-a3 oran3 lor 3tr wt df-i2 df-id2 3tr1 ) ABCZADZUCDZCEZAUEEZUFCZAUCFAUCGUFAUDEZBDZEZUFCZAUDUJ EZEZUFCUHSUFCSUJEZUFCUFULSUOUFUOSUJHIJUFKUOUKUFSUIUJALMJNUKUNUFAUDUJOJUNUGU FUMUEAABPQJRAUCTAUCUAUB $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 2, and this is the second part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i2e2 $p |- ( a ==2 ( a ^ b ) ) = ( ( a ^ b ) ==2 a ) $= ( wa wn wo wid2 oran3 ax-r1 lor ran ax-a3 wt df-t ax-r5 anor3 ax-r4 lan 3tr ax-r2 df-id2 or1r an1r orabs an1 lea df-le2 3tr1 ) AABCZDZEZUHADZUICZEZCZUH UKEZAUIUKCZEZCZAUHFUHAFUNAUKBDZEZEZUMCAUKEZUSEZUMCZURUJVAUMUIUTAUTUIABGHIJV AVCUMVCVAAUKUSKHJVDLUSEZUMCLUMCZURVCVEUMVBLUSLVBAMZHNJVELUMUSUAJVFUMUHAUHEZ DZEZURUMUBULVIUHAUHOIVJUOURVIUKUHVHAABUCPIUOUOVBCZUOAUHAEZDZEZCURUOUOLCZVKV OUOUOUDHLVBUOVGQSVBVNUOUKVMAAVLVLAUHAABUEUFHPIQVNUQUOVMUPAUPVMUHAOHIQRSRRRA UHTUHATUG $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 2, and this is the third part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i2e3 $p |- ( a ->2 ( a ^ b ) ) = ( a ->1 b ) $= ( nom12 ) ABC $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 3, and this is the first part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i3e1 $p |- ( a ->3 ( a ^ b ) ) = ( a ==3 ( a ^ b ) ) $= ( wn wa wo wi3 wid3 anass ax-r1 ax-r5 ancom ran wf dff ax-r4 wt lan 3tr lor an0r or0r anor3 orabs womaa an1 df-t ax-r2 df-i3 df-id3 3tr1 ) ACZABDZDZUKU LCDZEZAUKULEZDZEZUPAUNEZDZAULFAULGURUKADZBDZUNEZUQEAUKDZBDZUNEZUQEZUTUOVCUQ UMVBUNVBUMUKABHIJJVCVFUQVBVEUNVAVDBUKAKLJJVGMBDZUNEZUQEMUNEZUQEZUTVFVIUQVEV HUNVDMBMVDANILJJVIVJUQVHMUNBTJJVKUNUQEZUTVJUNUQUNUAJVLAULEZCZUQEUKUQEZUTUNV NUQAULUBZJVNUKUQVMAABUCZOJVOUPAUKEZDZUPAVNEZDUTVOUPUPPDZVSABUDWAUPUPUEIPVRU PAUFQRVRVTUPUKVNAAVMVMAVQIOSQVTUSUPVNUNAUNVNVPISQRRUGRRAULUHAULUIUJ $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 3, and this is the second part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i3e2 $p |- ( a ==3 ( a ^ b ) ) = ( ( a ^ b ) ==3 a ) $= ( wn wa wo wid3 wt anor3 lor lan orabs ax-r4 df-t ax-r1 an1 ax-a2 3tr ax-r5 ran df-id3 lea df-le2 an1r ax-r2 or1 ax-a3 oran3 3tr1 ) ACZABDZEZAUIUJCZDZE ZDZULAEZUJULUIDZEZDZAUJFUJAFUOBCZUIEZAEZURDZUIUTEZAEZURDUSUOUTAUIEZEZURDZUT UIAEZEZURDVCUOGURDZUTGEZURDVHUOURVKUOUJUIEZUJUJAEZCZEURUOUKAAUJEZCZEZDUKVFD ZVMUNVRUKUMVQAAUJHIJVRVFUKVQUIAVPAABKLIJVSUKGDUKVMVFGUKGVFAMZNJUKOUIUJPQQUI VOUJAVNVNAUJAABUAUBNLIVOUQUJUQVOUJAHNIQVKURURUCNUDGVLURVLGUTUENSVLVGURGVFUT VTISQVGVJURVFVIUTAUIPISVJVBURVBVJUTUIAUFNSQVBVEURVAVDAUTUIPRSVEUPURVDULAABU GRSQAUJTUJATUH $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 3, and this is the third part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i3e3 $p |- ( a ->3 ( a ^ b ) ) = ( a ->1 b ) $= ( nom13 ) ABC $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 4, and this is the first part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i4e1 $p |- ( a ->4 ( a ^ b ) ) = ( a ==4 ( a ^ b ) ) $= ( wa wn wo wi4 wid4 lear lea ler2an lebi ax-r5 wt wf lor lel2or leo 3tr lan ax-r1 leid lecon ortha or0 leor lerr an1 sklem df-i4 df-id4 3tr1 ) AABCZCZA DZULCZEZUNULEZULDZCZEZUQURUMEZCZAULFAULGUTULUOEZUSEZUQURULEZCZVBUPVCUSUMULU OUMULAULHZULAULABIZULUAZJZKLLVDUQUQMCZVFVDULNEZUSEULUSEZUQVCVLUSUONULUNULUL AVHUBZUCOLVLULUSULUDLVMUQULUQUSULUNUEUQURIPUNVMULUNUSULUNUQURUNULQVNJUFULUS QPKRVKUQUQUGTMVEUQVEMULULVIUHTSRVEVAUQULUMURULUMVJVGKOSRAULUIAULUJUK $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 4, and this is the second part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i4e2 $p |- ( a ==4 ( a ^ b ) ) = ( ( a ^ b ) ==4 a ) $= ( wn wa wo wid4 wt lear lea leid ler2an lebi lor lan sklem an1 df2le2 ax-r1 3tr df-id4 an1r ax-r2 ran 3tr1 ) ACZABDZEZUFCZAUFDZEZDZUHAEZUEUFADZEZDZAUFF UFAFUKUGUHUFEZDUGGDZUOUJUPUGUIUFUHUIUFAUFHUFAUFABIZUFJZKLMNUPGUGUFUFUSONUQU GGUNDZUOUGPUGUNUTUFUMUEUMUFUFAURQRMUTUNUNUARUBGULUNULGUFAURORUCSSAUFTUFATUD $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 4, and this is the third part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i4e3 $p |- ( a ->4 ( a ^ b ) ) = ( a ->1 b ) $= ( nom14 ) ABC $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 5, and this is the first part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i5e1 $p |- ( a ->5 ( a ^ b ) ) = ( a ==5 ( a ^ b ) ) $= ( wa wn wo wi5 wid5 wf lear lea leid ler2an lebi lecon ortha 2or or0 df2le2 ax-r5 ax-r1 3tr df-i5 df-id5 3tr1 ) AABCZCZADZUECZEZUGUEDZCZEZUFUKEZAUEFAUE GULUEHEZUKEUEUGEUMUIUNUKUFUEUHHUFUEAUEIZUEAUEABJZUEKLZMUGUEUEAUPNZOPSUNUEUK UGUEQUGUJURRZPUEUFUGUKUEUFUQUOMUKUGUSTPUAAUEUBAUEUCUD $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 5, and this is the second part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i5e2 $p |- ( a ==5 ( a ^ b ) ) = ( ( a ^ b ) ==5 a ) $= ( wa wn wo wid5 ancom 2or ax-r1 df-id5 3tr1 ) AABCZCZADZLDZCZEZLACZONCZEZAL FLAFTQRMSPLAGONGHIALJLAJK $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 5, and this is the third part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.3.7i5e3 $p |- ( a ->5 ( a ^ b ) ) = ( a ->1 b ) $= ( nom15 ) ABC $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( lem3.3.8i0e1 $p |- ( ( a v b ) ->0 b ) = ( ( a v b ) ==0 b ) $= ? $. lem3.3.8i0e2 $p |- ( ( a v b ) ==0 b ) = ( b ==0 ( a v b ) ) $= ? $. lem3.3.8i0e3 $p |- ( ( a v b ) ->0 b ) = ( a ->2 b ) $= wva wvb nom40 $. lem3.3.8i1e1 $p |- ( ( a v b ) ->1 b ) = ( ( a v b ) ==1 b ) $= ? $. lem3.3.8i1e2 $p |- ( ( a v b ) ==1 b ) = ( b ==1 ( a v b ) ) $= ? $. lem3.3.8i1e3 $p |- ( ( a v b ) ->1 b ) = ( a ->2 b ) $= wva wvb nom41 $. lem3.3.8i2e1 $p |- ( ( a v b ) ->2 b ) = ( ( a v b ) ==2 b ) $= ? $. lem3.3.8i2e2 $p |- ( ( a v b ) ==2 b ) = ( b ==2 ( a v b ) ) $= ? $. lem3.3.8i2e3 $p |- ( ( a v b ) ->2 b ) = ( a ->2 b ) $= wva wvb nom42 $. lem3.3.8i3e1 $p |- ( ( a v b ) ->3 b ) = ( ( a v b ) ==3 b ) $= ? $. lem3.3.8i3e2 $p |- ( ( a v b ) ==3 b ) = ( b ==3 ( a v b ) ) $= ? $. lem3.3.8i3e3 $p |- ( ( a v b ) ->3 b ) = ( a ->2 b ) $= ? $. lem3.3.8i4e1 $p |- ( ( a v b ) ->4 b ) = ( ( a v b ) ==4 b ) $= ? $. lem3.3.8i4e2 $p |- ( ( a v b ) ==4 b ) = ( b ==4 ( a v b ) ) $= ? $. lem3.3.8i4e3 $p |- ( ( a v b ) ->4 b ) = ( a ->2 b ) $= ? $. lem3.3.8i5e1 $p |- ( ( a v b ) ->5 b ) = ( ( a v b ) ==5 b ) $= ? $. lem3.3.8i5e2 $p |- ( ( a v b ) ==5 b ) = ( b ==5 ( a v b ) ) $= ? $. lem3.3.8i5e3 $p |- ( ( a v b ) ->5 b ) = ( a ->2 b ) $= ? $. $) $( [28-Jun-05] $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Roy's second section =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( Equation 3.9 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.4.1 $p |- ( ( a ->1 b ) ->0 ( a ->2 b ) ) = 1 $= ( wi1 wi2 wi0 wn wo wt df-i0 woml6 ax-r2 ) ABCZABDZELFMGHLMIABJK $. $( [3-Jul-05] $) $( [28-Jun-05] $) $( lem3.4.2 is 2vwomr1a and 2vwomr2a $) ${ lem3.4.3.1 $e |- ( a ->2 b ) = 1 $. $( Equation 3.11 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.4.3 $p |- ( a ->2 ( a ==5 b ) ) = 1 $= ( wid5 wi1 wt 2vwomr2a ax-r1 wn wa wo anidm ran lea lel leran ler2an bltr ler df-i1 df-id5 lan lbtr lelor le3tr1 lem3.3.5lem 2vwomr1a ) AABDZAUHEZF ABEZUIUJFABCGHAIZABJZKUKAUHJZKUJUIULUMUKULAULUKBIJZKZJZUMULAAJZBJZUPAUQBU QAALHMURAUOUQABAANZOURULUNUQABUSPSQRUOUHAUHUOABUAHUBUCUDABTAUHTUERUFUG $. $( [3-Jul-05] $) $( [29-Jun-05] $) $} ${ lem3.4.4.1 $e |- ( a ->2 b ) = 1 $. lem3.4.4.2 $e |- ( b ->2 a ) = 1 $. $( Equation 3.12 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.4.4 $p |- ( a ==5 b ) = 1 $= ( wid5 wi2 wt lem3.3.4 ax-r1 lem3.4.3 ax-r2 ) ABEZALFZGMLABDHIABCJK $. $( [3-Jul-05] $) $( [29-Jun-05] $) $} ${ lem3.4.5.1 $e |- ( a ==5 b ) = 1 $. $( Equation 3.13 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.4.5 $p |- ( a ->2 ( b v c ) ) = 1 $= ( wo lem3.3.5 2vwomr1a ) ABCEABCDFG $. $( [3-Jul-05] $) $( [29-Jun-05] $) $} ${ lem3.4.6.1 $e |- ( a ==5 b ) = 1 $. $( Equation 3.14 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem3.4.6 $p |- ( ( a v c ) ==5 ( b v c ) ) = 1 $= ( wo wi2 wt lem3.3.6 ax-r1 lem3.4.5 ax-r2 wid5 wa wn df-id5 ancom 2or 3tr lem3.4.4 ) ACEZBCEZTUAFZAUAFZGUCUBABCHIABCDJKUATFZBTFZGUEUDBACHIBACBALBAM ZBNZANZMZEZGBAOUJABMZUHUGMZEZABLZGUFUKUIULBAPUGUHPQUNUMABOIDRKJKS $. $( [3-Jul-05] $) $( [29-Jun-05] $) $} $( @( Lemma intended for ~ thm3.8i1 . @) thm3.8i1lem @p |- ( a ==1 b ) = ( ( b ->0 a ) ^ ( a ->1 b ) ) @= wva wvb wn wo wva wn wva wvb wa wo wa wvb wn wva wo wva wn wva wvb wa wo wa wva wvb wid1 wvb wva wi0 wva wvb wi1 wa wva wvb wn wo wvb wn wva wo wva wn wva wvb wa wo wva wvb wn ax-a2 ran wva wvb df-id1 wvb wva wi0 wvb wn wva wo wva wvb wi1 wva wn wva wvb wa wo wvb wva df-i0 wva wvb df-i1 2an 3tr1 @. @( [31-Mar-2011] @) @( [30-Jun-05] @) @{ thm3.8i1.1 @e |- ( a ==1 b ) = 1 @. thm3.8i1 @p |- ( ( a v c ) ==1 ( b v c ) ) = 1 @= ? @. @} @{ thm3.8i2.1 @e |- ( a ==2 b ) = 1 @. thm3.8i2 @p |- ( ( a v c ) ==2 ( b v c ) ) = 1 @= ? @. @} @{ thm3.8i3.1 @e |- ( a ==3 b ) = 1 @. thm3.8i3 @p |- ( ( a v c ) ==3 ( b v c ) ) = 1 @= ? @. @} @{ thm3.8i4.1 @e |- ( a ==4 b ) = 1 @. thm3.8i4 @p |- ( ( a v c ) ==4 ( b v c ) ) = 1 @= ? @. @} @{ thm3.8i5.1 @e |- ( a ==5 b ) = 1 @. thm3.8i5 @p |- ( ( a v c ) ==5 ( b v c ) ) = 1 @= wva wvb wvc thm3.8i5.1 lem3.4.6 @. @( [31-Mar-2011] @) @( [29-Jun-05] @) @} $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Roy's third section =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( lem4.6.1 is u1lemaa $) $( Equation 4.10 of [MegPav2000] p. 23. This is the first part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.2e1 $p |- ( ( a ->1 b ) ^ ( a ' ->1 b ) ) = ( ( a ->1 b ) ^ b ) $= ( wi1 wn wa wo df-i1 2an ax-a1 ax-r1 ax-r5 lan comcom fh1 lor coman1 coman2 ancom ran 3tr comorr comcom6 leao1 lecom comcom7 com2an anass anidm comcom2 omla orabs fh3 ax-a2 lear df-le2 ) ABCZADZBCZEUQABEZFZUQDZUQBEZFZEZUTBEZUPB EUPUTURVCABGZUQBGHVDUTAVBFZEUTAEZUTVBEZFZVEVCVGUTVAAVBAVAAIJKLUTAVBAUTAUTUQ USUAUBMVBUTVBUTUQBUSUCUDMNVJAUTEZVIFUSVIFZVEVHVKVIUTARKVKUSVIABUJKVLUSVBUTE ZFUSVBUQEZVBUSEZFZFZVEVIVMUSUTVBROVMVPUSVBUQUSUQBPZVBABVBAVRUEUQBQUFNOVQUSB UQEZUQEZVOFZFUSBUQUQEZEZVOFZFZVEVPWAUSVNVTVOVBVSUQUQBRSKOWAWDUSVTWCVOBUQUQU GKOWEUSVSVOFZFUSVBVOFZFZVEWDWFUSWCVSVOWBUQBUQUHLKOWFWGUSVSVBVOBUQRKOWHUSVBF USUQFZUSBFZEVEWGVBUSVBUSUKOUSUQBUSAABPUIABQULWIUTWJBUSUQUMUSBABUNUOHTTTTTTU TUPBUPUTVFJST $. $( [3-Jul-05] $) $( [29-Jun-05] $) $( Equation 4.10 of [MegPav2000] p. 23. This is the second part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.2e2 $p |- ( ( a ->1 b ) ^ b ) = ( ( a ^ b ) v ( a ' ^ b ) ) $= ( u1lemab ) ABC $. $( [3-Jul-05] $) $( [1-Jul-05] $) $( Equation 4.11 of [MegPav2000] p. 23. This is the first part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.3le1 $p |- ( a ' ->1 b ) ' =< a ' $= ( u1lem9a ) ABC $. $( [3-Jul-05] $) $( [1-Jul-05] $) $( Equation 4.11 of [MegPav2000] p. 23. This is the second part of the equation. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.3le2 $p |- a ' =< ( a ->1 b ) $= ( u1lem9b ) ABC $. $( [3-Jul-05] $) $( [1-Jul-05] $) $( Equation 4.12 of [MegPav2000] p. 23. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.4 $p |- ( ( a ->1 b ) ->1 b ) = ( a ' ->1 b ) $= ( u1lem12 ) ABC $. $( [3-Jul-05] $) $( [1-Jul-05] $) $( Equation 4.13 of [MegPav2000] p. 23. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.5 $p |- ( ( a ->1 b ) ' ->1 b ) = ( a ->1 b ) $= ( wi1 wn u1lemn1b ax-r1 ) ABCZGDBCABEF $. $( [3-Jul-05] $) $( [1-Jul-05] $) $( Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 0, and j is set to 1. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.6i0j1 $p |- ( ( a ->0 b ) v ( a ->1 b ) ) = ( a ->0 b ) $= ( wn wo wa wi0 wi1 leid lear lelor lel2or leo lebi df-i0 df-i1 2or 3tr1 ) A CZBDZRABEZDZDZSABFZABGZDUCUBSSSUASHTBRABIJKSUALMUCSUDUAABNZABOPUEQ $. $( [3-Jul-05] $) $( [1-Jul-05] $) $( Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 0, and j is set to 2. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.6i0j2 $p |- ( ( a ->0 b ) v ( a ->2 b ) ) = ( a ->0 b ) $= ( wn wo wa wi0 wi2 leid leor leao1 lel2or leo lebi df-i0 df-i2 2or 3tr1 ) A CZBDZBRBCZEZDZDZSABFZABGZDUDUCSSSUBSHBSUABRIRTBJKKSUBLMUDSUEUBABNZABOPUFQ $. $( [3-Jul-05] $) $( [1-Jul-05] $) $( Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 0, and j is set to 3. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.6i0j3 $p |- ( ( a ->0 b ) v ( a ->3 b ) ) = ( a ->0 b ) $= ( wn wo wa wi0 wi3 leid leao1 lel2or lear leo lebi df-i0 df-i3 2or 3tr1 ) A CZBDZRBEZRBCZEZDZASEZDZDZSABFZABGZDUGUFSSSUESHUCSUDTSUBRBBIRUABIJASKJJSUELM UGSUHUEABNZABOPUIQ $. $( [3-Jul-05] $) $( [1-Jul-05] $) $( Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 0, and j is set to 4. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.6i0j4 $p |- ( ( a ->0 b ) v ( a ->4 b ) ) = ( a ->0 b ) $= ( wn wo wi0 wi4 leid leao4 leao1 lel2or lea leo lebi df-i0 df-i4 2or 3tr1 wa ) ACZBDZABRZSBRZDZTBCZRZDZDZTABEZABFZDUHUGTTTUFTGUCTUEUATUBBASHSBBIJTUDK JJTUFLMUHTUIUFABNZABOPUJQ $. $( [3-Jul-05] $) $( [1-Jul-05] $) $( Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 1, and j is set to 0. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.6i1j0 $p |- ( ( a ->1 b ) v ( a ->0 b ) ) = ( a ->0 b ) $= ( wn wa wo wi1 wi0 lear lelor df-le2 df-i1 df-i0 2or 3tr1 ) ACZABDZEZOBEZER ABFZABGZETQRPBOABHIJSQTRABKABLZMUAN $. $( [3-Jul-05] $) $( [1-Jul-05] $) $( Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 1, and j is set to 2. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.6i1j2 $p |- ( ( a ->1 b ) v ( a ->2 b ) ) = ( a ->0 b ) $= ( u12lem ) ABC $. $( [3-Jul-05] $) $( [1-Jul-05] $) $( Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 1, and j is set to 3. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.6i1j3 $p |- ( ( a ->1 b ) v ( a ->3 b ) ) = ( a ->0 b ) $= ( wn wa wo wi1 wi3 ler lecom lea lel2or ax-a3 ax-a2 ran ax-r1 wt lor df-le2 ax-r5 3tr wi0 leo comcom6 comcom lear lelor ax-a4 df-le1 lem3.3.5lem orordi fh3 an1r ax-r2 3tr2 df-i1 df-i3 2or df-i0 3tr1 ) ACZABDZEZUTBDZUTBCZDZEZAUT BEZDZEZEZVGABFZABGZEABUAVBVFEZVHEVMAEZVMVGEZDZVJVGVMAVGAVMAVMUTVMUTVBVFUTVA UBHIUCUDVMVGVBVGVFVABUTABUEZUFVFUTBVCUTVEUTBJUTVDJKHZKIUKVBVFVHLVPAVMEZVODA VBEZVFEZVODZVGVNVSVOVMAMNVSWAVOWAVSAVBVFLONWBAUTEZVAEZVFEZVODPVODZVGWAWEVOV TWDVFWDVTAUTVALOSNWEPVOWEPWDVFPWCVAPWCPAUGUHHHUINWFVOVFVBEZVGEZVGVOULVMWGVG VBVFMSWHVFVBVGEZEZVGVFVBVGLWJVFUTVABEZEZEVFVGEVGWIWLVFWLWIUTVABUJOQWLVGVFWK BUTVABVQRQQVFVGVRRTUMTTTUNVKVBVLVIABUOABUPUQABURUS $. $( [3-Jul-05] $) $( [1-Jul-05] $) $( Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 2, and j is set to 0. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.6i2j0 $p |- ( ( a ->2 b ) v ( a ->0 b ) ) = ( a ->0 b ) $= ( wn wa wo wi2 wi0 leor leao1 lel2or df-le2 df-i2 df-i0 2or 3tr1 ) BACZBCZD ZEZPBEZETABFZABGZEUBSTBTRBPHPQBIJKUASUBTABLABMZNUCO $. $( [3-Jul-05] $) $( [1-Jul-05] $) $( Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 2, and j is set to 1. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.6i2j1 $p |- ( ( a ->2 b ) v ( a ->1 b ) ) = ( a ->0 b ) $= ( wn wa wo wi2 wi1 wi0 leor leao1 lel2or lear lelor leo lerr ler lebi df-i2 df-i1 2or df-i0 3tr1 ) BACZBCZDZEZUCABDZEZEZUCBEZABFZABGZEABHUIUJUFUJUHBUJU EBUCIUCUDBJKUGBUCABLMKUCUIBUCUHUFUCUGNOBUFUHBUENPKQUKUFULUHABRABSTABUAUB $. $( [3-Jul-05] $) $( [1-Jul-05] $) $( Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 2, and j is set to 4. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.6i2j4 $p |- ( ( a ->2 b ) v ( a ->4 b ) ) = ( a ->0 b ) $= ( wn wa wo wi2 wi4 wi0 ax-a2 ax-r5 ax-a3 ax-r1 lor ancom lan oml 3tr lel2or ax-r2 leao1 leao4 leid leor lerr lebi df-i2 df-i4 2or df-i0 3tr1 ) BACZBCZD ZEZABDZUKBDZEZUKBEZULDZEZEZURABFZABGZEABHVAUMBEZUTEUMBUTEZEZURUNVDUTBUMIJUM BUTKVFUMBUQEZUSEZEUMUQBEZUSEZEZURVEVHUMVHVEBUQUSKLMVHVJUMVGVIUSBUQIJMVKUMUQ BUSEZEZEUMUQUREZEZURVJVMUMUQBUSKMVMVNUMVLURUQVLBULURDZEBULBUKEZDZEZURUSVPBU RULNMVPVRBURVQULUKBIOMVSVQURBUKPBUKISQMMVOURUMURVNUKULBTUQURURUOURUPBAUKUAU KBBTRURUBRRURVNUMURUQUCUDUEQQQVBUNVCUTABUFABUGUHABUIUJ $. $( [3-Jul-05] $) $( [1-Jul-05] $) $( Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 3, and j is set to 0. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.6i3j0 $p |- ( ( a ->3 b ) v ( a ->0 b ) ) = ( a ->0 b ) $= ( wn wa wi3 wi0 ax-a3 ax-r1 lor ax-a2 omln ax-r2 ax-r5 leid leor lel2or leo wo leao1 3tr lebi df-le2 df-i3 df-i0 2or 3tr1 ) ACZBDZUGBCZDZRZAUGBRZDZRZUL RZULABEZABFZRUQUOUKUMULRZRUKUMUGRZBRZRZULUKUMULGURUTUKUTURUMUGBGHIVAUKULBRZ RUKULRULUTVBUKUSULBUSUGUMRULUMUGJABKLMIVBULUKVBULULULBULNBUGOPULBQUAIUKULUH ULUJUGBBSUGUIBSPUBTTUPUNUQULABUCABUDZUEVCUF $. $( [3-Jul-05] $) $( [1-Jul-05] $) $( Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 3, and j is set to 1. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.6i3j1 $p |- ( ( a ->3 b ) v ( a ->1 b ) ) = ( a ->0 b ) $= ( wn wa wo wi3 wi1 wi0 ax-a3 ax-r1 ax-a2 omln ax-r2 ax-r5 leao1 lel2or leid lor leao4 leo lerr lebi 3tr df-i3 df-i1 2or df-i0 3tr1 ) ACZBDZUIBCZDZEZAUI BEZDZEZUIABDZEZEZUNABFZABGZEABHUSUMUOUREZEUMUOUIEZUQEZEZUNUMUOURIVBVDUMVDVB UOUIUQIJRVEUMUNUQEZEZUNVDVFUMVCUNUQVCUIUOEUNUOUIKABLMNRVGUNUMUNVFUJUNULUIBB OUIUKBOPUNUNUQUNQBAUISPPUNVFUMUNUQTUAUBMUCUTUPVAURABUDABUEUFABUGUH $. $( [3-Jul-05] $) $( [1-Jul-05] $) $( Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 4, and j is set to 0. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.6i4j0 $p |- ( ( a ->4 b ) v ( a ->0 b ) ) = ( a ->0 b ) $= ( wa wn wo wi4 wi0 leao4 leao1 lel2or lea df-le2 df-i4 df-i0 2or 3tr1 ) ABC ZADZBCZEZRBEZBDZCZEZUAEUAABFZABGZEUFUDUATUAUCQUASBARHRBBIJUAUBKJLUEUDUFUAAB MABNZOUGP $. $( [3-Jul-05] $) $( [2-Jul-05] $) $( Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 4, and j is set to 2. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.6i4j2 $p |- ( ( a ->4 b ) v ( a ->2 b ) ) = ( a ->0 b ) $= ( wa wn wi4 wi2 wi0 ax-a3 ax-r1 ax-a2 ancom lor leor oml2 ax-r5 ax-r2 leao1 wo 3tr lel2or leao4 leid leo lerr lebi df-i4 df-i2 2or df-i0 3tr1 ) ABCZADZ BCZRZULBRZBDZCZRZBULUPCZRZRZUOABEZABFZRABGVAUNUQUTRZRUNUOUSRZRZUOUNUQUTHVDV EUNVDUQBRZUSRZVEVHVDUQBUSHIVGUOUSVGBUQRBUPUOCZRUOUQBJUQVIBUOUPKLBUOBULMNSOP LVFUOUNUOVEUKUOUMBAULUAULBBQTUOUOUSUOUBULUPBQTTUOVEUNUOUSUCUDUESVBURVCUTABU FABUGUHABUIUJ $. $( [3-Jul-05] $) $( [2-Jul-05] $) ${ com3iia.1 $e |- a C b $. $( The dual of ~ com3ii . (Contributed by Roy F. Longton, 3-Jul-05.) $) com3iia $p |- ( a v ( a ' ^ b ) ) = ( a v b ) $= ( wn wa wo comid comcom2 fh3 lear ax-a4 df-le1 leid ler2an lebi ax-r2 ) A ADZBEFAQFZABFZEZSAQBAAAGHCITSRSJSRSSRSAKLSMNOP $. $( [3-Jul-05] $) $( [2-Jul-05] $) $} $( @( Note: This theorem is unfinished. This is the progress that I was able to make. @) lem4.6.6i4j3 @p |- ( ( a ->4 b ) v ( a ->3 b ) ) = ( a ->0 b ) @= wva wvb wa wva wn wvb wa wo wva wn wvb wo wvb wn wa wo wva wn wvb wa wva wn wvb wn wa wo wva wva wn wvb wo wa wo wo wva wn wvb wo wva wvb wi4 wva wvb wi3 wo wva wvb wi0 wva wvb wa wva wn wvb wa wo wva wn wvb wo wvb wn wa wo wva wn wvb wa wva wn wvb wn wa wo wva wva wn wvb wo wa wo wo wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wa wo wva wn wvb wn wa wva wn wvb wa wva wo wva wn wvb wo wa wo wo wva wn wvb wo wva wvb wa wva wn wvb wa wo wva wn wvb wo wvb wn wa wo wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wa wo wva wn wvb wa wva wn wvb wn wa wo wva wva wn wvb wo wa wo wva wn wvb wn wa wva wn wvb wa wva wo wva wn wvb wo wa wo wva wvb wa wva wn wvb wa wo wva wn wvb wo wvb wn wa wo wva wvb wa wva wn wvb wa wva wn wvb wo wvb wn wa wo wo wva wvb wa wva wn wvb wa wva wn wvb wo wo wva wn wvb wa wvb wn wo wa wo wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wa wo wva wvb wa wva wn wvb wa wva wn wvb wo wvb wn wa ax-a3 wva wn wvb wa wva wn wvb wo wvb wn wa wo wva wn wvb wa wva wn wvb wo wo wva wn wvb wa wvb wn wo wa wva wvb wa wva wn wvb wa wva wn wvb wo wvb wn wva wn wvb wa wva wn wvb wo wva wn wvb wvb leao1 lecom wva wn wvb wa wvb wva wn wvb coman2 comcom2 fh3 lor wva wn wvb wa wva wn wvb wo wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wvb wa wva wn wvb wa wva wn wvb wo wo wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wn wvb wo wva wn wvb wvb leao1 df-le2 ran lor 3tr wva wn wvb wa wva wn wvb wn wa wo wva wva wn wvb wo wa wo wva wn wvb wn wa wva wn wvb wa wo wva wva wn wvb wo wa wo wva wn wvb wn wa wva wn wvb wa wva wva wn wvb wo wa wo wo wva wn wvb wn wa wva wn wvb wa wva wo wva wn wvb wo wa wo wva wn wvb wa wva wn wvb wn wa wo wva wn wvb wn wa wva wn wvb wa wo wva wva wn wvb wo wa wva wn wvb wa wva wn wvb wn wa ax-a2 ax-r5 wva wn wvb wn wa wva wn wvb wa wva wva wn wvb wo wa ax-a3 wva wn wvb wa wva wva wn wvb wo wa wo wva wn wvb wa wva wo wva wn wvb wo wa wva wn wvb wn wa wva wn wvb wa wva wva wn wvb wo wa wo wva wn wvb wa wva wo wva wn wvb wa wva wn wvb wo wo wa wva wn wvb wa wva wo wva wn wvb wo wa wva wn wvb wa wva wva wn wvb wo wva wva wn wvb wa wva wva wn wvb wa wva wn wvb comanr1 comcom6 comcom wva wn wvb wa wva wn wvb wo wva wn wvb wvb leao1 lecom fh3 wva wn wvb wa wva wn wvb wo wo wva wn wvb wo wva wn wvb wa wva wo wva wn wvb wa wva wn wvb wo wva wn wvb wvb leao1 df-le2 lan ax-r2 lor 3tr 2or wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wa wo wva wn wvb wn wa wva wn wvb wa wva wo wva wn wvb wo wa wo wo wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wa wo wva wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wo wo wva wn wvb wo wva wn wvb wn wa wva wn wvb wa wva wo wva wn wvb wo wa wo wva wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wo wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wa wo wva wn wvb wn wa wva wn wvb wa wva wo wva wn wvb wo wa wo wva wn wvb wn wa wva wn wvb wo wva wn wvb wa wva wo wa wo wva wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wo wva wn wvb wa wva wo wva wn wvb wo wa wva wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wva wn wvb wa wva wo wva wn wvb wo ancom lor wva wn wvb wn wa wva wn wvb wo wva wn wvb wa wva wo wa ax-a2 ax-r2 lor wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wa wo wva wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wo wo wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wo wo wo wva wn wvb wo wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wo ax-a3 wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wo wo wo wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wva wn wvb wn wa wo wo wva wn wvb wo wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wo wo wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wva wn wvb wn wa wo wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wo wo wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wva wo wa wo wva wn wvb wn wa wo wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wva wn wvb wn wa wo wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wva wo wa wo wva wn wvb wn wa wo wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wo wo wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa ax-a3 ax-r1 wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wva wo wa wo wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wva wn wvb wn wa wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wva wo wa wo wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wva wn wvb wo wva wn wvb wa wvb wn wva wn wvb wa wva wn wvb wo wva wn wvb wa wva wn wvb wo wva wn wvb wvb leao1 lecom comcom wva wn wvb wo wvb wva wn wvb comor2 comcom2 com2or wva wn wvb wo wva wn wvb wa wva wva wn wvb wa wva wn wvb wo wva wn wvb wa wva wn wvb wo wva wn wvb wvb leao1 lecom comcom wva wn wvb wo wva wva wn wvb comor1 comcom7 com2or fh1 ax-r1 ax-r5 ax-r2 lor wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wva wn wvb wn wa wo wo wva wvb wa wva wn wvb wn wa wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wo wo wva wn wvb wo wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wva wn wvb wn wa wo wva wn wvb wn wa wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wo wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wva wn wvb wn wa ax-a2 lor wva wvb wa wva wn wvb wn wa wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wo wo wva wvb wa wva wn wvb wn wa wo wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wo wva wn wvb wo wva wvb wa wva wn wvb wn wa wo wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wo wva wvb wa wva wn wvb wn wa wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wo wo wva wvb wa wva wn wvb wn wa wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa ax-a3 ax-r1 wva wvb wa wva wn wvb wn wa wo wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wo wva wvb wa wva wn wvb wn wa wo wva wn wvb wo wva wn wvb wa wvb wn wva wo wo wa wo wva wn wvb wo wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wva wn wvb wo wva wn wvb wa wvb wn wva wo wo wa wva wvb wa wva wn wvb wn wa wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wva wn wvb wa wvb wn wva wo wo wva wn wvb wo wva wn wvb wa wvb wn wva wo wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wva wn wvb wa wvb wn wva orordi ax-r1 lan lor wva wvb wa wva wn wvb wn wa wo wva wn wvb wo wva wn wvb wa wvb wn wva wo wo wa wo wva wvb wa wva wn wvb wn wa wo wva wn wvb wo wva wn wvb wa wva wvb wn wo wo wa wo wva wn wvb wo wva wn wvb wo wva wn wvb wa wvb wn wva wo wo wa wva wn wvb wo wva wn wvb wa wva wvb wn wo wo wa wva wvb wa wva wn wvb wn wa wo wva wn wvb wa wvb wn wva wo wo wva wn wvb wa wva wvb wn wo wo wva wn wvb wo wvb wn wva wo wva wvb wn wo wva wn wvb wa wvb wn wva ax-a2 lor lan lor ? ax-r2 ax-r2 ax-r2 ax-r2 ax-r2 ax-r2 ax-r2 ax-r2 wva wvb wi4 wva wvb wa wva wn wvb wa wo wva wn wvb wo wvb wn wa wo wva wvb wi3 wva wn wvb wa wva wn wvb wn wa wo wva wva wn wvb wo wa wo wva wvb df-i4 wva wvb df-i3 2or wva wvb df-i0 3tr1 @. @( [31-Mar-2011] @) @( [2-Jul-05] @) lem4.6.6i1j4 @p |- ( ( a ->1 b ) v ( a ->4 b ) ) = ( a ->0 b ) @= ? @. lem4.6.6i2j3 @p |- ( ( a ->2 b ) v ( a ->3 b ) ) = ( a ->0 b ) @= ? @. lem4.6.6i3j2 @p |- ( ( a ->3 b ) v ( a ->2 b ) ) = ( a ->0 b ) @= ? @. lem4.6.6i3j4 @p |- ( ( a ->3 b ) v ( a ->4 b ) ) = ( a ->0 b ) @= ? @. lem4.6.6i4j1 @p |- ( ( a ->4 b ) v ( a ->1 b ) ) = ( a ->0 b ) @= ? @. $) ${ lem4.6.7.1 $e |- a ' =< b $. $( Equation 4.15 of [MegPav2000] p. 23. (Contributed by Roy F. Longton, 3-Jul-05.) $) lem4.6.7 $p |- b =< ( a ->1 b ) $= ( wn wa wo wi1 wt leid sklem ax-r1 df-le2 ax-a3 ler2an lel2or leran leao2 2an le1 ler lebi ax-r2 comid comcom3 lecom fh3 3tr1 df-le1 df-i1 lbtr ) B ADZABEZFZABGZBUMHBEZUKAFZUKBFZEBUMFZUMHUPBUQUPHAAAIJKUQBUKBCLKRURBUKFZULF ZUOUTURBUKULMKUTUOUSUOULBUOUKBHBBSBINUKHBUKSCNOAHBASPOUOUSULBHUKQTUAUBUKA BAAAUCUDUKBCUEUFUGUHUNUMABUIKUJ $. $( [3-Jul-05] $) $( [3-Jul-05] $) $} $( $t /* The '$t' token indicates the beginning of the typesetting definition section, embedded in a Metamath comment. There may only be one per source file, and the typesetting section ends with the end of the Metamath comment. The typesetting section uses C-style comment delimiters. */ /* These are the LaTeX and HTML definitions in the order the tokens are introduced in $c or $v statements. See HELP TEX or HELP HTML in the Metamath program. */ /* Definitions for LaTeX output of various Metamath commands */ /* (LaTeX definitions have not been written for this file.) */ /* Definitions for HTML output of various Metamath commands. */ /* Title */ htmltitle "Quantum Logic Explorer"; /* Home page link */ htmlhome '' + ' +
    ' + 'Home'; /* Optional file where bibliographic references are kept */ htmlbibliography "mmql.html"; /* Variable color key */ htmlvarcolor 'term'; /* GIF and Symbol Font HTML directories */ htmldir "../qlegif/"; althtmldir "../qleuni/"; /* Symbol definitions */ htmldef "a" as "a"; htmldef "b" as "b"; htmldef "c" as "c"; htmldef "d" as "d"; htmldef "e" as "e"; htmldef "f" as "f"; htmldef "g" as "g"; htmldef "h" as "h"; htmldef "i" as "i"; htmldef "j" as "j"; htmldef "k" as "k"; htmldef "l" as "l"; htmldef "m" as "m"; htmldef "n" as "n"; htmldef "p" as "p"; htmldef "q" as "q"; htmldef "r" as "r"; htmldef "t" as "t"; htmldef "u" as "u"; htmldef "w" as "w"; htmldef "x" as "x"; htmldef "y" as "y"; htmldef "z" as "z"; htmldef "(" as "("; htmldef ")" as ")"; htmldef "=" as " = "; htmldef "==" as " == "; htmldef "v" as " v "; htmldef "^" as " ^ "; htmldef "0" as "0"; htmldef "1" as "1"; /* htmldef "-" as "-"; */ /* htmldef "_|_" as " _|_ "; */ htmldef "'" as " +
   '"; htmldef "wff" as "wff "; htmldef "term" as "term "; /* Mladen wants the turnstile to go away 2/9/02 */ /*htmldef "|-" as "|- ";*/ htmldef "|-" as ""; htmldef "C" as " C "; htmldef "," as ", "; htmldef "=<" as " =< "; htmldef "=<2" as " =<2 "; htmldef "->0" as " ->0 "; htmldef "->1" as " ->1 "; htmldef "->2" as " ->2 "; htmldef "->3" as " ->3 "; htmldef "->4" as " ->4 "; htmldef "->5" as " ->5 "; htmldef "<->1" as " <->1 "; htmldef "<->3" as " <->3 "; htmldef "u3" as " u3 "; htmldef "^3" as " ^3 "; htmldef "==0" as " ==0 "; htmldef "==1" as " ==1 "; htmldef "==2" as " ==2 "; htmldef "==3" as " ==3 "; htmldef "==4" as " ==4 "; htmldef "==5" as " ==5 "; htmldef "==OA" as " ==OA "; /* htmldef "==u" as ' ºu '; htmldef "u.u" as ' Úu '; htmldef "^u" as ' Ùu '; htmldef "-u" as ' Øu '; htmldef "= £u '; htmldef "=" as ' = '; */ /* Definitions for Unicode version */ althtmldef "a" as 'a'; althtmldef "b" as 'b'; althtmldef "c" as 'c'; althtmldef "d" as 'd'; althtmldef "e" as 'e'; althtmldef "f" as 'f'; althtmldef "g" as 'g'; althtmldef "h" as 'h'; althtmldef "i" as 'i'; althtmldef "j" as 'j'; althtmldef "k" as 'k'; althtmldef "l" as 'l'; althtmldef "m" as 'm'; althtmldef "n" as 'n'; althtmldef "p" as 'p'; althtmldef "q" as 'q'; althtmldef "r" as 'r'; althtmldef "t" as 't'; althtmldef "u" as 'u'; althtmldef "w" as 'w'; althtmldef "x" as 'x'; althtmldef "y" as 'y'; althtmldef "z" as 'z'; althtmldef "a0" as 'a0'; althtmldef "a1" as 'a1'; althtmldef "a2" as 'a2'; althtmldef "b0" as 'b0'; althtmldef "b1" as 'b1'; althtmldef "b2" as 'b2'; althtmldef "c0" as 'c0'; althtmldef "c1" as 'c1'; althtmldef "c2" as 'c2'; althtmldef "p0" as 'p0'; althtmldef "p1" as 'p1'; althtmldef "p2" as 'p2'; htmldef "a0" as 'a0'; htmldef "a1" as 'a1'; htmldef "a2" as 'a2'; htmldef "b0" as 'b0'; htmldef "b1" as 'b1'; htmldef "b2" as 'b2'; htmldef "c0" as 'c0'; htmldef "c1" as 'c1'; htmldef "c2" as 'c2'; htmldef "p0" as 'p0'; htmldef "p1" as 'p1'; htmldef "p2" as 'p2'; althtmldef "(" as '('; althtmldef ")" as ')'; althtmldef "=" as ' = '; /* = */ althtmldef "==" as ' ≡ '; althtmldef "v" as ' ∪ '; althtmldef "^" as ' ∩ '; althtmldef "1" as '1'; althtmldef "0" as '0'; /* althtmldef "-" as ' - '; */ /* althtmldef "'" as '⊥'; */ althtmldef "'" as ' '; althtmldef "wff" as 'wff  '; althtmldef "term" as 'term  '; /* Mladen wants the turnstile to go away 2/9/02 */ /*althtmldef "|-" as '|-  ';*/ althtmldef "|-" as ''; althtmldef "C" as ' C '; althtmldef "," as ', '; althtmldef "=<" as ' ≤ '; althtmldef "=<2" as ' ≤2 '; althtmldef "->0" as ' →0 '; althtmldef "->1" as ' →1 '; althtmldef "->2" as ' →2 '; althtmldef "->3" as ' →3 '; althtmldef "->4" as ' →4 '; althtmldef "->5" as ' →5 '; althtmldef "<->1" as ' ↔1 '; althtmldef "<->3" as ' ↔3 '; althtmldef "u3" as ' ∪3 '; althtmldef "^3" as ' ∩3 '; althtmldef "==0" as ' ≡0 '; althtmldef "==1" as ' ≡1 '; althtmldef "==2" as ' ≡2 '; althtmldef "==3" as ' ≡3 '; althtmldef "==4" as ' ≡4 '; althtmldef "==5" as ' ≡5 '; althtmldef "==OA" as ' ≡OA '; /* althtmldef "==u" as ' ≡u '; althtmldef "u.u" as ' ·u '; althtmldef "^u" as ' ∩u '; althtmldef "-u" as ' −u '; althtmldef "=u '; althtmldef "=" as ' = '; */ /* End of Unicode defintions */ latexdef "a" as "a"; latexdef "b" as "b"; latexdef "c" as "c"; latexdef "d" as "d"; latexdef "e" as "e"; latexdef "f" as "f"; latexdef "g" as "g"; latexdef "h" as "h"; latexdef "i" as "i"; latexdef "j" as "j"; latexdef "k" as "k"; latexdef "l" as "l"; latexdef "m" as "m"; latexdef "n" as "n"; latexdef "p" as "p"; latexdef "q" as "q"; latexdef "r" as "r"; latexdef "t" as "t"; latexdef "u" as "u"; latexdef "w" as "w"; latexdef "x" as "x"; latexdef "y" as "y"; latexdef "z" as "z"; latexdef "(" as "("; latexdef ")" as ")"; latexdef "=" as "="; latexdef "==" as "\equiv "; latexdef "v" as "\vee "; latexdef "^" as "\wedge "; latexdef "0" as "0"; latexdef "1" as "1"; latexdef "'" as "'"; latexdef "wff" as "{\rm wff}"; latexdef "term" as "{\rm term}"; latexdef "|-" as ""; latexdef "C" as "C"; latexdef "," as ","; latexdef "=<" as "\le "; latexdef "=<2" as "\le_2"; latexdef "->0" as "\to_0"; latexdef "->1" as "\to_1"; latexdef "->2" as "\to_2"; latexdef "->3" as "\to_3"; latexdef "->4" as "\to_4"; latexdef "->5" as "\to_5"; latexdef "<->1" as "\leftrightarrow_1"; latexdef "<->3" as "\leftrightarrow_3"; latexdef "u3" as "\vee_3"; latexdef "^3" as "\wedge_3"; latexdef "==0" as "\equiv_0"; latexdef "==1" as "\equiv_1"; latexdef "==2" as "\equiv_2"; latexdef "==3" as "\equiv_3"; latexdef "==4" as "\equiv_4"; latexdef "==5" as "\equiv_5"; latexdef "==OA" as "\equiv_{\mathrm{OA}}"; /* End of typesetting definition section */ $) $( 456789012345 (79-character line to adjust text window width) 567890123456 $) $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# Weakly distributive ortholattices (WDOL) #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= WDOL law =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( The WDOL (weakly distributive ortholattice) axiom. $) ax-wdol $a |- ( ( a == b ) v ( a == b ' ) ) = 1 $. $( Any two variables (weakly) commute in a WDOL. $) wdcom $p |- C ( a , b ) = 1 $= ( wcmtr wa wn wo wt df-cmtr or42 tb dfb ax-a1 lan ax-r1 lor 2or ax-wdol 3tr ax-r2 ) ABCABDZABEZDZFAEZBDZUCUADZFFTUEFZUBUDFZFZGABHTUBUDUEIUHABJZAUAJZFZG UKUHUIUFUJUGABKUJUBUCUAEZDZFUGAUAKUMUDUBUDUMBULUCBLMNOSPNABQSR $. $( [4-Mar-06] $) ${ wdwom.1 $e |- ( a ' v ( a ^ b ) ) = 1 $. $( Prove 2-variable WOML rule in WDOL. This will make all WOML theorems available to us. The proof does not use ~ ax-r3 or ~ ax-wom . Since this is the same as ~ ax-wom , from here on we will freely use those theorems invoking ~ ax-wom . $) wdwom $p |- ( b v ( a ' ^ b ' ) ) = 1 $= ( wn wa wo wi2 wt df-i2 ax-r1 le1 wi5 df-i5 wi1 df-i1 ax-r2 wql1lem wcmtr or4 anor1 lor ax-r5 or12 df-cmtr 3tr1 wdcom skr0 i5lei2 bltr lebi ) BADZB DZEZFZABGZHUOUNABIJUOHUOKHABLZUOUPHUPABEZUKBEZFZUMFZHABMUKBFZUTABABNUKUQF HABOCPQVADZUTFZABRZHUSVBUMFFZUQAULEZFZURUMFZFZVCVDVEUQVBFZVHFVIUQURVBUMSV JVGVHVBVFUQVFVBABTJUAUBPVBUSUMUCABUDUEABUFPUGPJABUHUIUJP $. $( [4-Mar-06] $) $} $( Prove the weak distributive law in WDOL. This is our first WDOL theorem making use of ~ ax-wom , which is justified by ~ wdwom . $) wddi1 $p |- ( ( a ^ ( b v c ) ) == ( ( a ^ b ) v ( a ^ c ) ) ) = 1 $= ( wdcom wfh1 ) ABCABDACDE $. $( [4-Mar-06] $) $( The weak distributive law in WDOL. $) wddi2 $p |- ( ( ( a v b ) ^ c ) == ( ( a ^ c ) v ( b ^ c ) ) ) = 1 $= ( wo wa wancom wddi1 w2or wr2 ) ABDZCECJEZACEZBCEZDZJCFKCAEZCBEZDNCABGOLPMC AFCBFHII $. $( [5-Mar-06] $) $( The weak distributive law in WDOL. $) wddi3 $p |- ( ( a v ( b ^ c ) ) == ( ( a v b ) ^ ( a v c ) ) ) = 1 $= ( wdcom wfh3 ) ABCABDACDE $. $( [5-Mar-06] $) $( The weak distributive law in WDOL. $) wddi4 $p |- ( ( ( a ^ b ) v c ) == ( ( a v c ) ^ ( b v c ) ) ) = 1 $= ( wa wo wa2 wddi3 w2an wr2 ) ABDZCECJEZACEZBCEZDZJCFKCAEZCBEZDNCABGOLPMCAFC BFHII $. $( [5-Mar-06] $) ${ wdid0id5.1 $e |- ( a ==0 b ) = 1 $. $( Show that quantum identity follows from classical identity in a WDOL. $) wdid0id5 $p |- ( a == b ) = 1 $= ( tb wa wn wo wt dfb wid0 df-id0 ax-r1 ax-r2 wa4 wleoa wancom wddi3 w3tr1 wr1 wa2 wr2 w2an wddi4 wwbmp ) ABDABEAFZBFZEZGZHABIUEBGZUFAGZEZUHUKABJZHU LUKABKLCMUJUIEAUGGZBUGGZEUKUHUJUMUIUNAUFGZAUEGZUOEZUJUMUOUOUPEZUQURUOUOUP UPUOANOSUOUPPUAUFATAUEUFQRBUEGZUSBUFGZEZUIUNVAUSUSUTUTUSBNOSUEBTBUEUFQRUB UIUJPABUGUCRUDM $. $( [5-Mar-06] $) $( Show a quantum identity that follows from classical identity in a WDOL. $) wdid0id1 $p |- ( a ==1 b ) = 1 $= ( wid1 wn wo wa wt df-id1 wid0 df-id0 ax-r1 ax-r2 wancom wa2 wlan wa4 wr2 wleoa wr1 wddi3 w2an biid w3tr1 wwbmp ) ABDABEZFZAEZABGFZGZHABIUHBFZUFAFZ GZUJUMABJZHUNUMABKLCMUMUIUGGUMUJUKUIULUGUKUHAFZUKGZUIUPUKUPUKUOGZUKUOUKNU QUKAUHFZGUKUOURUKUHAOPUKURURUKAQSRRTUIUPUHABUATRUFAOUBUMUCUGUINUDUEM $. $( [5-Mar-06] $) $( Show a quantum identity that follows from classical identity in a WDOL. $) wdid0id2 $p |- ( a ==2 b ) = 1 $= ( wid2 wn wo wa df-id2 wid0 df-id0 ax-r1 ax-r2 wancom wa2 wa4 wleoa wddi3 wt wr1 w3tr1 w2an wr2 wwbmp ) ABDABEZFZBAEZUDGFZGZRABHUFBFZUDAFZGZUHUKABI ZRULUKABJKCLUKUJUIGUHUIUJMUJUEUIUGUDANBUFFZUMBUDFZGZUIUGUOUMUMUNUNUMBOPSU FBNBUFUDQTUAUBUCL $. $( [5-Mar-06] $) $( Show a quantum identity that follows from classical identity in a WDOL. $) wdid0id3 $p |- ( a ==3 b ) = 1 $= ( wid3 wn wo wa wt df-id3 df-id0 ax-r1 ax-r2 wa4 wleoa wr1 wancom wr2 wa2 wid0 wddi3 w3tr1 wlan wwbmp ) ABDAEZBFZAUDBEZGFZGZHABIUEUFAFZGZUHUJABSZHU KUJABJKCLUIUGUEAUFFZAUDFZULGZUIUGULULUMGZUNUOULULUMUMULAMNOULUMPQUFARAUDU FTUAUBUCL $. $( [5-Mar-06] $) $( Show a quantum identity that follows from classical identity in a WDOL. $) wdid0id4 $p |- ( a ==4 b ) = 1 $= ( wid4 wn wo wa wt df-id4 wid0 df-id0 ax-r1 ax-r2 wddi3 wa2 wa4 wleoa wr2 wlan wr1 wwbmp ) ABDAEBFZBEZABGFZGZHABIUBUCAFZGZUEUGABJZHUHUGABKLCMUFUDUB UDUFUDUFUCBFZGZUFUCABNUJUFBUCFZGUFUIUKUFUCBOSUFUKUKUFBPQRRTSUAM $. $( [5-Mar-06] $) $( Show WDOL analog of WOM law. $) wdka4o $p |- ( ( a v c ) ==0 ( b v c ) ) = 1 $= ( wo wdid0id5 wr5 id5id0 ) ACEBCEABCABDFGH $. $( [5-Mar-06] $) $} $( The weak distributive law in WDOL. $) wddi-0 $p |- ( ( a ^ ( b v c ) ) ==0 ( ( a ^ b ) v ( a ^ c ) ) ) = 1 $= ( wo wa wddi1 id5id0 ) ABCDEABEACEDABCFG $. $( [5-Mar-06] $) $( The weak distributive law in WDOL. $) wddi-1 $p |- ( ( a ^ ( b v c ) ) ==1 ( ( a ^ b ) v ( a ^ c ) ) ) = 1 $= ( wo wa wddi-0 wdid0id1 ) ABCDEABEACEDABCFG $. $( [5-Mar-06] $) $( The weak distributive law in WDOL. $) wddi-2 $p |- ( ( a ^ ( b v c ) ) ==2 ( ( a ^ b ) v ( a ^ c ) ) ) = 1 $= ( wo wa wddi-0 wdid0id2 ) ABCDEABEACEDABCFG $. $( [5-Mar-06] $) $( The weak distributive law in WDOL. $) wddi-3 $p |- ( ( a ^ ( b v c ) ) ==3 ( ( a ^ b ) v ( a ^ c ) ) ) = 1 $= ( wo wa wddi-0 wdid0id3 ) ABCDEABEACEDABCFG $. $( [5-Mar-06] $) $( The weak distributive law in WDOL. $) wddi-4 $p |- ( ( a ^ ( b v c ) ) ==4 ( ( a ^ b ) v ( a ^ c ) ) ) = 1 $= ( wo wa wddi-0 wdid0id4 ) ABCDEABEACEDABCFG $. $( [5-Mar-06] $) $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# Modular ortholattices (MOL) #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Modular law =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) $( The modular law axiom. $) ax-ml $a |- ( ( a v b ) ^ ( a v c ) ) =< ( a v ( b ^ ( a v c ) ) ) $. $( Modular law in equational form. $) ml $p |- ( a v ( b ^ ( a v c ) ) ) = ( ( a v b ) ^ ( a v c ) ) $= ( wo wa leo ler2an leor leran lel2or ax-ml lebi ) ABACDZEZDABDZMEZAPNAOMABF ACFGBOMBAHIJABCKL $. $( [31-Mar-2011] $) $( [15-Mar-2010] $) $( Dual of modular law. $) mldual $p |- ( a ^ ( b v ( a ^ c ) ) ) = ( ( a ^ b ) v ( a ^ c ) ) $= ( wa wo wn anor3 cm oran3 lan ax-r1 tr lor ml 2an 3tr 3tr2 con1 ) ABACDZEZD ZABDZSEZAFZTFZEZUBFZSFZDZUAFUCFUFUDBFZUDCFZEZDZEUDUJEZULDUIUEUMUDUEUJUHDZUM UOUEBSGHUMUOULUHUJACIZJKLMUDUJUKNUNUGULUHABIUPOPATIUBSGQR $. $( [31-Mar-2011] $) $( [15-Mar-2010] $) ${ mli.1 $e |- c =< a $. $( Inference version of modular law. $) ml2i $p |- ( c v ( b ^ a ) ) = ( ( c v b ) ^ a ) $= ( wo wa ml df-le2 lan lor 3tr2 ) CBCAEZFZECBEZLFCBAFZENAFCBAGMOCLABCADHZI JLANPIK $. $( [1-Apr-2012] $) $( Inference version of modular law. $) mli $p |- ( ( a ^ b ) v c ) = ( a ^ ( b v c ) ) $= ( wa wo ancom ror orcom ml2i 3tr ran ) ABEZCFZCBFZAEZBCFZAEAQENBAEZCFCRFP MRCABGHRCIABCDJKOQACBILQAGK $. $( [1-Apr-2012] $) $} ${ mlduali.1 $e |- a =< c $. $( Inference version of dual of modular law. $) mldual2i $p |- ( c ^ ( b v a ) ) = ( ( c ^ b ) v a ) $= ( wa wo mldual lear leid ler2an lebi lor lan 3tr2 ) CBCAEZFZECBEZOFCBAFZE QAFCBAGPRCOABOACAHACADAIJKZLMOAQSLN $. $( [1-Apr-2012] $) $( Inference version of dual of modular law. $) mlduali $p |- ( ( a v b ) ^ c ) = ( a v ( b ^ c ) ) $= ( wo wa ax-a2 ran ancom mldual2i 3tr ror orcom ) ABEZCFZCBFZAEZBCFZAEAREO BAEZCFCSFQNSCABGHSCIABCDJKPRACBILRAMK $. $( [1-Apr-2012] $) $} $( Form of modular law that swaps two terms. $) ml3le $p |- ( a v ( b ^ ( c v a ) ) ) =< ( a v ( c ^ ( b v a ) ) ) $= ( wo wa lear lelor or12 oridm lor orcom 3tr lbtr leor lel2or ler2an mlduali leao1 ) ABCADZEZDZACDZBADZEACUCEDUAUBUCUAASDZUBTSABSFGUDCAADZDSUBACAHUEACAI JCAKLMAUCTABNZBSAROPACUCUFQM $. $( [1-Apr-2012] $) $( Form of modular law that swaps two terms. $) ml3 $p |- ( a v ( b ^ ( c v a ) ) ) = ( a v ( c ^ ( b v a ) ) ) $= ( wo wa ml3le lebi ) ABCADEDACBADEDABCFACBFG $. $( [1-Apr-2012] $) $( Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96 $) vneulem1 $p |- ( ( ( x v y ) v u ) ^ w ) = ( ( ( x v y ) v u ) ^ ( ( u v w ) ^ w ) ) $= ( wo wa leor leid ler2an lear lebi lan ) BABEZBFZCDEAEBNBMBBAGBHIMBJKL $. $( [31-Mar-2011] $) $( [15-Mar-2010] $) $( Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96 $) vneulem2 $p |- ( ( ( x v y ) v u ) ^ ( ( u v w ) ^ w ) ) = ( ( ( ( x v y ) ^ ( u v w ) ) v u ) ^ w ) $= ( wo wa anass cm ax-a2 ran ml orcom 3tr tr ) CDEZAEZABEZBFFZPQFZBFZOQFZAEZB FTRPQBGHSUBBSAOEZQFZAUAEZUBPUCQOAIJUEUDAOBKHAUALMJN $. $( [31-Mar-2011] $) $( [15-Mar-2010] $) ${ vneulem3.1 $e |- ( ( x v y ) ^ ( u v w ) ) = 0 $. $( Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96 $) vneulem3 $p |- ( ( ( ( x v y ) ^ ( u v w ) ) v u ) ^ w ) = ( u ^ w ) $= ( wo wa wf ror or0r tr ran ) CDFABFGZAFZABNHAFAMHAEIAJKL $. $( [31-Mar-2011] $) $( [15-Mar-2010] $) $( Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96 $) vneulem4 $p |- ( ( ( x v y ) v u ) ^ w ) = ( u ^ w ) $= ( wo wa vneulem1 vneulem2 vneulem3 3tr ) CDFZAFZBGMABFZBGGLNGAFBGABGABCDH ABCDIABCDEJK $. $( [31-Mar-2011] $) $( [15-Mar-2010] $) $} $( Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96 $) vneulem5 $p |- ( ( ( x v y ) v u ) ^ ( ( x v y ) v w ) ) = ( ( x v y ) v ( ( ( x v y ) v u ) ^ w ) ) $= ( wo wa ancom ml cm lor 3tr ) CDEZAEZLBEZFNMFZLBMFZEZLMBFZEMNGQOLBAHIPRLBMG JK $. $( [31-Mar-2011] $) $( [15-Mar-2010] $) ${ vneulem6.1 $e |- ( ( a v b ) ^ ( c v d ) ) = 0 $. $( Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96 $) vneulem6 $p |- ( ( ( a v b ) v d ) ^ ( ( b v c ) v d ) ) = ( ( c ^ a ) v ( b v d ) ) $= ( wo wa orcom ror or32 tr 2an vneulem5 leor ax-a2 leao3 bltr lel2or leror ler ax-r2 ran wf vneulem4 lerr leao2 leo ler2an lebi ) ABFZDFZBCFZDFZGZCA GZBDFZFZUNUPUPAFZCGZFZUQUNURUPCFZGUTUKURUMVAUKBAFZDFZURUJVBDABHIBADJKBCDJ LACBDMUAUPUQUSUPUONUSDCGZUQUSVCCGVDURVCCBDAJUBDCBAVBDCFZGUJCDFZGUCVBUJVEV FBAODCOLEKUDKVDUPUODCBPUEQRQUQUKUMUOUKUPUOUJDACBUFTBUJDBANSRUOUMUPUOULDCA BPTBULDBCUGSRUHUI $. $( [31-Mar-2011] $) $( [15-Mar-2010] $) $( Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96 $) vneulem7 $p |- ( ( c ^ a ) v ( b v d ) ) = ( b v d ) $= ( wa wo wf leao2 leao1 ler2an lbtr le0 lebi ror or0r tr ) CAFZBDGZGHSGSRH SRHRABGZCDGZFHRTUAACBICADJKELRMNOSPQ $. $( [31-Mar-2011] $) $( [31-Mar-2011] $) $( Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96 $) vneulem8 $p |- ( ( ( a v b ) v d ) ^ ( ( b v c ) v d ) ) = ( b v d ) $= ( wo wa vneulem6 vneulem7 tr ) ABFDFBCFDFGCAGBDFZFKABCDEHABCDEIJ $. $( [31-Mar-2011] $) $( [31-Mar-2011] $) $( Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96 $) vneulem9 $p |- ( ( ( a v b ) v d ) ^ ( ( a v b ) v c ) ) = ( ( c ^ d ) v ( a v b ) ) $= ( wo wa ancom vneulem5 ax-r2 orcom vneulem4 ror 3tr ) ABFZDFZOCFZGZOQDGZF ZSOFCDGZOFRQPGTPQHCDABIJOSKSUAOCDABELMN $. $( [31-Mar-2011] $) $( [31-Mar-2011] $) $( Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96 $) vneulem10 $p |- ( ( ( a v b ) v c ) ^ ( ( a v c ) v d ) ) = ( a v c ) $= ( wo wa ax-a2 ax-r5 or32 2an wf orcom tr vneulem8 ) ABFZCFZACFZDFZGBAFZCF ZADFCFZGRQUASUBPTCABHIACDJKBADCTDCFZGPCDFZGLTPUCUDBAMDCMKENON $. $( [31-Mar-2011] $) $( [31-Mar-2011] $) $( Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96 $) vneulem11 $p |- ( ( ( b v c ) v d ) ^ ( ( a v c ) v d ) ) = ( ( c v d ) v ( a ^ b ) ) $= ( wo wa ax-a3 orcom tr ax-a2 ror or32 2an wf ancom vneulem9 3tr ) BCFDFZA CFZDFZGCDFZBFZUBAFZGABGZUBFUBUEFSUCUAUDSBUBFUCBCDHBUBIJUACAFZDFUDTUFDACKL CADMJNCDABUBABFZGUGUBGOUBUGPEJQUEUBIR $. $( [31-Mar-2011] $) $( [31-Mar-2011] $) $} $( Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96 $) vneulem12 $p |- ( ( ( c ^ d ) v ( a v b ) ) ^ ( ( c v d ) v ( a ^ b ) ) ) = ( ( c ^ d ) v ( ( a v b ) ^ ( ( c v d ) v ( a ^ b ) ) ) ) $= ( wa wo ml cm orass leao1 df-le2 ror tr lan lor 3tr2 ) CDEZABFZFZQCDFZABEZF ZFZEZQRUCEZFZSUBEQRUBEZFUFUDQRUBGHUCUBSUCQTFZUAFZUBUIUCQTUAIHUHTUAQTCDDJKLM ZNUEUGQUCUBRUJNOP $. $( [31-Mar-2011] $) $( [31-Mar-2011] $) ${ vneulem13.1 $e |- ( ( a v b ) ^ ( c v d ) ) = 0 $. $( Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96 $) vneulem13 $p |- ( ( c ^ d ) v ( ( a v b ) ^ ( ( c v d ) v ( a ^ b ) ) ) ) = ( ( c ^ d ) v ( a ^ b ) ) $= ( wo wa leao1 leid ler2an lear lebi lor lan mldual wf 2or or0r tr 3tr ) A BFZCDFZABGZFZGZUCCDGUEUAUBUAUCGZFZGUAUBGZUFFZUCUDUGUAUCUFUBUCUFUCUAUCABBH UCIJZUAUCKZLMNUAUBUCOUIPUCFUCUHPUFUCEUFUCUKUJLQUCRSTM $. $( [31-Mar-2011] $) $( [31-Mar-2011] $) $( Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96 $) vneulem14 $p |- ( ( ( c ^ d ) v ( a v b ) ) ^ ( ( c v d ) v ( a ^ b ) ) ) = ( ( c ^ d ) v ( a ^ b ) ) $= ( wa wo vneulem12 vneulem13 tr ) CDFZABGZGCDGABFZGZFKLNFGKMGABCDHABCDEIJ $. $( [31-Mar-2011] $) $( [31-Mar-2011] $) $( Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96 $) vneulem15 $p |- ( ( a v c ) ^ ( b v d ) ) = ( ( ( ( a v b ) v c ) ^ ( ( a v c ) v d ) ) ^ ( ( ( a v b ) v d ) ^ ( ( b v c ) v d ) ) ) $= ( wo wa vneulem10 vneulem8 2an cm ) ABFZCFACFZDFGZLDFBCFDFGZGMBDFZGNMOPAB CDEHABCDEIJK $. $( [31-Mar-2011] $) $( [31-Mar-2011] $) $( Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96 $) vneulem16 $p |- ( ( ( ( a v b ) v c ) ^ ( ( a v c ) v d ) ) ^ ( ( ( a v b ) v d ) ^ ( ( b v c ) v d ) ) ) = ( ( a ^ b ) v ( c ^ d ) ) $= ( wo wa ancom an4 vneulem9 vneulem11 2an tr vneulem14 orcom 3tr ) ABFZCFZ ACFDFZGZQDFZBCFDFZGZGUCTGZCDGZQFZCDFABGZFZGZUGUEFZTUCHUDUARGZUBSGZGUIUAUB RSIUKUFULUHABCDEJABCDEKLMUIUEUGFUJABCDENUEUGOMP $. $( [31-Mar-2011] $) $( [31-Mar-2011] $) $} ${ vneulem.1 $e |- ( ( a v b ) ^ ( c v d ) ) = 0 $. $( von Neumann's modular law lemma. Lemma 9, Kalmbach p. 96 $) vneulem $p |- ( ( a v c ) ^ ( b v d ) ) = ( ( a ^ b ) v ( c ^ d ) ) $= ( wo wa vneulem15 vneulem16 tr ) ACFZBDFGABFZCFKDFGLDFBCFDFGGABGCDGFABCDE HABCDEIJ $. $( [31-Mar-2011] $) $( [31-Mar-2011] $) $} ${ vneulemexp.1 $e |- ( ( a v b ) ^ ( c v d ) ) = 0 $. $( Expanded version of ~ vneulem . $) vneulemexp $p |- ( ( a v c ) ^ ( b v d ) ) = ( ( a ^ b ) v ( c ^ d ) ) $= ( wo wa or32 2an orcom ror tr ancom ml cm 3tr ran ler2an lebi wf lor leor ax-a2 ax-r5 ax-r2 leid lear anass or0r leao3 lerr bltr lel2or leao2 leror lan ler leo leao1 lbtr le0 an4 ax-a3 orass df-le2 3tr2 mldual 2or ) ACFZB DFZGZABFZCFZVIDFZGZVLDFZBCFZDFZGZGZABGZCDGZFZVTVKVOVIVSVJVOBAFZCFZADFZCFZ GZVIVMWEVNWGVLWDCABUCUDACDHIWHDBGZVIFZVIWHWJWHVIVIBFZDGZFZWJWHWKVNGZWMWEW KWGVNWEVMWKWDVLCBAJZKABCHLADCHIWNVNWKGZVIDWKGZFZWMWKVNMWRWPVIDBNOWQWLVIDW KMUAPUEVIWJWLVIWIUBWLWBWJWLVMDGZWBWKVMDACBHQWSVMCDFZDGZGZVLWTGZCFZDGZWBDX AVMDXADWTDDCUBDUFRWTDUGSUPXBVMWTGZDGZXEXGXBVMWTDUHOXFXDDXFCVLFZWTGZCXCFZX DVMXHWTVLCUCQXJXICVLDNOCXCJPQLXDCDXDTCFCXCTCEKCUILQPZLWBVIWICDAUJUKULUMUL WJWEWGWIWEVIWIWDCBDAUNZUQAWDCABUBUOUMWIWGVIWIWFCDBAUJUQAWFCADURUOUMRSWJTV IFVIWITVIWITWIWDDCFZGZTWIWDXMXLDBCUSRXNXCTWDVLXMWTWODCJIELZUTWIVASKVIUILL LVSCAGZVJFZVJVSXQVSVJVJAFZCGZFZXQVSXRVJCFZGZXTVPXRVRYAVPWDDFZXRVLWDDABJKB ADHLBCDHIYBYAXRGZVJCXRGZFZXTXRYAMYFYDVJCANOYEXSVJCXRMUAPUEVJXQXSVJXPUBXSD CGZXQXSYCCGZYGXRYCCBDAHQYHYCXMCGZGZXNDFZCGZYGCYIYCCYICXMCCDUBCUFRXMCUGSUP YJYCXMGZCGZYLYNYJYCXMCUHOYMYKCYMDWDFZXMGZDXNFZYKYCYOXMWDDUCQYQYPDWDCNODXN JPQLYKDCYKTDFDXNTDXOKDUILQPLYGVJXPDCBUJUKULUMULXQVPVRXPVPVJXPVLDACBUNZUQB VLDBAUBZUOUMXPVRVJXPVQDCABUJUQBVQDBCURUOUMRSXQTVJFVJXPTVJXPTXPXCTXPVLWTYR CADUSREUTXPVASKVJUILLIOVTVSVOGZWBVLFZWTWAFZGZWCVOVSMYTVPVMGZVRVNGZGUUCVPV RVMVNVBUUDUUAUUEUUBUUDVLWSFZWSVLFUUAUUDVMVPGZUUFVPVMMUUGUUDVLDVMGZFZUUFVM VPMUUIUUDVLDCNOUUHWSVLDVMMUAPUEVLWSJWSWBVLXKKPUUEWTBFZWTAFZGZWAWTFZUUBVRU UJVNUUKVRBWTFUUJBCDVCBWTJLVNCAFZDFUUKVIUUNDACUCKCADHLIUULWTUUKBGZFZUUOWTF UUMUULUUKUUJGZUUPUUJUUKMUUQUULWTBUUKGZFZUUPUUKUUJMUUSUULWTBANOUURUUOWTBUU KMUAPUEWTUUOJUUOWAWTUUOUUKVLBGZGZWTVLGZAFZBGZWABUUTUUKBUUTBVLBYSBUFRVLBUG SUPUVAUUKVLGZBGZUVDUVFUVAUUKVLBUHOUVEUVCBUVEAWTFZVLGZAUVBFZUVCUUKUVGVLWTA UCQUVIUVHAWTBNOAUVBJPQLUVCABUVCTAFAUVBTAUVBXCTWTVLMELKAUILQPKPWAWTJPILUUC WBWAFZWCUUCWBVLUUBGZFZUVJUUAWBUUBFZGZWBVLUVMGZFZUUCUVLUVPUVNWBVLUUBNOUVMU UBUUAUVMWBWTFZWAFZUUBUVRUVMWBWTWAVDOUVQWTWAWBWTCDDUSVEKLZUPUVOUVKWBUVMUUB VLUVSUPUAVFUVKWAWBUVKVLWTVLWAGZFZGXCUVTFZWAUUBUWAVLWAUVTWTWAUVTWAVLWAABBU SWAUFRZVLWAUGZSUAUPVLWTWAVGUWBTWAFWAXCTUVTWAEUVTWAUWDUWCSVHWAUILPUALWBWAJ LPL $. $( [31-Mar-2011] $) $( [31-Mar-2011] $) $} $( Lemma for ~ l42mod .. $) l42modlem1 $p |- ( ( ( a v b ) v d ) ^ ( ( a v b ) v e ) ) = ( ( a v b ) v ( ( a v d ) ^ ( b v e ) ) ) $= ( wo wa leo ml2i ancom tr lor cm orass or12 2an lerr 3tr 3tr1 ) ABDEZBACEZE ZFZEZABTSFZEZEZABEZCEZUGDEZFZUGUDEUFUCUEUBAUEUASFUBSTBBDGHUASIJKLUJUAASEZFU KUAFZUCUHUAUIUKUHABCEEUAABCMABCNJABDMOUAUKIUCULUASAATBACGPHLQABUDMR $. $( [8-Apr-2012] $) $( Lemma for ~ l42mod .. $) l42modlem2 $p |- ( ( ( ( a v b ) ^ c ) v d ) ^ e ) =< ( ( ( a v b ) v d ) ^ ( ( a v b ) v e ) ) $= ( wo wa lea leror leor le2an ) ABFZCGZDFLDFELEFMLDLCHIELJK $. $( [8-Apr-2012] $) $( An equation that fails in OML L42 when converted to a Hilbert space equation. $) l42mod $p |- ( ( ( ( a v b ) ^ c ) v d ) ^ e ) =< ( ( a v b ) v ( ( a v d ) ^ ( b v e ) ) ) $= ( wo wa l42modlem2 l42modlem1 lbtr ) ABFZCGDFEGKDFKEFGKADFBEFGFABCDEHABDEIJ $. $( [8-Apr-2012] $) $( Expansion by modular law. $) modexp $p |- ( a ^ ( b v c ) ) = ( a ^ ( b v ( c ^ ( a v b ) ) ) ) $= ( wo wa anass anabs ran ancom leor mlduali tr lan 3tr2 ) AABDZEZBCDZEAOQEZE AQEABCOEDZEAOQFPAQABGHRSARQOESOQIBCOBAJKLMN $. $( [10-Apr-2012] $) $( Experimental expansion of l42mod. l42modexp $p |- ( ( ( a v b ) v d ) ^ ( ( a v b ) v e ) ) = ( ( a v b ) v ( ( a v d ) ^ ( b v e ) ) ) $= ( l42modlem1 modexp id tr lor lan cm ) ???????E???????????????FZ?????????L? ????????L?????????L?????????L?????????L?????????L?????????L?GHIJHIJHIJHIJHI JHIJHIJHIKHH $. $) $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Arguesian law =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= $) ${ arg.1 $e |- ( ( a0 v b0 ) ^ ( a1 v b1 ) ) =< ( a2 v b2 ) $. $( The Arguesian law as an axiom. $) ax-arg $a |- ( ( a0 v a1 ) ^ ( b0 v b1 ) ) =< ( ( ( a0 v a2 ) ^ ( b0 v b2 ) ) v ( ( a1 v a2 ) ^ ( b1 v b2 ) ) ) $. $} ${ dp15lema.1 $e |- d = ( a2 v ( a0 ^ ( a1 v b1 ) ) ) $. dp15lema.2 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $. dp15lema.3 $e |- e = ( b0 ^ ( a0 v p0 ) ) $. $( Part of proof (1)=>(5) in Day/Pickering 1982. $) dp15lema $p |- ( ( a0 v e ) ^ ( a1 v b1 ) ) =< ( d v b2 ) $= ( wo wa lor tr ran wt leran cm lan le1 lelor an1r orass oridm ror 3tr lea orcom mlduali lear leror bltr or32 lbtr letr ) CBMZDGMZNCFCUSEHMZNZMZNZMZ USNZAHMZURVDUSBVCCBFCIMZNVCLVGVBFIVACKOUAPOQVECRVBNZMZUSNZVFVDVIUSVCVHCFR VBFUBSUCSVJUTCUSNZMZVFVJVAVKMZVLVJVACMZUSNVMVIVNUSVICVBMZCCMZVAMZVNVHVBCV BUDOVQVOCCVAUETVQVBVNVPCVACUFUGCVAUJPUHQVACUSUSUTUIUKPVAUTVKUSUTULUMUNVLE VKMZHMZVFEHVKUOVFVSAVRHJUGTPUPUQUN $. $( [1-Apr-2012] $) $( Part of proof (1)=>(5) in Day/Pickering 1982. $) dp15lemb $p |- ( ( a0 v a1 ) ^ ( e v b1 ) ) =< ( ( ( a0 v d ) ^ ( e v b2 ) ) v ( ( a1 v d ) ^ ( b1 v b2 ) ) ) $= ( dp15lema ax-arg ) CDABGHABCDEFGHIJKLMN $. $( [1-Apr-2012] $) $( Part of proof (1)=>(5) in Day/Pickering 1982. $) dp15lemc $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) ) =< ( ( ( a0 v ( a2 v ( a0 ^ ( a1 v b1 ) ) ) ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b2 ) ) v ( ( a1 v ( a2 v ( a0 ^ ( a1 v b1 ) ) ) ) ^ ( b1 v b2 ) ) ) $= ( wo wa dp15lemb ror lan lor 2an ran 2or le3tr2 ) CDMZBGMZNCAMZBHMZNZDAMZ GHMZNZMUCFCIMNZGMZNCECDGMNMZMZUKHMZNZDUMMZUINZMABCDEFGHIJKLOUDULUCBUKGLPQ UGUPUJURUEUNUFUOAUMCJRBUKHLPSUHUQUIAUMDJRTUAUB $. $( [10-Apr-2012] $) $( Part of proof (1)=>(5) in Day/Pickering 1982. $) dp15lemd $p |- ( ( ( a0 v ( a2 v ( a0 ^ ( a1 v b1 ) ) ) ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b2 ) ) v ( ( a1 v ( a2 v ( a0 ^ ( a1 v b1 ) ) ) ) ^ ( b1 v b2 ) ) ) = ( ( ( a0 v a2 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b2 ) ) v ( ( ( a1 v a2 ) v ( a0 ^ ( a1 v b1 ) ) ) ^ ( b1 v b2 ) ) ) $= ( wo wa or12 orabs lor orcom 3tr ran orass cm 2or ) CECDGMZNZMZMZFCIMNHMZ NCEMZUHNDUFMZGHMZNZDEMUEMZUKNZUGUIUHUGECUEMZMECMUICEUEOUOCECUDPQECRSTUNUL UMUJUKDEUEUATUBUC $. $( [1-Apr-2012] $) $( Part of proof (1)=>(5) in Day/Pickering 1982. $) dp15leme $p |- ( ( ( a0 v a2 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b2 ) ) v ( ( ( a1 v a2 ) v ( a0 ^ ( a1 v b1 ) ) ) ^ ( b1 v b2 ) ) ) =< ( ( ( a0 v a2 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b2 ) ) v ( ( ( a1 v a2 ) v ( b1 ^ ( a0 v a1 ) ) ) ^ ( b1 v b2 ) ) ) $= ( wo wa ax-a2 lan 2or orass tr lelor ml3le bltr cm ror lbtr leran ) DEMZC DGMZNZMZGHMZNUGGCDMNZMZUKNCEMFCIMNHMNUJUMUKUJEDULMZMZUMUJEDCGDMZNZMZMZUOU JEDMZUQMUSUGUTUIUQDEOUHUPCDGOPQEDUQRSURUNEDCGUATUBUOUTULMZUMVAUOEDULRUCUT UGULEDOUDSUEUFT $. $( [1-Apr-2012] $) $( Part of proof (1)=>(5) in Day/Pickering 1982. $) dp15lemf $p |- ( ( ( a0 v a2 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b2 ) ) v ( ( ( a1 v a2 ) v ( b1 ^ ( a0 v a1 ) ) ) ^ ( b1 v b2 ) ) ) =< ( ( ( a1 v a2 ) ^ ( b1 v b2 ) ) v ( ( ( a0 v a2 ) ^ ( b0 v b2 ) ) v ( b1 ^ ( a0 v a1 ) ) ) ) $= ( wo wa lea leror lelan leao1 mldual2i ancom 3tr2 bile le2or or12 lbtr ror ) CEMZFCIMZNZHMZNZDEMZGCDMZNZMZGHMZNZMUGFHMZNZULUPNZUNMZMUTUSUNMMUKUS UQVAUJURUGUIFHFUHOPQUQVAUPUONUPULNZUNMUQVAUNULUPGUMHRSUPUOTVBUTUNUPULTUFU AUBUCUSUTUNUDUE $. $( [1-Apr-2012] $) dp15lemg.4 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. dp15lemg.5 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. $( Part of proof (1)=>(5) in Day/Pickering 1982. $) dp15lemg $p |- ( ( ( a1 v a2 ) ^ ( b1 v b2 ) ) v ( ( ( a0 v a2 ) ^ ( b0 v b2 ) ) v ( b1 ^ ( a0 v a1 ) ) ) ) = ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $= ( wo wa ror cm 2or orass tr ) DEQGHQRZCEQFHQRZGCDQRZQZQZIJUFQZQZIJQUFQZUJ UHIUDUIUGOJUEUFPSUATUKUJIJUFUBTUC $. $( [1-Apr-2012] $) $( Part of proof (1)=>(5) in Day/Pickering 1982. $) dp15lemh $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) ) =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $= ( wo wa lbtr letr dp15lemc dp15lemd dp15leme dp15lemf dp15lemg ) CDQZFCKQ RZGQRZDEQZGHQZRCEQZFHQRGUFRZQQZIJQULQUHUKUGHQZRZUIULQUJRQZUMUHUOUICDGQRZQ UJRQZUPUHCEUQQZQUNRDUSQUJRQURABCDEFGHKLMNUAABCDEFGHKLMNUBSABCDEFGHKLMNUCT ABCDEFGHKLMNUDTABCDEFGHIJKLMNOPUES $. $( [2-Apr-2012] $) $} ${ dp15.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. dp15.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. dp15.3 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $. $( Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (1)=>(5) $) dp15 $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) ) =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $= ( wo wa id dp15lemh ) CABEMNMZDAIMNZABCDEFGHIQOLROJKP $. $( [1-Apr-2012] $) $} ${ dp53lem.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. dp53lem.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. dp53lem.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $. dp53lem.4 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $. dp53lem.5 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $. $( Part of proof (5)=>(3) in Day/Pickering 1982. $) dp53lema $p |- ( b1 v ( b0 ^ ( a0 v p0 ) ) ) =< ( b1 v ( ( a0 v a1 ) ^ ( c0 v c1 ) ) ) $= ( wo wa lbtr letr leo lor lan lear lea lelor cm bltr ler2an leor mldual2i ax-a3 ancom ror tr dp15 orcom leid lel2or ) FFBCQZHIQZRZQZEBKQZRZFVBUAZVE UTVEFQZRZVCQZVCVEVHFQZVIVEVGUTFQZRZVJVEVGVKVEFUAVEEBCFQZDGQZRZQZRZVKVDVPE KVOBOUBUCVQVPVKEVPUDVPBVMQZVKVOVMBVMVNUEUFVKVRBCFULUGSTUHUIVLVGUTRZFQVJFU TVGFVEUJUKVSVHFVGUTUMUNUOSFVCVHVFUFTVHVCVCVHVBFQZVCVHVBFUTRZQZVTVHUTVAWAQ ZRWBVHUTWCUTVGUEBCDEFGHIKLMOUPUIWAVAUTFUTUDUKSWAFVBFUTUEUFTVBFUQSVCURUSTU S $. $( [2-Apr-2012] $) $( Part of proof (5)=>(3) in Day/Pickering 1982. $) dp53lemb $p |- ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) = ( b0 ^ ( b1 v ( ( a0 v a1 ) ^ ( c0 v c1 ) ) ) ) $= ( wo wa ran 3tr an32 tr lor leor ml2i ancom lan anass cm anabs ) EFJHIQZR ZQZREEFQZFBCQZUKRZQZRZRZEUNRZUQRZEUQRUMUREUMFUPUNRZQUQUNRURULVBFULUOUNRZU KRVBJVCUKNSUOUNUKUAUBUCUNUPFFEUDUEUQUNUFTUGVAUSEUNUQUHUIUTEUQEFUJST $. $( [2-Apr-2012] $) $( Part of proof (5)=>(3) in Day/Pickering 1982. $) dp53lemc $p |- ( b0 ^ ( ( ( a0 ^ b0 ) v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) ) = ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) $= ( wa wo leo le2an or32 orcom cm lbtr lerr ler2an df-le2 lor 3tr lan ) BEQ ZFRJHIRZQZRZFUMRZEUNUKUMRZFRFUPRUOUKFUMUAUPFUBUPUMFUKUMUKJULUKBCRZEFRZQZJ BUQEURBCSEFSTJUSNUCUDUKIHUKBDRZEGRZQZIBUTEVABDSEGSTIVBMUCUDUEUFUGUHUIUJ $. $( [2-Apr-2012] $) $( Part of proof (5)=>(3) in Day/Pickering 1982. $) dp53lemd $p |- ( b0 ^ ( a0 v p0 ) ) =< ( b0 ^ ( ( ( a0 ^ b0 ) v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) ) $= ( wo wa lea leor dp53lema letr ler2an dp53lemc dp53lemb tr cm lbtr ) EBKQ ZRZEFBCQHIQZRQZRZEBERFQJUKRZQRZUJEULEUISUJFUJQULUJFTABCDEFGHIJKLMNOPUAUBU CUOUMUOEFUNQRUMABCDEFGHIJKLMNOPUDABCDEFGHIJKLMNOPUEUFUGUH $. $( [3-Apr-2012] $) $( Part of proof (5)=>(3) in Day/Pickering 1982. $) dp53leme $p |- ( b0 ^ ( a0 v p0 ) ) =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $= ( wo wa dp53lemd orcom orass tr lan lear mldual2i 3tr lea leror bltr letr ) EBKQREBERZFQJHIQRZQZRZBEFULQZRZQZABCDEFGHIJKLMNOPSUNUKUPQZUQUNEUOUKQZRU PUKQURUMUSEUMUKUOQUSUKFULUAUKUOTUBUCUKUOEBEUDUEUPUKTUFUKBUPBEUGUHUIUJ $. $( [3-Apr-2012] $) $( Part of proof (5)=>(3) in Day/Pickering 1982. $) dp53lemf $p |- ( a0 v p ) =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $= ( wo wa leo lbtr anass tr lan cm leao4 bltr lea orcom ler2an mldual2i ror ancom lelor letr dp53leme df-le2 lel2or ) BBEFJHIQRQRZQZABURSZAEBKQZRZUSQ ZUSAVBBQZVCAVAEBQZRZVDABEQZCFQZDGQZRZRZVFAVGVHRVIRVKPVGVHVIUAUBVKVAVEVKVG KRZVAVLVKKVJVGOUCUDKVGBUEUFVKVGVEVGVJUGBEUHTUIUFVFVAERZBQVDBEVABKSUJVMVBB VAEULUKUBTBUSVBUTUMUNVBUSABCDEFGHIJKLMNOPUOUPTUQ $. $( [3-Apr-2012] $) $( Part of proof (5)=>(3) in Day/Pickering 1982. $) dp53lemg $p |- p =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $= ( wo wa leor dp53lemf letr ) ABAQBEFJHIQRQRQABSABCDEFGHIJKLMNOPTUA $. $( [2-Apr-2012] $) $} ${ dp53.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. dp53.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. dp53.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $. dp53.4 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $. $( Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (5)=>(3) $) dp53 $p |- p =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $= ( wo wa id dp53lemg ) ABCDEFGHIJCFODGOPZKLMSQNR $. $( [2-Apr-2012] $) $} ${ dp35lem.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. dp35lem.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. dp35lem.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $. dp35lem.4 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $. dp35lem.5 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $. $( Part of proof (3)=>(5) in Day/Pickering 1982. $) dp35lemg $p |- p =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $= ( dp53 ) ABCDEFGHIJLMNPQ $. $( [12-Apr-2012] $) $( Part of proof (3)=>(5) in Day/Pickering 1982. $) dp35lemf $p |- ( a0 v p ) =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $= ( wo wa leo dp35lemg lel2or ) BBEFJHIQRQRZQABUBSABCDEFGHIJKLMNOPTUA $. $( [12-Apr-2012] $) $( Part of proof (3)=>(5) in Day/Pickering 1982. $) dp35leme $p |- ( b0 ^ ( a0 v p0 ) ) =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $= ( wo wa lor ancom leor bile le2an anass cm leo mlduali 3tr1 dp35lemf bltr tr letr ) EBKQZRBEQZBCFQZDGQZRZQZRZBEFJHIQRQRQZEUNUMUREBUAUMURKUQBOSUBUCU SBAQZUTBUQUNRZQZBUNUORUPRZQUSVAVBVDBVBUNUQRZVDUQUNTVDVEUNUOUPUDUEUKSUSURU NRVCUNURTBUQUNBEUFUGUKAVDBPSUHABCDEFGHIJKLMNOPUIUJUL $. $( [12-Apr-2012] $) $( Part of proof (3)=>(5) in Day/Pickering 1982. $) dp35lemd $p |- ( b0 ^ ( a0 v p0 ) ) =< ( b0 ^ ( ( ( a0 ^ b0 ) v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) ) $= ( wo wa lea ler2an dp35leme mldual2i lel2or ancom bile lear le2or cm lbtr orass bltr letr ) EBKQZRZEBEFJHIQRZQZRZQZRZEBERZFQUOQZRZUNEUREUMSABCDEFGH IJKLMNOPUATUSEBRZUQQZVBUQBEEUPSZUBVDEVAVCEUQEBSVEUCVDUTUPQZVAVCUTUQUPVCUT EBUDUEEUPUFUGVAVFUTFUOUJUHUITUKUL $. $( [12-Apr-2012] $) $( Part of proof (3)=>(5) in Day/Pickering 1982. $) dp35lemc $p |- ( b0 ^ ( ( ( a0 ^ b0 ) v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) ) = ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) $= ( wa wo leo le2an or32 orcom cm lbtr lerr ler2an df-le2 lor 3tr lan ) BEQ ZFRJHIRZQZRZFUMRZEUNUKUMRZFRFUPRUOUKFUMUAUPFUBUPUMFUKUMUKJULUKBCRZEFRZQZJ BUQEURBCSEFSTJUSNUCUDUKIHUKBDRZEGRZQZIBUTEVABDSEGSTIVBMUCUDUEUFUGUHUIUJ $. $( [2-Apr-2012] $) $( Part of proof (3)=>(5) in Day/Pickering 1982. $) dp35lemb $p |- ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) = ( b0 ^ ( b1 v ( ( a0 v a1 ) ^ ( c0 v c1 ) ) ) ) $= ( wo wa ran 3tr an32 tr lor leor ml2i ancom lan anass cm anabs ) EFJHIQZR ZQZREEFQZFBCQZUKRZQZRZRZEUNRZUQRZEUQRUMUREUMFUPUNRZQUQUNRURULVBFULUOUNRZU KRVBJVCUKNSUOUNUKUAUBUCUNUPFFEUDUEUQUNUFTUGVAUSEUNUQUHUIUTEUQEFUJST $. $( [2-Apr-2012] $) $( Part of proof (3)=>(5) in Day/Pickering 1982. $) dp35lembb $p |- ( b0 ^ ( a0 v p0 ) ) =< ( b0 ^ ( b1 v ( ( a0 v a1 ) ^ ( c0 v c1 ) ) ) ) $= ( wo wa dp35lemd dp35lemc dp35lemb tr lbtr ) EBKQREBERFQJHIQZRZQRZEFBCQUD RQRZABCDEFGHIJKLMNOPSUFEFUEQRUGABCDEFGHIJKLMNOPTABCDEFGHIJKLMNOPUAUBUC $. $( [12-Apr-2012] $) $( Part of proof (3)=>(5) in Day/Pickering 1982. $) dp35lema $p |- ( b1 v ( b0 ^ ( a0 v p0 ) ) ) =< ( b1 v ( ( a0 v a1 ) ^ ( c0 v c1 ) ) ) $= ( wo wa leo dp35lembb lear letr lel2or ) FFBCQHIQRZQZEBKQRZFUDSUFEUERUEAB CDEFGHIJKLMNOPTEUEUAUBUC $. $( [12-Apr-2012] $) $( Part of proof (3)=>(5) in Day/Pickering 1982. $) dp35lem0 $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) ) =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $= ( wo wa orcom letr leid bltr dp35lema lelan id lea mldual2i tr ancom lbtr ror lear lelor ) BCQZEBKQRZFQZRZFUNRZUNHIQZRZQZUSURQZUQUNFUTQZRZVAUPVCUNU PFUOQZVCUPVEVEUOFSVEUAUBABCDEFGHIJKLMNOPUCTUDVDUNFRZUTQZVAVDVDVGVDUEUTFUN UNUSUFUGUHVFURUTUNFUIUKUHUJVAURUSQVBUTUSURUNUSULUMURUSSUJT $. $( [12-Apr-2012] $) $} ${ dp35.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. dp35.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. dp35.3 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $. $( Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (3)=>(5) $) dp35 $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) ) =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $= ( wo wa id dp35lem0 ) ADMBEMNCFMNZABCDEFGHABMDEMNZIJKROLQOP $. $( [12-Apr-2012] $) $} ${ dp34.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. dp34.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. dp34.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $. dp34.4 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $. $( Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (3)=>(4) $) dp34 $p |- p =< ( ( a0 v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) $= ( wo wa dp53 lear lelor letr orass cm lbtr ) ABFJHIOPZOZOZBFOUDOZABEUEPZO UFABCDEFGHIJKLMNQUHUEBEUERSTUGUFBFUDUAUBUC $. $( [3-Apr-2012] $) $} ${ dp41lem.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. dp41lem.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. dp41lem.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $. dp41lem.4 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $. dp41lem.5 $e |- p2 = ( ( a0 v b0 ) ^ ( a1 v b1 ) ) $. dp41lem.6 $e |- p2 =< ( a2 v b2 ) $. $( Part of proof (4)=>(1) in Day/Pickering 1982. $) dp41lema $p |- ( ( a0 v b0 ) ^ ( a1 v b1 ) ) =< ( ( a0 v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) $= ( wo wa cm bltr df2le2 tr dp34 ) BERCFRSZABFRJHIRSRUEUEDGRZSZAUGUEUEUFUEK UFKUEPTQUAUBTAUGOTUCABCDEFGHIJLMNOUDUA $. $( [3-Apr-2012] $) $( Part of proof (4)=>(1) in Day/Pickering 1982. $) dp41lemb $p |- c2 = ( ( c2 ^ ( ( a0 v b0 ) v b1 ) ) ^ ( ( a0 v a1 ) v b1 ) ) $= ( wo wa tr ancom leor leror leo le2an bltr df2le2 cm anass ) JJBERZFRZBCR ZFRZSZSZJUKSUMSZUOJJUNJEFRZULSZUNJULUQSURNULUQUATUQUKULUMEUJFEBUBUCULFUDU EUFUGUHUPUOJUKUMUIUHT $. $( [3-Apr-2012] $) $( Part of proof (4)=>(1) in Day/Pickering 1982. $) dp41lemc0 $p |- ( ( ( a0 v b0 ) v b1 ) ^ ( ( a0 v a1 ) v b1 ) ) = ( ( a0 v b1 ) v ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ) $= ( wo wa tr ax-a2 ror or32 lan ancom leor ler mldual2i leo 3tr orass orcom ) BERZFRZBCRZFRZSZUMCFRZSZBRZFRZUSBFRZRVBUSRUQURBRZUNSZVCUMSZFRVAUQUNVCSV DUPVCUNUPCBRZFRVCUOVFFBCUAUBCBFUCTUDUNVCUETFUMVCFURBFCUFUGUHVEUTFVEUMVCSU TVCUMUEBURUMBEUIUHTUBUJUSBFUKUSVBULUJ $. $( [4-Apr-2012] $) $( Part of proof (4)=>(1) in Day/Pickering 1982. $) dp41lemc $p |- ( ( c2 ^ ( ( a0 v b0 ) v b1 ) ) ^ ( ( a0 v a1 ) v b1 ) ) =< ( c2 ^ ( ( a0 v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) ) $= ( wo wa bltr anass dp41lemc0 leo dp41lema lel2or lelan ) JBERZFRZSBCRFRZS JUHUISZSJBFRZJHIRSZRZSJUHUIUAUJUMJUJUKUGCFRSZRUMABCDEFGHIJKLMNOPQUBUKUMUN UKULUCABCDEFGHIJKLMNOPQUDUETUFT $. $( [3-Apr-2012] $) $( Part of proof (4)=>(1) in Day/Pickering 1982. $) dp41lemd $p |- ( c2 ^ ( ( a0 v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) ) = ( c2 ^ ( ( c0 v c1 ) v ( c2 ^ ( a0 v b1 ) ) ) ) $= ( wo wa ancom mldual lor lea ml2i ax-a2 lan 3tr ) JBFRZJHIRZSZRSJUHSZUJRU KUIJSZRZJUIUKRZSZJUHUIUAUJULUKJUITUBUMUKUIRZJSJUPSUOJUIUKJUHUCUDUPJTUPUNJ UKUIUEUFUGUG $. $( [3-Apr-2012] $) $( Part of proof (4)=>(1) in Day/Pickering 1982. $) dp41leme $p |- ( c2 ^ ( ( c0 v c1 ) v ( c2 ^ ( a0 v b1 ) ) ) ) =< ( ( c0 v c1 ) v ( ( a0 ^ ( b0 v b1 ) ) v ( b1 ^ ( a0 v a1 ) ) ) ) $= ( wo wa lor mldual ran anass leor mldual2i orcom ancom 3tr lan leao1 lear tr leror bltr ) JHIRZJBFRZSZRSZJUOSZBEFRZSZFBCRZSZRZRZUOVDRURUSUQRVEJUOUP UAUQVDUSUQVBUTSZUPSVBUTUPSZSZVDJVFUPNUBVBUTUPUCVHVBFVARZSVBFSZVARZVDVGVIV BVGUTBSZFRFVLRVIFBUTFEUDUEVLFUFVLVAFUTBUGTUHUIVAFVBBUTCUJUEVKVAVJRVDVJVAU FVJVCVAVBFUGTULUHUHTULUSUOVDJUOUKUMUN $. $( [3-Apr-2012] $) $( Part of proof (4)=>(1) in Day/Pickering 1982. $) dp41lemf $p |- ( ( c0 v c1 ) v ( ( a0 ^ ( b0 v b1 ) ) v ( b1 ^ ( a0 v a1 ) ) ) ) = ( ( ( b1 v b2 ) ^ ( ( a1 v a2 ) v ( b1 ^ ( a0 v a1 ) ) ) ) v ( ( a0 v a2 ) ^ ( ( b0 v b2 ) v ( a0 ^ ( b0 v b1 ) ) ) ) ) $= ( wo wa tr orcom lor or4 ancom ror 2or leao1 mli 3tr ) HIRZBEFRZSZFBCRZSZ RZRUJUNULRZRZFGRZCDRZSZUNRZBDRZEGRZSZULRZRZURUSUNRSZVBVCULRSZRUOUPUJULUNU AUBUQHUNRZIULRZRVFHIUNULUCVIVAVJVEHUTUNHUSURSUTLUSURUDTUEIVDULMUEUFTVAVGV EVHURUSUNFUMGUGUHVBVCULBUKDUGUHUFUI $. $( [3-Apr-2012] $) $( Part of proof (4)=>(1) in Day/Pickering 1982. $) dp41lemg $p |- ( ( ( b1 v b2 ) ^ ( ( a1 v a2 ) v ( b1 ^ ( a0 v a1 ) ) ) ) v ( ( a0 v a2 ) ^ ( ( b0 v b2 ) v ( a0 ^ ( b0 v b1 ) ) ) ) ) = ( ( ( b1 v b2 ) ^ ( ( a1 v a2 ) v ( a0 ^ ( a1 v b1 ) ) ) ) v ( ( a0 v a2 ) ^ ( ( b0 v b2 ) v ( b1 ^ ( a0 v b0 ) ) ) ) ) $= ( wo wa or32 ml3 orcom lan lor tr ror 3tr 2or ) FGRZCDRZFBCRSZRZSUIUJBCFR ZSZRZSBDRZEGRZBEFRZSZRZSUPUQFBERSZRZSULUOUIULCUKRZDRCUNRZDRUOCDUKTVCVDDVC CBFCRZSZRVDCFBUAVFUNCVEUMBFCUBUCUDUEUFCUNDTUGUCUTVBUPUTEUSRZGREVARZGRVBEG USTVGVHGVGEBFERZSZRVHUSVJEURVIBEFUBUCUDEBFUAUEUFEVAGTUGUCUH $. $( [3-Apr-2012] $) $( Part of proof (4)=>(1) in Day/Pickering 1982. "By CP(a,b)". $) dp41lemh $p |- ( ( ( b1 v b2 ) ^ ( ( a1 v a2 ) v ( a0 ^ ( a1 v b1 ) ) ) ) v ( ( a0 v a2 ) ^ ( ( b0 v b2 ) v ( b1 ^ ( a0 v b0 ) ) ) ) ) =< ( ( ( b1 v b2 ) ^ ( ( a1 v a2 ) v ( a0 ^ ( a2 v b2 ) ) ) ) v ( ( a0 v a2 ) ^ ( ( b0 v b2 ) v ( b1 ^ ( a2 v b2 ) ) ) ) ) $= ( wo wa ler2an lea leo leran cm bltr letr lelor lelan lear leao3 le2or ) FGRZCDRZBCFRZSZRZSULUMBDGRZSZRZSBDRZEGRZFBERZSZRZSUTVAFUQSZRZSUPUSULUOURU MUOBUQBUNUAUOVBUNSZUQBVBUNBEUBUCVGKUQKVGPUDQUEZUFTUGUHVDVFUTVCVEVAVCFUQFV BUAVCVGUQVCVBUNFVBUIFVBCUJTVHUFTUGUHUK $. $( [3-Apr-2012] $) $( Part of proof (4)=>(1) in Day/Pickering 1982. $) dp41lemj $p |- ( ( ( b1 v b2 ) ^ ( ( a1 v a2 ) v ( a0 ^ ( a2 v b2 ) ) ) ) v ( ( a0 v a2 ) ^ ( ( b0 v b2 ) v ( b1 ^ ( a2 v b2 ) ) ) ) ) = ( ( ( b1 v b2 ) ^ ( ( a1 v a2 ) v ( b2 ^ ( a0 v a2 ) ) ) ) v ( ( a0 v a2 ) ^ ( ( b0 v b2 ) v ( a2 ^ ( b1 v b2 ) ) ) ) ) $= ( wo wa orass ax-a2 lan lor ml3 tr 3tr1 2or ) FGRZCDRZBDGRZSZRZSUHUIGBDRZ SZRZSUMEGRZFUJSZRZSUMUPDUHSZRZSULUOUHCDUKRZRCDUNRZRULUOVAVBCVADBGDRZSZRVB UKVDDUJVCBDGUAUBUCDBGUDUEUCCDUKTCDUNTUFUBURUTUMEGUQRZREGUSRZRURUTVEVFEGFD UDUCEGUQTEGUSTUFUBUG $. $( [3-Apr-2012] $) $( Part of proof (4)=>(1) in Day/Pickering 1982. $) dp41lemk $p |- ( ( ( b1 v b2 ) ^ ( ( a1 v a2 ) v ( b2 ^ ( a0 v a2 ) ) ) ) v ( ( a0 v a2 ) ^ ( ( b0 v b2 ) v ( a2 ^ ( b1 v b2 ) ) ) ) ) = ( ( c0 v ( b2 ^ ( a0 v a2 ) ) ) v ( c1 v ( a2 ^ ( b1 v b2 ) ) ) ) $= ( wo wa tr leao3 mldual2i ancom ror cm 2or ) FGRZCDRZGBDRZSZRSZHUJRZUIEGR ZDUGSZRSZIUNRZUKUGUHSZUJRZULUJUHUGGUIFUAUBULURHUQUJHUHUGSUQLUHUGUCTUDUETU OUIUMSZUNRZUPUNUMUIDUGBUAUBUPUTIUSUNMUDUETUF $. $( [3-Apr-2012] $) $( Part of proof (4)=>(1) in Day/Pickering 1982. $) dp41leml $p |- ( ( c0 v ( b2 ^ ( a0 v a2 ) ) ) v ( c1 v ( a2 ^ ( b1 v b2 ) ) ) ) = ( c0 v c1 ) $= ( wo wa orcom or4 ancom leor lelan bltr leran le2or 2or cm tr lbtr df-le2 3tr ) HGBDRZSZRIDFGRZSZRRHIRZUOUQRZRUSURRURHUOIUQUAURUSTUSURUSUNEGRZSZCDR ZUPSZRZURUOVAUQVCUOUNGSVAGUNUBGUTUNGEUCUDUEDVBUPDCUCUFUGVDIHRZURVEVDIVAHV CMLUHUIIHTUJUKULUM $. $( [3-Apr-2012] $) $( Part of proof (4)=>(1) in Day/Pickering 1982. $) dp41lemm $p |- c2 =< ( c0 v c1 ) $= ( wo wa lbtr dp41lemb dp41lemc dp41lemd dp41leme dp41lemf dp41lemg tr 3tr bltr letr dp41lemh dp41lemj dp41lemk dp41leml ) JFGRZCDRZBDGRZSRSBDRZEGRZ FUQSRSRZHIRZJUOUPBCFRSRSURUSFBERZSRSRZUTJVABEFRSZFBCRZSZRRZVCJJVAJBFRZSRS ZVGJJVHJVASRSZVIJJVBFRSVEFRSVJABCDEFGHIJKLMNOPQUAABCDEFGHIJKLMNOPQUBUIABC DEFGHIJKLMNOPQUCTABCDEFGHIJKLMNOPQUDUJVGUOUPVFRSURUSVDRSRVCABCDEFGHIJKLMN OPQUEABCDEFGHIJKLMNOPQUFUGTABCDEFGHIJKLMNOPQUKUJUTUOUPGURSZRSURUSDUOSZRSR HVKRIVLRRVAABCDEFGHIJKLMNOPQULABCDEFGHIJKLMNOPQUMABCDEFGHIJKLMNOPQUNUHT $. $( [3-Apr-2012] $) $} ${ dp41.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. dp41.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. dp41.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $. dp41.4 $e |- p2 = ( ( a0 v b0 ) ^ ( a1 v b1 ) ) $. dp41.5 $e |- p2 =< ( a2 v b2 ) $. $( Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (4)=>(1) $) dp41 $p |- c2 =< ( c0 v c1 ) $= ( wo wa id dp41lemm ) ADPBEPQCFPQZABCDEFGHIJKLMTRNOS $. $( [3-Apr-2012] $) $} ${ dp32.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. dp32.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. dp32.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $. dp32.4 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $. $( Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (3)=>(2) $) dp32 $p |- p =< ( ( a0 ^ ( a1 v ( c2 ^ ( c0 v c1 ) ) ) ) v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $= ( wo wa ancom tr orcom ler2an dp53 2an leao1 mldual2i mldual cm lbtr lerr leao2 ml2i lea df-le2 ran 3tr ror ) ABEFJHIOZPZOZPZOZEBCUQOZPZOZPZVBUSOZA UTVCABCDEFGHIJKLMNUAAEFGBCDHIJHCDOZFGOZPVGVFPKVFVGQRIBDOZEGOZPZVIVHPLVHVI QRJBCOZEFOZPZVLVKPMVKVLQRABEOZCFOZPZDGOZPEBOZFCOZPZGDOZPNVPVTVQWAVNVRVOVS BESCFSUBDGSUBRUATVDUTEPZVBOUSVBOVEVBEUTBVAUSUCUDWBUSVBWBEUTPEBPZUSOZUSUTE QEBURUEWDWCEOZURPUSUREWCWCUQFWCJUPWCVMJWCVKVLBECUIEBFUCTJVMMUFUGWCIHWCVJI WCVHVIBEDUIEBGUCTIVJLUFUGUHTUHUJWEEURWCEEBUKULUMRUNUOUSVBSUNUG $. $( [4-Apr-2012] $) $} ${ dp23.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. dp23.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. dp23.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $. dp23.4 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $. $( Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (2)=>(3) $) dp23 $p |- p =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $= ( wo wa dp32 lea leror letr ) ABCJHIOPZOZPZEFUAOPZOBUDOABCDEFGHIJKLMNQUCB UDBUBRST $. $( [4-Apr-2012] $) $} ${ xdp41.c0 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. xdp41.c1 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. xdp41.c2 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $. xdp41.p $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $. xdp41.p2 $e |- p2 = ( ( a0 v b0 ) ^ ( a1 v b1 ) ) $. xdp41.1 $e |- p2 =< ( a2 v b2 ) $. $( Part of proof (4)=>(1) in Day/Pickering 1982. $) xdp41 $p |- c2 =< ( c0 v c1 ) $= ( wo wa tr ancom leor leror leo le2an bltr df2le2 cm anass ax-a2 ror or32 lan ler mldual2i 3tr orass orcom dp34 lel2or mldual lor lea ml2i lbtr ran lelan leao1 lear letr or4 2or mli ml3 leran ler2an lelor leao3 le2or 3tr1 df-le2 ) JFGRZCDRZBDGRZSZRZSZBDRZEGRZFWDSZRZSZRZHIRZJWBWCBCFRZSZRZSZWHWIF BERZSZRZSZRZWMJWNBEFRZSZFBCRZSZRZRZXCJJWNJBFRZSZRZSZXIJJXJJWNSZRZSZXMJJWS FRZSXFFRZSZXPJJXQXRSZSZXSYAJJXTJXDXFSZXTJXFXDSZYBNXFXDUATXDXQXFXREWSFEBUB UCXFFUDUEUFUGUHXSYAJXQXRUIZUHTXSYAXPYDXTXOJXTXJWSWOSZRZXOXTYEBRZFRZYEXJRY FXTWOBRZXQSZYIWSSZFRYHXTXQYISYJXRYIXQXRCBRZFRYIXFYLFBCUJUKCBFULTUMXQYIUAT FWSYIFWOBFCUBUNUOYKYGFYKWSYISYGYIWSUABWOWSBEUDZUOTUKUPYEBFUQYEXJURUPXJXOY EXJXNUDYEAXOYEYEWDSZAYNYEYEWDYEKWDKYEPUHQUFZUGUHAYNOUHTABCDEFGHIJLMNOUSUF UTUFVGUFUFXPXKXNRXKWNJSZRZXMJXJWNVAXNYPXKJWNUAVBYQXKWNRZJSJYRSXMJWNXKJXJV CVDYRJUAYRXLJXKWNUJUMUPUPVEXMXNXHRZXIXMXNXKRYSJWNXJVAXKXHXNXKYCXJSXFXDXJS ZSZXHJYCXJNVFXFXDXJUIUUAXFFXERZSXFFSZXERZXHYTUUBXFYTXDBSZFRFUUERUUBFBXDFE UBUOUUEFURUUEXEFXDBUAVBUPUMXEFXFBXDCVHUOUUDXEUUCRXHUUCXEURUUCXGXEXFFUAVBT UPUPVBTXNWNXHJWNVIUCUFVJXIWBWCXGRZSZWHWIXERZSZRZXCXIWNXGXERZRZWBWCSZXGRZW HWISZXERZRZUUJXHUUKWNXEXGURVBUULHXGRZIXERZRUUQHIXGXEVKUURUUNUUSUUPHUUMXGH WCWBSZUUMLWCWBUATZUKIUUOXEMUKVLTUUNUUGUUPUUIWBWCXGFXFGVHVMWHWIXEBXDDVHVMV LUPUUGWRUUIXBUUFWQWBUUFCXGRZDRCWPRZDRWQCDXGULUVBUVCDUVBCBFCRZSZRUVCCFBVNU VEWPCUVDWOBFCURUMVBTUKCWPDULUPUMUUHXAWHUUHEXERZGREWTRZGRXAEGXEULUVFUVGGUV FEBFERZSZRUVGXEUVIEXDUVHBEFURUMVBEBFVNTUKEWTGULUPUMVLTVEWRWGXBWLWQWFWBWPW EWCWPBWDBWOVCWPYEWDBWSWOYMVOYOVJVPVQVGXAWKWHWTWJWIWTFWDFWSVCWTYEWDWTWSWOF WSVIFWSCVRVPYOVJVPVQVGVSVJWMWBWCGWHSZRZSZWHWIDWBSZRZSZRHUVJRZIUVMRZRZWNWG UVLWLUVOWFUVKWBCDWERZRCDUVJRZRWFUVKUVSUVTCUVSDBGDRZSZRUVTWEUWBDWDUWABDGUJ UMVBDBGVNTVBCDWEUQCDUVJUQVTUMWKUVNWHEGWJRZREGUVMRZRWKUVNUWCUWDEGFDVNVBEGW JUQEGUVMUQVTUMVLUVLUVPUVOUVQUVLUUMUVJRZUVPUVJWCWBGWHFVRUOUVPUWEHUUMUVJUVA UKUHTUVOUUOUVMRZUVQUVMWIWHDWBBVRUOUVQUWFIUUOUVMMUKUHTVLUVRWNUVJUVMRZRUWGW NRWNHUVJIUVMVKWNUWGURUWGWNUWGUUOUUTRZWNUVJUUOUVMUUTUVJWHGSUUOGWHUAGWIWHGE UBVGUFDWCWBDCUBVOVSUWHIHRZWNUWIUWHIUUOHUUTMLVLUHIHURTVEWAUPUPVE $. $( [3-Apr-2012] $) $} ${ xdp15.d $e |- d = ( a2 v ( a0 ^ ( a1 v b1 ) ) ) $. xdp15.p0 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $. xdp15.e $e |- e = ( b0 ^ ( a0 v p0 ) ) $. xdp15.c0 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. xdp15.c1 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. $( Part of proof (1)=>(5) in Day/Pickering 1982. $) xdp15 $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) ) =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $= ( wo wa tr ror lor lan ran wt le1 leran lelor an1r orass cm oridm 3tr lea orcom mlduali lear leror bltr or32 lbtr letr ax-arg 2an le3tr2 or12 orabs 2or ax-a2 ml3le lelan leao1 mldual2i ancom 3tr2 bile le2or ) CDQZFCKQZRZG QZRZDEQZGHQZRZCEQZFHQZRZGVQRZQZQZIJQWHQZWAWEVSHQZRZWBWHQZWCRZQZWJWAWMWBCD GQZRZQZWCRZQZWPWACEWRQZQZWLRZDXBQZWCRZQZXAVQBGQZRCAQZBHQZRZDAQZWCRZQWAXGC DABGHCBQZWQRCFCWQEHQZRZQZRZQZWQRZAHQZXNXSWQBXRCBVSXRNVRXQFKXPCMUAUBSUAUCX TCUDXQRZQZWQRZYAXSYCWQXRYBCFUDXQFUEUFUGUFYDXOWRQZYAYDXPWRQZYEYDXPCQZWQRYF YCYGWQYCCXQQZCCQZXPQZYGYBXQCXQUHUAYJYHCCXPUIUJYJXQYGYICXPCUKTCXPUNSULUCXP CWQWQXOUMUOSXPXOWRWQXOUPUQURYEXBHQZYAEHWRUSYAYKAXBHLTUJSUTVAURVBXHVTVQBVS GNTUBXKXDXMXFXIXCXJWLAXBCLUABVSHNTVCXLXEWCAXBDLUAUCVGVDXDWMXFWTXCWEWLXCEC WRQZQECQWECEWRVEYLCECWQVFUAECUNULUCWTXFWSXEWCDEWRUIUCUJVGUTWTWOWMWSWNWCWS EDWHQZQZWNWSEDCGDQZRZQZQZYNWSEDQZYPQYRWBYSWRYPDEVHWQYOCDGVHUBVGEDYPUISYQY MEDCGVIUGURYNYSWHQZWNYTYNEDWHUIUJYSWBWHEDVHTSUTUFUGVAWPWGWDWHQZQWJWMWGWOU UAWLWFWEVSFHFVRUMUQVJWOUUAWCWNRWCWBRZWHQWOUUAWHWBWCGVQHVKVLWCWNVMUUBWDWHW CWBVMTVNVOVPWGWDWHVEUTVAWJIJWHQZQZWKUUDWJIWDUUCWIOJWGWHPTVGUJWKUUDIJWHUIU JSUT $. $( [11-Apr-2012] $) $} ${ xdp53.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. xdp53.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. xdp53.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $. xdp53.4 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $. xdp53.5 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $. $( Part of proof (5)=>(3) in Day/Pickering 1982. $) xdp53 $p |- p =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $= ( wo wa leo lbtr leor anass tr lan cm leao4 bltr lea orcom mldual2i ancom ler2an ror lelor letr lor lear ax-a3 dp15 leid lel2or or32 le2an lerr 3tr df-le2 ran an32 ml2i anabs orass leror ) ABAQBEFJHIQZRZQZRZQZABUABVQABVPS ZAEBKQZRZVQQZVQAVTBQZWAAVSEBQZRZWBABEQZCFQZDGQZRZRZWDAWEWFRWGRWIPWEWFWGUB UCWIVSWCWIWEKRZVSWJWIKWHWEOUDUEKWEBUFUGWIWEWCWEWHUHBEUITULUGWDVSERZBQWBBE VSBKSUJWKVTBVSEUKUMUCTBVQVTVRUNUOVTVQVTEBERZFQVNQZRZVQVTEFBCQZVMRZQZRZWNV TEWQEVSUHVTFVTQWQVTFUAFWQVTFWPSZVTWOVTFQZRZWQQZWQVTXAFQZXBVTWTWOFQZRZXCVT WTXDVTFSVTEBWHQZRZXDVSXFEKWHBOUPUDXGXFXDEXFUQXFBWFQZXDWHWFBWFWGUHUNXDXHBC FURUETUOUGULXEWTWORZFQXCFWOWTFVTUAUJXIXAFWTWOUKUMUCTFWQXAWSUNUOXAWQWQXAWP FQZWQXAWPFWORZQZXJXAWOVMXKQZRXLXAWOXMWOWTUHBCDEFGHIKLMOUSULXKVMWOFWOUQUJT XKFWPFWOUHUNUOWPFUITWQUTVAUOVAUOULWNWRWNVPWRWMVOEWMWLVNQZFQFXNQVOWLFVNVBX NFUIXNVNFWLVNWLJVMWLWOEFQZRZJBWOEXOBCSEFSVCJXPNUETWLIHWLBDQZEGQZRZIBXQEXR BDSEGSVCIXSMUETVDULVFUPVEUDVPEXOWQRZRZEXORZWQRZWRVOXTEVOFWPXORZQWQXORXTVN YDFVNXPVMRYDJXPVMNVGWOXOVMVHUCUPXOWPFFEUAVIWQXOUKVEUDYCYAEXOWQUBUEYBEWQEF VJVGVEUCUETWNWLVPQZVQWNEVOWLQZRVPWLQYEWMYFEWMWLVOQYFWLFVNVKWLVOUIUCUDWLVO EBEUQUJVPWLUIVEWLBVPBEUHVLUGUOVFTVAUO $. $( [11-Apr-2012] $) $} ${ xxdp.1 $e |- p2 =< ( a2 v b2 ) $. xxdp.c0 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. xxdp.c1 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. xxdp.c2 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $. xxdp.d $e |- d = ( a2 v ( a0 ^ ( a1 v b1 ) ) ) $. xxdp.e $e |- e = ( b0 ^ ( a0 v p0 ) ) $. xxdp.p $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $. xxdp.p0 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $. xxdp.p2 $e |- p2 = ( ( a0 v b0 ) ^ ( a1 v b1 ) ) $. $( Part of proof (4)=>(1) in Day/Pickering 1982. $) xxdp41 $p |- c2 =< ( c0 v c1 ) $= ( wo wa ancom tr leor leror leo le2an bltr df2le2 cm anass ax-a2 ror or32 lan ler mldual2i 3tr orass orcom dp34 lel2or mldual lor lea ml2i lbtr ran lelan leao1 lear letr or4 2or mli ml3 leran ler2an lelor leao3 le2or 3tr1 df-le2 ) LHIUDZEFUDZDFIUDZUEZUDZUEZDFUDZGIUDZHWJUEZUDZUEZUDZJKUDZLWHWIDEH UDZUEZUDZUEZWNWOHDGUDZUEZUDZUEZUDZWSLWTDGHUDZUEZHDEUDZUEZUDZUDZXILLWTLDHU DZUEZUDZUEZXOLLXPLWTUEZUDZUEZXSLLXEHUDZUEXLHUDZUEZYBLLYCYDUEZUEZYEYGLLYFL XJXLUEZYFLXLXJUEZYHRXLXJUFUGXJYCXLYDGXEHGDUHUIXLHUJUKULUMUNYEYGLYCYDUOZUN UGYEYGYBYJYFYALYFXPXEXAUEZUDZYAYFYKDUDZHUDZYKXPUDYLYFXADUDZYCUEZYOXEUEZHU DYNYFYCYOUEYPYDYOYCYDEDUDZHUDYOXLYRHDEUPUQEDHURUGUSYCYOUFUGHXEYOHXADHEUHU TVAYQYMHYQXEYOUEYMYOXEUFDXAXEDGUJZVAUGUQVBYKDHVCYKXPVDVBXPYAYKXPXTUJYKCYA YKYKWJUEZCYTYKYKWJYKNWJNYKUCUNOULZUMUNCYTUAUNUGCDEFGHIJKLPQRUAVEULVFULVMU LULYBXQXTUDXQWTLUEZUDZXSLXPWTVGXTUUBXQLWTUFVHUUCXQWTUDZLUELUUDUEXSLWTXQLX PVIVJUUDLUFUUDXRLXQWTUPUSVBVBVKXSXTXNUDZXOXSXTXQUDUUELWTXPVGXQXNXTXQYIXPU EXLXJXPUEZUEZXNLYIXPRVLXLXJXPUOUUGXLHXKUDZUEXLHUEZXKUDZXNUUFUUHXLUUFXJDUE ZHUDHUUKUDUUHHDXJHGUHVAUUKHVDUUKXKHXJDUFVHVBUSXKHXLDXJEVNVAUUJXKUUIUDXNUU IXKVDUUIXMXKXLHUFVHUGVBVBVHUGXTWTXNLWTVOUIULVPXOWHWIXMUDZUEZWNWOXKUDZUEZU DZXIXOWTXMXKUDZUDZWHWIUEZXMUDZWNWOUEZXKUDZUDZUUPXNUUQWTXKXMVDVHUURJXMUDZK XKUDZUDUVCJKXMXKVQUVDUUTUVEUVBJUUSXMJWIWHUEZUUSPWIWHUFUGZUQKUVAXKQUQVRUGU UTUUMUVBUUOWHWIXMHXLIVNVSWNWOXKDXJFVNVSVRVBUUMXDUUOXHUULXCWHUULEXMUDZFUDE XBUDZFUDXCEFXMURUVHUVIFUVHEDHEUDZUEZUDUVIEHDVTUVKXBEUVJXADHEVDUSVHUGUQEXB FURVBUSUUNXGWNUUNGXKUDZIUDGXFUDZIUDXGGIXKURUVLUVMIUVLGDHGUDZUEZUDUVMXKUVO GXJUVNDGHVDUSVHGDHVTUGUQGXFIURVBUSVRUGVKXDWMXHWRXCWLWHXBWKWIXBDWJDXAVIXBY KWJDXEXAYSWAUUAVPWBWCVMXGWQWNXFWPWOXFHWJHXEVIXFYKWJXFXEXAHXEVOHXEEWDWBUUA VPWBWCVMWEVPWSWHWIIWNUEZUDZUEZWNWOFWHUEZUDZUEZUDJUVPUDZKUVSUDZUDZWTWMUVRW RUWAWLUVQWHEFWKUDZUDEFUVPUDZUDWLUVQUWEUWFEUWEFDIFUDZUEZUDUWFWKUWHFWJUWGDF IUPUSVHFDIVTUGVHEFWKVCEFUVPVCWFUSWQUVTWNGIWPUDZUDGIUVSUDZUDWQUVTUWIUWJGIH FVTVHGIWPVCGIUVSVCWFUSVRUVRUWBUWAUWCUVRUUSUVPUDZUWBUVPWIWHIWNHWDVAUWBUWKJ UUSUVPUVGUQUNUGUWAUVAUVSUDZUWCUVSWOWNFWHDWDVAUWCUWLKUVAUVSQUQUNUGVRUWDWTU VPUVSUDZUDUWMWTUDWTJUVPKUVSVQWTUWMVDUWMWTUWMUVAUVFUDZWTUVPUVAUVSUVFUVPWNI UEUVAIWNUFIWOWNIGUHVMULFWIWHFEUHWAWEUWNKJUDZWTUWOUWNKUVAJUVFQPVRUNKJVDUGV KWGVBVBVK $. $( [3-Apr-2012] $) $( Part of proof (1)=>(5) in Day/Pickering 1982. $) xxdp15 $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) ) =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $= ( wo wa lor lan tr ran wt le1 leran lelor an1r orass cm oridm ror 3tr lea orcom mlduali lear leror bltr or32 lbtr letr ax-arg 2an le3tr2 or12 orabs 2or ax-a2 ml3le lelan leao1 mldual2i ancom 3tr2 bile le2or ) DEUDZGDMUDZU EZHUDZUEZEFUDZHIUDZUEZDFUDZGIUDZUEZHWDUEZUDZUDZJKUDWOUDZWHWLWFIUDZUEZWIWO UDZWJUEZUDZWQWHWTWIDEHUDZUEZUDZWJUEZUDZXCWHDFXEUDZUDZWSUEZEXIUDZWJUEZUDZX HWDBHUDZUEDAUDZBIUDZUEZEAUDZWJUEZUDWHXNDEABHIDBUDZXDUEDGDXDFIUDZUEZUDZUEZ UDZXDUEZAIUDZYAYFXDBYEDBWFYETWEYDGMYCDUBUFUGUHUFUIYGDUJYDUEZUDZXDUEZYHYFY JXDYEYIDGUJYDGUKULUMULYKYBXEUDZYHYKYCXEUDZYLYKYCDUDZXDUEYMYJYNXDYJDYDUDZD DUDZYCUDZYNYIYDDYDUNUFYQYODDYCUOUPYQYDYNYPDYCDUQURDYCVAUHUSUIYCDXDXDYBUTV BUHYCYBXEXDYBVCVDVEYLXIIUDZYHFIXEVFYHYRAXIISURUPUHVGVHVEVIXOWGWDBWFHTURUG XRXKXTXMXPXJXQWSAXIDSUFBWFITURVJXSXLWJAXIESUFUIVNVKXKWTXMXGXJWLWSXJFDXEUD ZUDFDUDWLDFXEVLYSDFDXDVMUFFDVAUSUIXGXMXFXLWJEFXEUOUIUPVNVGXGXBWTXFXAWJXFF EWOUDZUDZXAXFFEDHEUDZUEZUDZUDZUUAXFFEUDZUUCUDUUEWIUUFXEUUCEFVOXDUUBDEHVOU GVNFEUUCUOUHUUDYTFEDHVPUMVEUUAUUFWOUDZXAUUGUUAFEWOUOUPUUFWIWOFEVOURUHVGUL UMVHXCWNWKWOUDZUDWQWTWNXBUUHWSWMWLWFGIGWEUTVDVQXBUUHWJXAUEWJWIUEZWOUDXBUU HWOWIWJHWDIVRVSWJXAVTUUIWKWOWJWIVTURWAWBWCWNWKWOVLVGVHWQJKWOUDZUDZWRUUKWQ JWKUUJWPPKWNWOQURVNUPWRUUKJKWOUOUPUHVG $. $( [11-Apr-2012] $) $( Part of proof (5)=>(3) in Day/Pickering 1982. $) xxdp53 $p |- p =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $= ( wo wa leor leo anass tr lan cm leao4 bltr lea orcom lbtr mldual2i ancom ler2an ror lelor letr lor lear ax-a3 dp15 leid lel2or or32 le2an lerr 3tr df-le2 ran an32 ml2i anabs orass leror ) CDCUDDGHLJKUDZUEZUDZUEZUDZCDUFDW DCDWCUGZCGDMUDZUEZWDUDZWDCWGDUDZWHCWFGDUDZUEZWICDGUDZEHUDZFIUDZUEZUEZWKCW LWMUEWNUEWPUAWLWMWNUHUIWPWFWJWPWLMUEZWFWQWPMWOWLUBUJUKMWLDULUMWPWLWJWLWOU NDGUOUPUSUMWKWFGUEZDUDWIDGWFDMUGUQWRWGDWFGURUTUIUPDWDWGWEVAVBWGWDWGGDGUEZ HUDWAUDZUEZWDWGGHDEUDZVTUEZUDZUEZXAWGGXDGWFUNWGHWGUDXDWGHUFHXDWGHXCUGZWGX BWGHUDZUEZXDUDZXDWGXHHUDZXIWGXGXBHUDZUEZXJWGXGXKWGHUGWGGDWOUDZUEZXKWFXMGM WODUBVCUJXNXMXKGXMVDXMDWMUDZXKWOWMDWMWNUNVAXKXODEHVEUKUPVBUMUSXLXGXBUEZHU DXJHXBXGHWGUFUQXPXHHXGXBURUTUIUPHXDXHXFVAVBXHXDXDXHXCHUDZXDXHXCHXBUEZUDZX QXHXBVTXRUDZUEXSXHXBXTXBXGUNDEFGHIJKMPQUBVFUSXRVTXBHXBVDUQUPXRHXCHXBUNVAV BXCHUOUPXDVGVHVBVHVBUSXAXEXAWCXEWTWBGWTWSWAUDZHUDHYAUDWBWSHWAVIYAHUOYAWAH WSWAWSLVTWSXBGHUDZUEZLDXBGYBDEUGGHUGVJLYCRUKUPWSKJWSDFUDZGIUDZUEZKDYDGYED FUGGIUGVJKYFQUKUPVKUSVMVCVLUJWCGYBXDUEZUEZGYBUEZXDUEZXEWBYGGWBHXCYBUEZUDX DYBUEYGWAYKHWAYCVTUEYKLYCVTRVNXBYBVTVOUIVCYBXCHHGUFVPXDYBURVLUJYJYHGYBXDU HUKYIGXDGHVQVNVLUIUKUPXAWSWCUDZWDXAGWBWSUDZUEWCWSUDYLWTYMGWTWSWBUDYMWSHWA VRWSWBUOUIUJWSWBGDGVDUQWCWSUOVLWSDWCDGUNVSUMVBVMUPVHVB $. $( [11-Apr-2012] $) $( Part of proof (4)=>(5) in Day/Pickering 1982. $) xdp45lem $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) ) =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $= ( wo wa ax-a2 2an ancom tr leor leror leo le2an bltr df2le2 cm anass or32 ror lan ler mldual2i 3tr orass orcom lor ran wt le1 leran lelor oridm lea an1r mlduali lear lbtr letr id dp34 lel2or lelan mldual leao1 or4 2or mli ml2i ml3 ler2an leao3 le2or 3tr1 df-le2 le3tr2 or12 orabs ml3le 3tr2 bile ) DEUDZGDMUDZUEZHUDZUEZEFUDZHIUDZUEZDFUDZGIUDZUEZHXAUEZUDZUDZJKUDXLUDZXEX IXCIUDZUEZXFXLUDZXGUEZUDZXNXEXQXFDEHUDZUEZUDZXGUEZUDZXTXEDFYBUDZUDZXPUEZE YFUDZXGUEZUDZYEXABHUDZUEZDAUDZBIUDZUEZEAUDZXGUEZUDZXEYKYMYOYNEAIUDZUEZUDZ UEZYQXGBYTUEZUDZUEZUDZYSYMYOYNEDBUDZUEZUDZUEZYQXGBYAUEZUDZUEZUDZUUGYMYSEH BUDZUEZBEDUDZUEZUDZUDZUUOYMYMYSYMEBUDZUEZUDZUEZUVAYMYMUVBYMYSUEZUDZUEZUVE YMYMYABUDZUEUURBUDZUEZUVHYMYMUVIUVJUEZUEZUVKUVMYMYMUVLYMUUPUURUEZUVLYMUUR UUPUEZUVNXAUURYLUUPDEUFBHUFUGZUURUUPUHUIUUPUVIUURUVJHYABHEUJUKUURBULUMUNU OUPUVKUVMYMUVIUVJUQZUPUIUVKUVMUVHUVQUVLUVGYMUVLUVBYAUUHUEZUDZUVGUVLUVREUD ZBUDZUVRUVBUDUVSUVLUUHEUDZUVIUEZUWBYAUEZBUDUWAUVLUVIUWBUEUWCUVJUWBUVIUVJX ABUDUWBUURXABEDUFUSDEBURUIUTUVIUWBUHUIBYAUWBBUUHEBDUJVAVBUWDUVTBUWDYAUWBU EUVTUWBYAUHEUUHYAEHULZVBUIUSVCUVREBVDUVRUVBVEVCUVBUVGUVRUVBUVFULUVRUVRYTU EZUVGUVRUWFUWFUWFUVRUVRYTUVRUUHYAUEZYTUWGUVRUUHYAUHUPUWGDGDYAFIUDZUEZUDZU EZUDZYAUEZYTUUHUWLYABUWKDBXCUWKTXBUWJGMUWIDUBVFUTUIVFVGUWMDVHUWJUEZUDZYAU EZYTUWLUWOYAUWKUWNDGVHUWJGVIVJVKVJUWPUWHYBUDZYTUWPUWIYBUDZUWQUWPUWIDUDZYA UEUWRUWOUWSYAUWODUWJUDZDDUDZUWIUDZUWSUWNUWJDUWJVNVFUXBUWTDDUWIVDUPUXBUWJU WSUXADUWIDVLUSDUWIVEUIVCVGUWIDYAYAUWHVMVOUIUWIUWHYBYAUWHVPUKUNUWQYFIUDZYT FIYBURYTUXCAYFISUSUPUIVQVRUNUNZUOUPUWFUWFUWFVSZUPUIUWFEDAHBIYPYRYMYPVSZYR VSZXAUURYLUUPDEVEBHVEUGUXEVTUNWAUNWBUNUNUVHUVCUVFUDUVCYSYMUEZUDZUVEYMUVBY SWCUVFUXHUVCYMYSUHVFUXIUVCYSUDZYMUEYMUXJUEUVEYMYSUVCYMUVBVMWHUXJYMUHUXJUV DYMUVCYSUFUTVCVCVQUVEUVFUUTUDZUVAUVEUVFUVCUDUXKYMYSUVBWCUVCUUTUVFUVCUVOUV BUEUURUUPUVBUEZUEZUUTYMUVOUVBUVPVGUURUUPUVBUQUXMUURBUUQUDZUEUURBUEZUUQUDZ UUTUXLUXNUURUXLUUPEUEZBUDBUXQUDUXNBEUUPBHUJVBUXQBVEUXQUUQBUUPEUHVFVCUTUUQ BUUREUUPDWDVBUXPUUQUXOUDUUTUXOUUQVEUXOUUSUUQUURBUHVFUIVCVCVFUIUVFYSUUTYMY SVPUKUNVRUVAYOYNUUSUDZUEZYQXGUUQUDZUEZUDZUUOUVAYSUUSUUQUDZUDZYOYNUEZUUSUD ZYRUUQUDZUDZUYBUUTUYCYSUUQUUSVEVFUYDYPUUSUDZUYGUDUYHYPYRUUSUUQWEUYIUYFUYG UYGYPUYEUUSYPYPUYEUXFYNYOUHUIZUSYRYRUUQUXGUSWFUIUYFUXSUYGUYAYOYNUUSBUURIW DWGYQXGUUQEUUPAWDWGWFVCUXSUUKUYAUUNUXRUUJYOUXRDUUSUDZAUDDUUIUDZAUDUUJDAUU SURUYKUYLAUYKDEBDUDZUEZUDUYLDBEWIUYNUUIDUYMUUHEBDVEUTVFUIUSDUUIAURVCUTUXT UUMYQUXTHUUQUDZIUDHUULUDZIUDUUMHIUUQURUYOUYPIUYOHEYLUEZUDUYPUUQUYQHUUPYLE HBVEUTVFHEBWIUIUSHUULIURVCUTWFUIVQUUKUUCUUNUUFUUJUUBYOUUIUUAYNUUIEYTEUUHV MUUIUVRYTEYAUUHUWEVJUXDVRWJVKWBUUMUUEYQUULUUDXGUULBYTBYAVMUULUVRYTUULYAUU HBYAVPBYADWKWJUXDVRWJVKWBWLVRUUGYOYNIYQUEZUDZUEZYQXGAYOUEZUDZUEZUDYPUYRUD ZYRVUAUDZUDZYSUUCUYTUUFVUCUUBUYSYODAUUAUDZUDDAUYRUDZUDUUBUYSVUGVUHDVUGAEI AUDZUEZUDVUHUUAVUJAYTVUIEAIUFUTVFAEIWIUIVFDAUUAVDDAUYRVDWMUTUUEVUBYQHIUUD UDZUDHIVUAUDZUDUUEVUBVUKVULHIBAWIVFHIUUDVDHIVUAVDWMUTWFUYTVUDVUCVUEUYTUYE UYRUDZVUDUYRYNYOIYQBWKVBVUDVUMYPUYEUYRUYJUSUPUIVUCVUEVUEVUAXGYQAYOEWKVBVU EVUEYRYRVUAUXGUSUPUIWFVUFYSUYRVUAUDZUDVUNYSUDYSYPUYRYRVUAWEYSVUNVEVUNYSVU NYRYPUDZYSUYRYRVUAYPUYRYQIUEYRIYQUHIXGYQIHUJWBUNAYNYOADUJVJWLVUOVUOYSVUOV UOYRYRYPYPUXGUXFWFUPYRYPVEUIVQWNVCVCVQYLXDXABXCHTUSUTYPYHYRYJYNYGYOXPAYFD SVFBXCITUSUGYQYIXGAYFESVFVGWFWOYHXQYJYDYGXIXPYGFDYBUDZUDFDUDXIDFYBWPVUPDF DYAWQVFFDVEVCVGYDYJYCYIXGEFYBVDVGUPWFVQYDXSXQYCXRXGYCFEXLUDZUDZXRYCFEDHEU DZUEZUDZUDZVURYCFEUDZVUTUDVVBXFVVCYBVUTEFUFYAVUSDEHUFUTWFFEVUTVDUIVVAVUQF EDHWRVKUNVURVVCXLUDZXRVVDVURFEXLVDUPVVCXFXLFEUFUSUIVQVJVKVRXTXKXHXLUDZUDX NXQXKXSVVEXPXJXIXCGIGXBVMUKWBXSVVEXGXRUEXGXFUEZXLUDXSVVEXLXFXGHXAIWDVBXGX RUHVVFXHXLXGXFUHUSWSWTWLXKXHXLWPVQVRXNJKXLUDZUDZXOVVHXNJXHVVGXMPKXKXLQUSW FUPXOVVHJKXLVDUPUIVQ $. $( [11-Apr-2012] $) $( Part of proof (4)=>(5) in Day/Pickering 1982. Proof before putting in id's, ancom/orcom/2an (why?) $) $( xdp45lemtest $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) ) =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $= ( wo wa ancom tr leor leror leo le2an bltr df2le2 cm anass ax-a2 ror or32 lan ler mldual2i 3tr orass orcom lor ran le1 leran lelor an1r oridm lea mlduali lear lbtr letr dp34 lel2or lelan mldual ml2i leao1 or4 2or mli ml3 ler2an leao3 le2or 3tr1 df-le2 2an le3tr2 or12 orabs ml3le 3tr2 bile ) DEUDZGDMUDZUEZHUDZUEZEFUDZHIUDZUEZDFUDZGIUDZUEZHWSUEZUDZUDZJKUDXJU DZXCXGXAIUDZUEZXDXJUDZXEUEZUDZXLXCXOXDDEHUDZUEZUDZXEUEZUDZXRXCDFXTUDZUDZX NUEZEYDUDZXEUEZUDZYCWSBHUDZUEDAUDZBIUDZUEZEAUDZXEUEZUDXCYI??????????????? ???????????????????UFZUGZ?????????UHZUI??UJZUKULUMUN?????UOZUNUG???YT???? ????????????????????????UPZUQ???URZUGUSYPUG??????YRUTVA??????YP???YSVAUGU QVB???VCZ??VDZVB???YS????????????????UNZ????????????T??????UBVEUSUGVEVF?? ???????????VGVHVIVH????????????????????VJVE??UUCUN???????VKUQUUDUGVBVF??? ??VLZVMUG?????VNZUIZUL???UUB?????SUQUNUGVOVPULULZUMUNUUEUG??????????????V QULVRULVSULUL???????VTZ???YPVEZ???????UUFWAYP???UUAUSZVBVBVO??????UUJ???? ???????VFYT??????????????YRVAUUDUUKVBUS??????WBZVA???UUDUUKUGVBVBVEUGUUHU LVP??????????UUDVE???????WCZ???????YQUQZ????UQZWDUG???????UUMWEZUUQWDVB?? ?????????UUB?????????WFZ??????UUDUSVEZUGUQUUBVBUS???????UUB??????UUSUURUG UQUUBVBUSWDUGVO?????????????UUF??????YSVHUUIVPWGVIVS?????????UUF??????UUG ???WHZWGUUIVPWGVIVSWIVP????????????????????????UULVEUURUGVEUUCUUCWJUS???? ??????UURVEUUCUUCWJUSWD??????????UUTVAZ??UUOUNUG???UVA??UUPUNUGWD????UUNU UD????????????YP???YRVSUL???YRVHWI???????????WDUNUUDUGVOWKVBVBVOYJXBWSBXA HTUQUSYMYFYOYHYKYEYLXNAYDDSVEBXAITUQWLYNYGXEAYDESVEVFWDWMYFXOYHYBYEXGXNYE FDXTUDZUDFDUDXGDFXTWNUVBDFDXSWOVEFDVDVBVFYBYHYAYGXEEFXTVCVFUNWDVOYBXQXOYA XPXEYAFEXJUDZUDZXPYAFEDHEUDZUEZUDZUDZUVDYAFEUDZUVFUDUVHXDUVIXTUVFEFUPXSUV EDEHUPUSWDFEUVFVCUGUVGUVCFEDHWPVIULUVDUVIXJUDZXPUVJUVDFEXJVCUNUVIXDXJFEUP UQUGVOVHVIVPXRXIXFXJUDZUDXLXOXIXQUVKXNXHXGXAGIGWTVLUIVSXQUVKXEXPUEXEXDUEZ XJUDXQUVKXJXDXEHWSIWBVAXEXPUFUVLXFXJXEXDUFUQWQWRWIXIXFXJWNVOVPXLJKXJUDZUD ZXMUVNXLJXFUVMXKPKXIXJQUQWDUNXMUVNJKXJVCUNUGVO $. $) $( [11-Apr-2012] $) $( Part of proof (4)=>(3) in Day/Pickering 1982. $) xdp43lem $p |- p =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $= ( wo wa leor leo anass tr lan cm leao4 bltr lea orcom lbtr mldual2i ancom ler2an ror lelor letr lor lear ax-a3 ax-a2 2an leror le2an df2le2 ler 3tr or32 orass ran wt le1 leran an1r oridm mlduali id dp34 lel2or mldual ml2i lelan leao1 or4 2or mli ml3 leao3 le2or 3tr1 df-le2 or12 orabs ml3le 3tr2 le3tr2 bile leid lerr an32 anabs ) CDCUDDGHLJKUDZUEZUDZUEZUDZCDUFDXKCDXJU GZCGDMUDZUEZXKUDZXKCXNDUDZXOCXMGDUDZUEZXPCDGUDZEHUDZFIUDZUEZUEZXRCXSXTUEY AUEYCUAXSXTYAUHUIYCXMXQYCXSMUEZXMYDYCMYBXSUBUJUKMXSDULUMYCXSXQXSYBUNDGUOU PUSUMXRXMGUEZDUDXPDGXMDMUGUQYEXNDXMGURUTUIUPDXKXNXLVAVBXNXKXNGDGUEZHUDXHU DZUEZXKXNGHDEUDZXGUEZUDZUEZYHXNGYKGXMUNZXNHXNUDYKXNHUFHYKXNHYJUGZXNYIXNHU DZUEZYKUDZYKXNYPHUDZYQXNYOYIHUDZUEZYRXNYOYSXNHUGXNGDYBUDZUEZYSXMUUAGMYBDU BVCUJZUUBUUAYSGUUAVDUUADXTUDZYSYBXTDXTYAUNZVAYSUUDDEHVEUKUPVBUMUSYTYOYIUE ZHUDYRHYIYOHXNUFUQUUFYPHYOYIURUTUIUPHYKYPYNVAVBYPYKYKYPYJHUDZYKYPYJHYIUEZ UDZUUGYPYIXGUUHUDZUEUUIYPYIUUJYIYOUNYPEFUDZHIUDZUEZDFUDZGIUDZUEZUUHUDZUDZ UUJYPUUNXNIUDZUEZUUKUUHUDZUULUEZUDZUURYPUUTUUKDXTUEZUDZUULUEZUDZUVCYPDFUV DUDZUDZUUSUEZEUVHUDZUULUEZUDZUVGYIBHUDZUEZDAUDZBIUDZUEZEAUDZUULUEZUDZYPUV MUVOUVQUVPEAIUDZUEZUDZUEZUVSUULBUWBUEZUDZUEZUDZUWAUVOUVQUVPEDBUDZUEZUDZUE ZUVSUULBXTUEZUDZUEZUDZUWIUVOUWAEHBUDZUEZBEDUDZUEZUDZUDZUWQUVOUVOUWAUVOEBU DZUEZUDZUEZUXCUVOUVOUXDUVOUWAUEZUDZUEZUXGUVOUVOXTBUDZUEUWTBUDZUEZUXJUVOUV OUXKUXLUEZUEZUXMUXOUVOUVOUXNUVOUWRUWTUEZUXNUVOUWTUWRUEZUXPYIUWTUVNUWRDEVF BHVFVGZUWTUWRURUIUWRUXKUWTUXLHXTBHEUFVHUWTBUGVIUMVJUKUXMUXOUVOUXKUXLUHZUK UIUXMUXOUXJUXSUXNUXIUVOUXNUXDXTUWJUEZUDZUXIUXNUXTEUDZBUDZUXTUXDUDUYAUXNUW JEUDZUXKUEZUYDXTUEZBUDUYCUXNUXKUYDUEUYEUXLUYDUXKUXLYIBUDUYDUWTYIBEDVFUTDE BVMUIUJUXKUYDURUIBXTUYDBUWJEBDUFVKUQUYFUYBBUYFXTUYDUEUYBUYDXTUREUWJXTEHUG ZUQUIUTVLUXTEBVNUXTUXDUOVLUXDUXIUXTUXDUXHUGUXTUXTUWBUEZUXIUXTUYHUYHUYHUXT UXTUWBUXTUWJXTUEZUWBUYIUXTUWJXTURUKUYIDUUBUDZXTUEZUWBUWJUYJXTBUUBDBXNUUBT UUCUIVCVOUYKDVPUUAUEZUDZXTUEZUWBUYJUYMXTUUBUYLDGVPUUAGVQVRVAVRUYNYAUVDUDZ UWBUYNYBUVDUDZUYOUYNYBDUDZXTUEUYPUYMUYQXTUYMDUUAUDZDDUDZYBUDZUYQUYLUUADUU AVSVCUYTUYRDDYBVNUKUYTUUAUYQUYSDYBDVTUTDYBUOUIVLVOYBDXTUUEWAUIYBYAUVDXTYA VDVHUMUYOUVHIUDZUWBFIUVDVMUWBVUAAUVHISUTUKUIUPVBUMUMZVJUKUYHUYHUYHWBZUKUI UYHEDAHBIUVRUVTUVOUVRWBZUVTWBZYIUWTUVNUWRDEUOBHUOVGVUCWCUMWDUMWGUMUMUXJUX EUXHUDUXEUWAUVOUEZUDZUXGUVOUXDUWAWEUXHVUFUXEUVOUWAURVCVUGUXEUWAUDZUVOUEUV OVUHUEUXGUVOUWAUXEUVOUXDUNWFVUHUVOURVUHUXFUVOUXEUWAVFUJVLVLUPUXGUXHUXBUDZ UXCUXGUXHUXEUDVUIUVOUWAUXDWEUXEUXBUXHUXEUXQUXDUEUWTUWRUXDUEZUEZUXBUVOUXQU XDUXRVOUWTUWRUXDUHVUKUWTBUWSUDZUEUWTBUEZUWSUDZUXBVUJVULUWTVUJUWREUEZBUDBV UOUDVULBEUWRBHUFUQVUOBUOVUOUWSBUWREURVCVLUJUWSBUWTEUWRDWHUQVUNUWSVUMUDUXB VUMUWSUOVUMUXAUWSUWTBURVCUIVLVLVCUIUXHUWAUXBUVOUWAVDVHUMVBUXCUVQUVPUXAUDZ UEZUVSUULUWSUDZUEZUDZUWQUXCUWAUXAUWSUDZUDZUVQUVPUEZUXAUDZUVTUWSUDZUDZVUTU XBVVAUWAUWSUXAUOVCVVBUVRUXAUDZVVEUDVVFUVRUVTUXAUWSWIVVGVVDVVEVVEUVRVVCUXA UVRUVRVVCVUDUVPUVQURUIZUTUVTUVTUWSVUEUTWJUIVVDVUQVVEVUSUVQUVPUXABUWTIWHWK UVSUULUWSEUWRAWHWKWJVLVUQUWMVUSUWPVUPUWLUVQVUPDUXAUDZAUDDUWKUDZAUDUWLDAUX AVMVVIVVJAVVIDEBDUDZUEZUDVVJDBEWLVVLUWKDVVKUWJEBDUOUJVCUIUTDUWKAVMVLUJVUR UWOUVSVURHUWSUDZIUDHUWNUDZIUDUWOHIUWSVMVVMVVNIVVMHEUVNUEZUDVVNUWSVVOHUWRU VNEHBUOUJVCHEBWLUIUTHUWNIVMVLUJWJUIUPUWMUWEUWPUWHUWLUWDUVQUWKUWCUVPUWKEUW BEUWJUNUWKUXTUWBEXTUWJUYGVRVUBVBUSVAWGUWOUWGUVSUWNUWFUULUWNBUWBBXTUNUWNUX TUWBUWNXTUWJBXTVDBXTDWMUSVUBVBUSVAWGWNVBUWIUVQUVPIUVSUEZUDZUEZUVSUULAUVQU EZUDZUEZUDUVRVVPUDZUVTVVSUDZUDZUWAUWEVVRUWHVWAUWDVVQUVQDAUWCUDZUDDAVVPUDZ UDUWDVVQVWEVWFDVWEAEIAUDZUEZUDVWFUWCVWHAUWBVWGEAIVFUJVCAEIWLUIVCDAUWCVNDA VVPVNWOUJUWGVVTUVSHIUWFUDZUDHIVVSUDZUDUWGVVTVWIVWJHIBAWLVCHIUWFVNHIVVSVNW OUJWJVVRVWBVWAVWCVVRVVCVVPUDZVWBVVPUVPUVQIUVSBWMUQVWBVWKUVRVVCVVPVVHUTUKU IVWAVWCVWCVVSUULUVSAUVQEWMUQVWCVWCUVTUVTVVSVUEUTUKUIWJVWDUWAVVPVVSUDZUDVW LUWAUDUWAUVRVVPUVTVVSWIUWAVWLUOVWLUWAVWLUVTUVRUDZUWAVVPUVTVVSUVRVVPUVSIUE UVTIUVSURIUULUVSIHUFWGUMAUVPUVQADUFVRWNVWMVWMUWAVWMVWMUVTUVTUVRUVRVUEVUDW JUKUVTUVRUOUIUPWPVLVLUPUVNYOYIBXNHTUTUJUVRUVJUVTUVLUVPUVIUVQUUSAUVHDSVCBX NITUTVGUVSUVKUULAUVHESVCVOWJXAUVJUUTUVLUVFUVIUUNUUSUVIFDUVDUDZUDFDUDUUNDF UVDWQVWNDFDXTWRVCFDUOVLVOUVFUVLUVEUVKUULEFUVDVNVOUKWJUPUVFUVBUUTUVEUVAUUL UVEFEUUHUDZUDZUVAUVEFEDHEUDZUEZUDZUDZVWPUVEFEUDZVWRUDVWTUUKVXAUVDVWREFVFX TVWQDEHVFUJWJFEVWRVNUIVWSVWOFEDHWSVAUMVWPVXAUUHUDZUVAVXBVWPFEUUHVNUKVXAUU KUUHFEVFUTUIUPVRVAVBUVCUUPUUMUUHUDZUDUURUUTUUPUVBVXCUUSUUOUUNXNGIYMVHWGUV BVXCUULUVAUEUULUUKUEZUUHUDUVBVXCUUHUUKUULHYIIWHUQUULUVAURVXDUUMUUHUULUUKU RUTWTXBWNUUPUUMUUHWQUPVBUURJKUUHUDZUDZUUJVXFUURJUUMVXEUUQPKUUPUUHQUTWJUKU UJVXFJKUUHVNUKUIUPUSUUHXGYIHYIVDUQUPUUHHYJHYIUNVAVBYJHUOUPYKXCWDVBWDVBUSY HYLYHXJYLYGXIGYGYFXHUDZHUDHVXGUDXIYFHXHVMVXGHUOVXGXHHYFXHYFLXGYFYIGHUDZUE ZLDYIGVXHDEUGGHUGVILVXIRUKUPYFKJYFUUPKDUUNGUUODFUGGIUGVIKUUPQUKUPXDUSWPVC VLUJXJGVXHYKUEZUEZGVXHUEZYKUEZYLXIVXJGXIHYJVXHUEZUDYKVXHUEVXJXHVXNHXHVXIX GUEVXNLVXIXGRVOYIVXHXGXEUIVCVXHYJHHGUFWFYKVXHURVLUJVXMVXKGVXHYKUHUKVXLGYK GHXFVOVLUIUKUPYHYFXJUDZXKYHGXIYFUDZUEXJYFUDVXOYGVXPGYGYFXIUDVXPYFHXHVNYFX IUOUIUJYFXIGDGVDUQXJYFUOVLYFDXJDGUNVHUMVBWPUPWDVB $. $( [11-Apr-2012] $) $} ${ xxxdp.c0 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. xxxdp.c1 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. xxxdp.c2 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $. xxxdp.d $e |- d = ( a2 v ( a0 ^ ( a1 v b1 ) ) ) $. xxxdp.e $e |- e = ( b0 ^ ( a0 v p0 ) ) $. xxxdp.p $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $. xxxdp.p0 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $. xxxdp.p2 $e |- p2 = ( ( a0 v b0 ) ^ ( a1 v b1 ) ) $. $( Part of proof (4)=>(5) in Day/Pickering 1982. $) xdp45 $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) ) =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $= ( wo wa ax-a2 2an ancom tr leor leror leo le2an bltr df2le2 cm anass or32 ror lan ler mldual2i 3tr orass orcom lor ran wt le1 leran lelor oridm lea an1r mlduali lear lbtr letr id dp34 lel2or lelan mldual leao1 or4 2or mli ml2i ml3 ler2an leao3 le2or 3tr1 df-le2 le3tr2 or12 orabs ml3le 3tr2 bile ) DEUCZGDMUCZUDZHUCZUDZEFUCZHIUCZUDZDFUCZGIUCZUDZHWTUDZUCZUCZJKUCXKUCZXDX HXBIUCZUDZXEXKUCZXFUDZUCZXMXDXPXEDEHUCZUDZUCZXFUDZUCZXSXDDFYAUCZUCZXOUDZE YEUCZXFUDZUCZYDWTBHUCZUDZDAUCZBIUCZUDZEAUCZXFUDZUCZXDYJYLYNYMEAIUCZUDZUCZ UDZYPXFBYSUDZUCZUDZUCZYRYLYNYMEDBUCZUDZUCZUDZYPXFBXTUDZUCZUDZUCZUUFYLYREH BUCZUDZBEDUCZUDZUCZUCZUUNYLYLYRYLEBUCZUDZUCZUDZUUTYLYLUVAYLYRUDZUCZUDZUVD YLYLXTBUCZUDUUQBUCZUDZUVGYLYLUVHUVIUDZUDZUVJUVLYLYLUVKYLUUOUUQUDZUVKYLUUQ UUOUDZUVMWTUUQYKUUODEUEBHUEUFZUUQUUOUGUHUUOUVHUUQUVIHXTBHEUIUJUUQBUKULUMU NUOUVJUVLYLUVHUVIUPZUOUHUVJUVLUVGUVPUVKUVFYLUVKUVAXTUUGUDZUCZUVFUVKUVQEUC ZBUCZUVQUVAUCUVRUVKUUGEUCZUVHUDZUWAXTUDZBUCUVTUVKUVHUWAUDUWBUVIUWAUVHUVIW TBUCUWAUUQWTBEDUEURDEBUQUHUSUVHUWAUGUHBXTUWABUUGEBDUIUTVAUWCUVSBUWCXTUWAU DUVSUWAXTUGEUUGXTEHUKZVAUHURVBUVQEBVCUVQUVAVDVBUVAUVFUVQUVAUVEUKUVQUVQYSU DZUVFUVQUWEUWEUWEUVQUVQYSUVQUUGXTUDZYSUWFUVQUUGXTUGUOUWFDGDXTFIUCZUDZUCZU DZUCZXTUDZYSUUGUWKXTBUWJDBXBUWJSXAUWIGMUWHDUAVEUSUHVEVFUWLDVGUWIUDZUCZXTU DZYSUWKUWNXTUWJUWMDGVGUWIGVHVIVJVIUWOUWGYAUCZYSUWOUWHYAUCZUWPUWOUWHDUCZXT UDUWQUWNUWRXTUWNDUWIUCZDDUCZUWHUCZUWRUWMUWIDUWIVMVEUXAUWSDDUWHVCUOUXAUWIU WRUWTDUWHDVKURDUWHVDUHVBVFUWHDXTXTUWGVLVNUHUWHUWGYAXTUWGVOUJUMUWPYEIUCZYS FIYAUQYSUXBAYEIRURUOUHVPVQUMUMZUNUOUWEUWEUWEVRZUOUHUWEEDAHBIYOYQYLYOVRZYQ VRZWTUUQYKUUODEVDBHVDUFUXDVSUMVTUMWAUMUMUVGUVBUVEUCUVBYRYLUDZUCZUVDYLUVAY RWBUVEUXGUVBYLYRUGVEUXHUVBYRUCZYLUDYLUXIUDUVDYLYRUVBYLUVAVLWGUXIYLUGUXIUV CYLUVBYRUEUSVBVBVPUVDUVEUUSUCZUUTUVDUVEUVBUCUXJYLYRUVAWBUVBUUSUVEUVBUVNUV AUDUUQUUOUVAUDZUDZUUSYLUVNUVAUVOVFUUQUUOUVAUPUXLUUQBUUPUCZUDUUQBUDZUUPUCZ UUSUXKUXMUUQUXKUUOEUDZBUCBUXPUCUXMBEUUOBHUIVAUXPBVDUXPUUPBUUOEUGVEVBUSUUP BUUQEUUODWCVAUXOUUPUXNUCUUSUXNUUPVDUXNUURUUPUUQBUGVEUHVBVBVEUHUVEYRUUSYLY RVOUJUMVQUUTYNYMUURUCZUDZYPXFUUPUCZUDZUCZUUNUUTYRUURUUPUCZUCZYNYMUDZUURUC ZYQUUPUCZUCZUYAUUSUYBYRUUPUURVDVEUYCYOUURUCZUYFUCUYGYOYQUURUUPWDUYHUYEUYF UYFYOUYDUURYOYOUYDUXEYMYNUGUHZURYQYQUUPUXFURWEUHUYEUXRUYFUXTYNYMUURBUUQIW CWFYPXFUUPEUUOAWCWFWEVBUXRUUJUXTUUMUXQUUIYNUXQDUURUCZAUCDUUHUCZAUCUUIDAUU RUQUYJUYKAUYJDEBDUCZUDZUCUYKDBEWHUYMUUHDUYLUUGEBDVDUSVEUHURDUUHAUQVBUSUXS UULYPUXSHUUPUCZIUCHUUKUCZIUCUULHIUUPUQUYNUYOIUYNHEYKUDZUCUYOUUPUYPHUUOYKE HBVDUSVEHEBWHUHURHUUKIUQVBUSWEUHVPUUJUUBUUMUUEUUIUUAYNUUHYTYMUUHEYSEUUGVL UUHUVQYSEXTUUGUWDVIUXCVQWIVJWAUULUUDYPUUKUUCXFUUKBYSBXTVLUUKUVQYSUUKXTUUG BXTVOBXTDWJWIUXCVQWIVJWAWKVQUUFYNYMIYPUDZUCZUDZYPXFAYNUDZUCZUDZUCYOUYQUCZ YQUYTUCZUCZYRUUBUYSUUEVUBUUAUYRYNDAYTUCZUCDAUYQUCZUCUUAUYRVUFVUGDVUFAEIAU CZUDZUCVUGYTVUIAYSVUHEAIUEUSVEAEIWHUHVEDAYTVCDAUYQVCWLUSUUDVUAYPHIUUCUCZU CHIUYTUCZUCUUDVUAVUJVUKHIBAWHVEHIUUCVCHIUYTVCWLUSWEUYSVUCVUBVUDUYSUYDUYQU CZVUCUYQYMYNIYPBWJVAVUCVULYOUYDUYQUYIURUOUHVUBVUDVUDUYTXFYPAYNEWJVAVUDVUD YQYQUYTUXFURUOUHWEVUEYRUYQUYTUCZUCVUMYRUCYRYOUYQYQUYTWDYRVUMVDVUMYRVUMYQY OUCZYRUYQYQUYTYOUYQYPIUDYQIYPUGIXFYPIHUIWAUMAYMYNADUIVIWKVUNVUNYRVUNVUNYQ YQYOYOUXFUXEWEUOYQYOVDUHVPWMVBVBVPYKXCWTBXBHSURUSYOYGYQYIYMYFYNXOAYEDRVEB XBISURUFYPYHXFAYEERVEVFWEWNYGXPYIYCYFXHXOYFFDYAUCZUCFDUCXHDFYAWOVUODFDXTW PVEFDVDVBVFYCYIYBYHXFEFYAVCVFUOWEVPYCXRXPYBXQXFYBFEXKUCZUCZXQYBFEDHEUCZUD ZUCZUCZVUQYBFEUCZVUSUCVVAXEVVBYAVUSEFUEXTVURDEHUEUSWEFEVUSVCUHVUTVUPFEDHW QVJUMVUQVVBXKUCZXQVVCVUQFEXKVCUOVVBXEXKFEUEURUHVPVIVJVQXSXJXGXKUCZUCXMXPX JXRVVDXOXIXHXBGIGXAVLUJWAXRVVDXFXQUDXFXEUDZXKUCXRVVDXKXEXFHWTIWCVAXFXQUGV VEXGXKXFXEUGURWRWSWKXJXGXKWOVPVQXMJKXKUCZUCZXNVVGXMJXGVVFXLOKXJXKPURWEUOX NVVGJKXKVCUOUHVP $. $( [11-Apr-2012] $) $( Part of proof (4)=>(3) in Day/Pickering 1982. $) xdp43 $p |- p =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $= ( wo wa leor leo anass tr lan cm leao4 bltr lea orcom lbtr mldual2i ancom ler2an ror lelor letr lor lear ax-a3 ax-a2 2an leror le2an df2le2 ler 3tr or32 orass ran wt le1 leran an1r oridm mlduali id dp34 lel2or mldual ml2i lelan leao1 or4 2or mli ml3 leao3 le2or 3tr1 df-le2 or12 orabs ml3le 3tr2 le3tr2 bile leid lerr an32 anabs ) CDCUCDGHLJKUCZUDZUCZUDZUCZCDUEDXJCDXIU FZCGDMUCZUDZXJUCZXJCXMDUCZXNCXLGDUCZUDZXOCDGUCZEHUCZFIUCZUDZUDZXQCXRXSUDX TUDYBTXRXSXTUGUHYBXLXPYBXRMUDZXLYCYBMYAXRUAUIUJMXRDUKULYBXRXPXRYAUMDGUNUO URULXQXLGUDZDUCXODGXLDMUFUPYDXMDXLGUQUSUHUODXJXMXKUTVAXMXJXMGDGUDZHUCXGUC ZUDZXJXMGHDEUCZXFUDZUCZUDZYGXMGYJGXLUMZXMHXMUCYJXMHUEHYJXMHYIUFZXMYHXMHUC ZUDZYJUCZYJXMYOHUCZYPXMYNYHHUCZUDZYQXMYNYRXMHUFXMGDYAUCZUDZYRXLYTGMYADUAV BUIZUUAYTYRGYTVCYTDXSUCZYRYAXSDXSXTUMZUTYRUUCDEHVDUJUOVAULURYSYNYHUDZHUCY QHYHYNHXMUEUPUUEYOHYNYHUQUSUHUOHYJYOYMUTVAYOYJYJYOYIHUCZYJYOYIHYHUDZUCZUU FYOYHXFUUGUCZUDUUHYOYHUUIYHYNUMYOEFUCZHIUCZUDZDFUCZGIUCZUDZUUGUCZUCZUUIYO UUMXMIUCZUDZUUJUUGUCZUUKUDZUCZUUQYOUUSUUJDXSUDZUCZUUKUDZUCZUVBYODFUVCUCZU CZUURUDZEUVGUCZUUKUDZUCZUVFYHBHUCZUDZDAUCZBIUCZUDZEAUCZUUKUDZUCZYOUVLUVNU VPUVOEAIUCZUDZUCZUDZUVRUUKBUWAUDZUCZUDZUCZUVTUVNUVPUVOEDBUCZUDZUCZUDZUVRU UKBXSUDZUCZUDZUCZUWHUVNUVTEHBUCZUDZBEDUCZUDZUCZUCZUWPUVNUVNUVTUVNEBUCZUDZ UCZUDZUXBUVNUVNUXCUVNUVTUDZUCZUDZUXFUVNUVNXSBUCZUDUWSBUCZUDZUXIUVNUVNUXJU XKUDZUDZUXLUXNUVNUVNUXMUVNUWQUWSUDZUXMUVNUWSUWQUDZUXOYHUWSUVMUWQDEVEBHVEV FZUWSUWQUQUHUWQUXJUWSUXKHXSBHEUEVGUWSBUFVHULVIUJUXLUXNUVNUXJUXKUGZUJUHUXL UXNUXIUXRUXMUXHUVNUXMUXCXSUWIUDZUCZUXHUXMUXSEUCZBUCZUXSUXCUCUXTUXMUWIEUCZ UXJUDZUYCXSUDZBUCUYBUXMUXJUYCUDUYDUXKUYCUXJUXKYHBUCUYCUWSYHBEDVEUSDEBVLUH UIUXJUYCUQUHBXSUYCBUWIEBDUEVJUPUYEUYABUYEXSUYCUDUYAUYCXSUQEUWIXSEHUFZUPUH USVKUXSEBVMUXSUXCUNVKUXCUXHUXSUXCUXGUFUXSUXSUWAUDZUXHUXSUYGUYGUYGUXSUXSUW AUXSUWIXSUDZUWAUYHUXSUWIXSUQUJUYHDUUAUCZXSUDZUWAUWIUYIXSBUUADBXMUUASUUBUH VBVNUYJDVOYTUDZUCZXSUDZUWAUYIUYLXSUUAUYKDGVOYTGVPVQUTVQUYMXTUVCUCZUWAUYMY AUVCUCZUYNUYMYADUCZXSUDUYOUYLUYPXSUYLDYTUCZDDUCZYAUCZUYPUYKYTDYTVRVBUYSUY QDDYAVMUJUYSYTUYPUYRDYADVSUSDYAUNUHVKVNYADXSUUDVTUHYAXTUVCXSXTVCVGULUYNUV GIUCZUWAFIUVCVLUWAUYTAUVGIRUSUJUHUOVAULULZVIUJUYGUYGUYGWAZUJUHUYGEDAHBIUV QUVSUVNUVQWAZUVSWAZYHUWSUVMUWQDEUNBHUNVFVUBWBULWCULWFULULUXIUXDUXGUCUXDUV TUVNUDZUCZUXFUVNUXCUVTWDUXGVUEUXDUVNUVTUQVBVUFUXDUVTUCZUVNUDUVNVUGUDUXFUV NUVTUXDUVNUXCUMWEVUGUVNUQVUGUXEUVNUXDUVTVEUIVKVKUOUXFUXGUXAUCZUXBUXFUXGUX DUCVUHUVNUVTUXCWDUXDUXAUXGUXDUXPUXCUDUWSUWQUXCUDZUDZUXAUVNUXPUXCUXQVNUWSU WQUXCUGVUJUWSBUWRUCZUDUWSBUDZUWRUCZUXAVUIVUKUWSVUIUWQEUDZBUCBVUNUCVUKBEUW QBHUEUPVUNBUNVUNUWRBUWQEUQVBVKUIUWRBUWSEUWQDWGUPVUMUWRVULUCUXAVULUWRUNVUL UWTUWRUWSBUQVBUHVKVKVBUHUXGUVTUXAUVNUVTVCVGULVAUXBUVPUVOUWTUCZUDZUVRUUKUW RUCZUDZUCZUWPUXBUVTUWTUWRUCZUCZUVPUVOUDZUWTUCZUVSUWRUCZUCZVUSUXAVUTUVTUWR UWTUNVBVVAUVQUWTUCZVVDUCVVEUVQUVSUWTUWRWHVVFVVCVVDVVDUVQVVBUWTUVQUVQVVBVU CUVOUVPUQUHZUSUVSUVSUWRVUDUSWIUHVVCVUPVVDVURUVPUVOUWTBUWSIWGWJUVRUUKUWREU WQAWGWJWIVKVUPUWLVURUWOVUOUWKUVPVUODUWTUCZAUCDUWJUCZAUCUWKDAUWTVLVVHVVIAV VHDEBDUCZUDZUCVVIDBEWKVVKUWJDVVJUWIEBDUNUIVBUHUSDUWJAVLVKUIVUQUWNUVRVUQHU WRUCZIUCHUWMUCZIUCUWNHIUWRVLVVLVVMIVVLHEUVMUDZUCVVMUWRVVNHUWQUVMEHBUNUIVB HEBWKUHUSHUWMIVLVKUIWIUHUOUWLUWDUWOUWGUWKUWCUVPUWJUWBUVOUWJEUWAEUWIUMUWJU XSUWAEXSUWIUYFVQVUAVAURUTWFUWNUWFUVRUWMUWEUUKUWMBUWABXSUMUWMUXSUWAUWMXSUW IBXSVCBXSDWLURVUAVAURUTWFWMVAUWHUVPUVOIUVRUDZUCZUDZUVRUUKAUVPUDZUCZUDZUCU VQVVOUCZUVSVVRUCZUCZUVTUWDVVQUWGVVTUWCVVPUVPDAUWBUCZUCDAVVOUCZUCUWCVVPVWD VWEDVWDAEIAUCZUDZUCVWEUWBVWGAUWAVWFEAIVEUIVBAEIWKUHVBDAUWBVMDAVVOVMWNUIUW FVVSUVRHIUWEUCZUCHIVVRUCZUCUWFVVSVWHVWIHIBAWKVBHIUWEVMHIVVRVMWNUIWIVVQVWA VVTVWBVVQVVBVVOUCZVWAVVOUVOUVPIUVRBWLUPVWAVWJUVQVVBVVOVVGUSUJUHVVTVWBVWBV VRUUKUVRAUVPEWLUPVWBVWBUVSUVSVVRVUDUSUJUHWIVWCUVTVVOVVRUCZUCVWKUVTUCUVTUV QVVOUVSVVRWHUVTVWKUNVWKUVTVWKUVSUVQUCZUVTVVOUVSVVRUVQVVOUVRIUDUVSIUVRUQIU UKUVRIHUEWFULAUVOUVPADUEVQWMVWLVWLUVTVWLVWLUVSUVSUVQUVQVUDVUCWIUJUVSUVQUN UHUOWOVKVKUOUVMYNYHBXMHSUSUIUVQUVIUVSUVKUVOUVHUVPUURAUVGDRVBBXMISUSVFUVRU VJUUKAUVGERVBVNWIWTUVIUUSUVKUVEUVHUUMUURUVHFDUVCUCZUCFDUCUUMDFUVCWPVWMDFD XSWQVBFDUNVKVNUVEUVKUVDUVJUUKEFUVCVMVNUJWIUOUVEUVAUUSUVDUUTUUKUVDFEUUGUCZ UCZUUTUVDFEDHEUCZUDZUCZUCZVWOUVDFEUCZVWQUCVWSUUJVWTUVCVWQEFVEXSVWPDEHVEUI WIFEVWQVMUHVWRVWNFEDHWRUTULVWOVWTUUGUCZUUTVXAVWOFEUUGVMUJVWTUUJUUGFEVEUSU HUOVQUTVAUVBUUOUULUUGUCZUCUUQUUSUUOUVAVXBUURUUNUUMXMGIYLVGWFUVAVXBUUKUUTU DUUKUUJUDZUUGUCUVAVXBUUGUUJUUKHYHIWGUPUUKUUTUQVXCUULUUGUUKUUJUQUSWSXAWMUU OUULUUGWPUOVAUUQJKUUGUCZUCZUUIVXEUUQJUULVXDUUPOKUUOUUGPUSWIUJUUIVXEJKUUGV MUJUHUOURUUGXFYHHYHVCUPUOUUGHYIHYHUMUTVAYIHUNUOYJXBWCVAWCVAURYGYKYGXIYKYF XHGYFYEXGUCZHUCHVXFUCXHYEHXGVLVXFHUNVXFXGHYEXGYELXFYEYHGHUCZUDZLDYHGVXGDE UFGHUFVHLVXHQUJUOYEKJYEUUOKDUUMGUUNDFUFGIUFVHKUUOPUJUOXCURWOVBVKUIXIGVXGY JUDZUDZGVXGUDZYJUDZYKXHVXIGXHHYIVXGUDZUCYJVXGUDVXIXGVXMHXGVXHXFUDVXMLVXHX FQVNYHVXGXFXDUHVBVXGYIHHGUEWEYJVXGUQVKUIVXLVXJGVXGYJUGUJVXKGYJGHXEVNVKUHU JUOYGYEXIUCZXJYGGXHYEUCZUDXIYEUCVXNYFVXOGYFYEXHUCVXOYEHXGVMYEXHUNUHUIYEXH GDGVCUPXIYEUNVKYEDXIDGUMVGULVAWOUOWCVA $. $( [11-Apr-2012] $) $} ${ 3dp.c0 $e |- c0 = ( ( a1 v a1 ) ^ ( b1 v b1 ) ) $. 3dp.c1 $e |- c1 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $. 3dp.c2 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $. 3dp.d $e |- d = ( a1 v ( a0 ^ ( a1 v b1 ) ) ) $. 3dp.e $e |- e = ( b0 ^ ( a0 v p0 ) ) $. 3dp.p $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a1 v b1 ) ) $. 3dp.p0 $e |- p0 = ( ( a1 v b1 ) ^ ( a1 v b1 ) ) $. 3dp.p2 $e |- p2 = ( ( a0 v b0 ) ^ ( a1 v b1 ) ) $. $( "3OA" version of ~ xdp43 . Changed ` a2 ` to ` a1 ` and ` b2 ` to ` b1 ` . $) 3dp43 $p |- p =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $= ( wo wa leor leo anass tr lan cm leao4 bltr lea orcom lbtr mldual2i ancom ler2an ror lelor letr lor lear ax-a3 ax-a2 2an leror le2an df2le2 ler 3tr or32 orass ran wt le1 leran an1r oridm mlduali id dp34 lel2or mldual ml2i lelan leao1 or4 2or mli ml3 leao3 le2or 3tr1 df-le2 or12 orabs ml3le 3tr2 le3tr2 bile leid lerr an32 anabs ) CDCUADFGJHIUAZUBZUAZUBZUAZCDUCDXHCDXGU DZCFDKUAZUBZXHUAZXHCXKDUAZXLCXJFDUAZUBZXMCDFUAZEGUAZXQUBZUBZXOCXPXQUBXQUB XSRXPXQXQUEUFXSXJXNXSXPKUBZXJXTXSKXRXPSUGUHKXPDUIUJXSXPXNXPXRUKDFULUMUPUJ XOXJFUBZDUAXMDFXJDKUDUNYAXKDXJFUOUQUFUMDXHXKXIURUSXKXHXKFDFUBZGUAXEUAZUBZ XHXKFGDEUAZXDUBZUAZUBZYDXKFYGFXJUKZXKGXKUAYGXKGUCGYGXKGYFUDZXKYEXKGUAZUBZ YGUAZYGXKYLGUAZYMXKYKYEGUAZUBZYNXKYKYOXKGUDXKFDXRUAZUBZYOXJYQFKXRDSUTUGZY RYQYOFYQVAYQDXQUAZYOXRXQDXQXQUKZURYOYTDEGVBUHUMUSUJUPYPYKYEUBZGUAYNGYEYKG XKUCUNUUBYLGYKYEUOUQUFUMGYGYLYJURUSYLYGYGYLYFGUAZYGYLYFGYEUBZUAZUUCYLYEXD UUDUAZUBUUEYLYEUUFYEYKUKYLEEUAZGGUAZUBZYEFGUAZUBZUUDUAZUAZUUFYLYLUUGUUDUA ZUUHUBZUAZUUMYLYLUUGDXQUBZUAZUUHUBZUAZUUPYLDEUUQUAZUAZYKUBZEUVAUAZUUHUBZU AZUUTYEBGUAZUBZDAUAZUVGUBZEAUAZUUHUBZUAZYLUVFUVHUVGUVIEAGUAZUBZUAZUBZUVKU UHBUVNUBZUAZUBZUAZUVMUVHUVGUVIEDBUAZUBZUAZUBZUVKUUHBXQUBZUAZUBZUAZUWAUVHU VMEGBUAZUBZBEDUAZUBZUAZUAZUWIUVHUVHUVMUVHEBUAZUBZUAZUBZUWOUVHUVHUWPUVHUVM UBZUAZUBZUWSUVHUVHXQBUAZUBUWLBUAZUBZUXBUVHUVHUXCUXDUBZUBZUXEUXGUVHUVHUXFU VHUWJUWLUBZUXFUVHUWLUWJUBZUXHYEUWLUVGUWJDEVCBGVCVDZUWLUWJUOUFUWJUXCUWLUXD GXQBGEUCVEUWLBUDVFUJVGUHUXEUXGUVHUXCUXDUEZUHUFUXEUXGUXBUXKUXFUXAUVHUXFUWP XQUWBUBZUAZUXAUXFUXLEUAZBUAZUXLUWPUAUXMUXFUWBEUAZUXCUBZUXPXQUBZBUAUXOUXFU XCUXPUBUXQUXDUXPUXCUXDYEBUAUXPUWLYEBEDVCUQDEBVJUFUGUXCUXPUOUFBXQUXPBUWBEB DUCVHUNUXRUXNBUXRXQUXPUBUXNUXPXQUOEUWBXQEGUDZUNUFUQVIUXLEBVKUXLUWPULVIUWP UXAUXLUWPUWTUDUXLUXLUVNUBZUXAUXLUXTUXTUXTUXLUXLUVNUXLUWBXQUBZUVNUYAUXLUWB XQUOUHUYADYRUAZXQUBZUVNUWBUYBXQBYRDBXKYRQYSUFUTVLUYCDVMYQUBZUAZXQUBZUVNUY BUYEXQYRUYDDFVMYQFVNVOURVOUYFXQUUQUAZUVNUYFXRUUQUAZUYGUYFXRDUAZXQUBUYHUYE UYIXQUYEDYQUAZDDUAZXRUAZUYIUYDYQDYQVPUTUYLUYJDDXRVKUHUYLYQUYIUYKDXRDVQUQD XRULUFVIVLXRDXQUUAVRUFXRXQUUQXQXQVAVEUJUYGUVAGUAZUVNEGUUQVJUVNUYMAUVAGPUQ UHUFUMUSUJUJZVGUHUXTUXTUXTVSZUHUFUXTEDAGBGUVJUVLUVHUVJVSZUVLVSZYEUWLUVGUW JDEULBGULVDUYOVTUJWAUJWDUJUJUXBUWQUWTUAUWQUVMUVHUBZUAZUWSUVHUWPUVMWBUWTUY RUWQUVHUVMUOUTUYSUWQUVMUAZUVHUBUVHUYTUBUWSUVHUVMUWQUVHUWPUKWCUYTUVHUOUYTU WRUVHUWQUVMVCUGVIVIUMUWSUWTUWNUAZUWOUWSUWTUWQUAVUAUVHUVMUWPWBUWQUWNUWTUWQ UXIUWPUBUWLUWJUWPUBZUBZUWNUVHUXIUWPUXJVLUWLUWJUWPUEVUCUWLBUWKUAZUBUWLBUBZ UWKUAZUWNVUBVUDUWLVUBUWJEUBZBUABVUGUAVUDBEUWJBGUCUNVUGBULVUGUWKBUWJEUOUTV IUGUWKBUWLEUWJDWEUNVUFUWKVUEUAUWNVUEUWKULVUEUWMUWKUWLBUOUTUFVIVIUTUFUWTUV MUWNUVHUVMVAVEUJUSUWOUVGUVIUWMUAZUBZUVKUUHUWKUAZUBZUAZUWIUWOUVMUWMUWKUAZU AZUVGUVIUBZUWMUAZUVLUWKUAZUAZVULUWNVUMUVMUWKUWMULUTVUNUVJUWMUAZVUQUAVURUV JUVLUWMUWKWFVUSVUPVUQVUQUVJVUOUWMUVJUVJVUOUYPUVIUVGUOUFZUQUVLUVLUWKUYQUQW GUFVUPVUIVUQVUKUVGUVIUWMBUWLGWEWHUVKUUHUWKEUWJAWEWHWGVIVUIUWEVUKUWHVUHUWD UVGVUHDUWMUAZAUADUWCUAZAUAUWDDAUWMVJVVAVVBAVVADEBDUAZUBZUAVVBDBEWIVVDUWCD VVCUWBEBDULUGUTUFUQDUWCAVJVIUGVUJUWGUVKVUJGUWKUAZGUAGUWFUAZGUAUWGGGUWKVJV VEVVFGVVEGEUVGUBZUAVVFUWKVVGGUWJUVGEGBULUGUTGEBWIUFUQGUWFGVJVIUGWGUFUMUWE UVQUWHUVTUWDUVPUVGUWCUVOUVIUWCEUVNEUWBUKUWCUXLUVNEXQUWBUXSVOUYNUSUPURWDUW GUVSUVKUWFUVRUUHUWFBUVNBXQUKUWFUXLUVNUWFXQUWBBXQVABXQDWJUPUYNUSUPURWDWKUS UWAUVGUVIGUVKUBZUAZUBZUVKUUHAUVGUBZUAZUBZUAUVJVVHUAZUVLVVKUAZUAZUVMUVQVVJ UVTVVMUVPVVIUVGDAUVOUAZUADAVVHUAZUAUVPVVIVVQVVRDVVQAEGAUAZUBZUAVVRUVOVVTA UVNVVSEAGVCUGUTAEGWIUFUTDAUVOVKDAVVHVKWLUGUVSVVLUVKGGUVRUAZUAGGVVKUAZUAUV SVVLVWAVWBGGBAWIUTGGUVRVKGGVVKVKWLUGWGVVJVVNVVMVVOVVJVUOVVHUAZVVNVVHUVIUV GGUVKBWJUNVVNVWCUVJVUOVVHVUTUQUHUFVVMVVOVVOVVKUUHUVKAUVGEWJUNVVOVVOUVLUVL VVKUYQUQUHUFWGVVPUVMVVHVVKUAZUAVWDUVMUAUVMUVJVVHUVLVVKWFUVMVWDULVWDUVMVWD UVLUVJUAZUVMVVHUVLVVKUVJVVHUVKGUBUVLGUVKUOGUUHUVKGGUCWDUJAUVIUVGADUCVOWKV WEVWEUVMVWEVWEUVLUVLUVJUVJUYQUYPWGUHUVLUVJULUFUMWMVIVIUMUVGYKYEBXKGQUQZUG UVJUVCUVLUVEUVIUVBUVGYKAUVADPUTVWFVDUVKUVDUUHAUVAEPUTVLWGWRUVCYLUVEUUSUVB YEYKUVBEDUUQUAZUAUWLYEDEUUQWNVWGDEDXQWOUTEDULVIVLUUSUVEUURUVDUUHEEUUQVKVL UHWGUMUUSUUOYLUURUUNUUHUUREEUUDUAZUAZUUNUUREEDGEUAZUBZUAZUAZVWIUURUUGVWKU AVWMUUGUUGUUQVWKEEVCZXQVWJDEGVCUGWGEEVWKVKUFVWLVWHEEDGWPURUJVWIUUNUUNUUNV WIEEUUDVKUHUUGUUGUUDVWNUQUFUMVOURUSUUPUUKUUIUUDUAZUAUUMYLUUKUUOVWOYKUUJYE XKFGYIVEWDUUOVWOUUHUUNUBUUHUUGUBZUUDUAUUOVWOUUDUUGUUHGYEGWEUNUUHUUNUOVWPU UIUUDUUHUUGUOUQWQWSWKUUKUUIUUDWNUMUSUUMHIUUDUAZUAZUUFVWRUUMHUUIVWQUULMIUU KUUDNUQWGUHUUFVWRHIUUDVKUHUFUMUPUUDXDYEGYEVAUNUMUUDGYFGYEUKURUSYFGULUMYGW TWAUSWAUSUPYDYHYDXGYHYCXFFYCYBXEUAZGUAGVWSUAXFYBGXEVJVWSGULVWSXEGYBXEYBJX DYBUUKJDYEFUUJDEUDFGUDVFZJUUKOUHUMYBIHYBUUKIVWTIUUKNUHUMXAUPWMUTVIUGXGFUU JYGUBZUBZFUUJUBZYGUBZYHXFVXAFXFGYFUUJUBZUAYGUUJUBVXAXEVXEGXEUUKXDUBVXEJUU KXDOVLYEUUJXDXBUFUTUUJYFGGFUCWCYGUUJUOVIUGVXDVXBFUUJYGUEUHVXCFYGFGXCVLVIU FUHUMYDYBXGUAZXHYDFXFYBUAZUBXGYBUAVXFYCVXGFYCYBXFUAVXGYBGXEVKYBXFULUFUGYB XFFDFVAUNXGYBULVIYBDXGDFUKVEUJUSWMUMWAUS $. $( [11-Apr-2012] $) $} ${ oadp35lem.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. oadp35lem.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. oadp35lem.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $. oadp35lem.4 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $. oadp35lem.5 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $. $( Part of proof (3)=>(5) in Day/Pickering 1982. $) oadp35lemg $p |- p =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $= ( dp53 ) ABCDEFGHIJLMNPQ $. $( [12-Jul-2015] $) $( Part of proof (3)=>(5) in Day/Pickering 1982. $) oadp35lemf $p |- ( a0 v p ) =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $= ( wo wa leo oadp35lemg lel2or ) BBEFJHIQRQRZQABUBSABCDEFGHIJKLMNOPTUA $. $( [12-Jul-2015] $) $( Part of proof (3)=>(5) in Day/Pickering 1982. $) $( oadp35leme $p |- ( b0 ^ ( a0 v p0 ) ) =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $= ? $. $) $( Part of proof (3)=>(5) in Day/Pickering 1982. $) $( oadp35lemd $p |- ( b0 ^ ( a0 v p0 ) ) =< ( b0 ^ ( ( ( a0 ^ b0 ) v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) ) $= ? $. $) $( Part of proof (3)=>(5) in Day/Pickering 1982. $) oadp35lemc $p |- ( b0 ^ ( ( ( a0 ^ b0 ) v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) ) = ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) $= ( wa wo leo le2an or32 orcom cm lbtr lerr ler2an df-le2 lor 3tr lan ) BEQ ZFRJHIRZQZRZFUMRZEUNUKUMRZFRFUPRUOUKFUMUAUPFUBUPUMFUKUMUKJULUKBCRZEFRZQZJ BUQEURBCSEFSTJUSNUCUDUKIHUKBDRZEGRZQZIBUTEVABDSEGSTIVBMUCUDUEUFUGUHUIUJ $. $( [12-Jul-2015] $) $( Part of proof (3)=>(5) in Day/Pickering 1982. $) $( oadp35lemb $p |- ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) = ( b0 ^ ( b1 v ( ( a0 v a1 ) ^ ( c0 v c1 ) ) ) ) $= ? $. $) $( Part of proof (3)=>(5) in Day/Pickering 1982. $) $( oadp35lembb $p |- ( b0 ^ ( a0 v p0 ) ) =< ( b0 ^ ( b1 v ( ( a0 v a1 ) ^ ( c0 v c1 ) ) ) ) $= ( wo wa oadp35lemd oadp35lemc oadp35lemb tr lbtr ) EBKQREBERFQJHIQZRZQRZEFBCQUD RQRZABCDEFGHIJKLMNOPSUFEFUEQRUGABCDEFGHIJKLMNOPTABCDEFGHIJKLMNOPUAUBUC $. $) $( Part of proof (3)=>(5) in Day/Pickering 1982. $) $( oadp35lema $p |- ( b1 v ( b0 ^ ( a0 v p0 ) ) ) =< ( b1 v ( ( a0 v a1 ) ^ ( c0 v c1 ) ) ) $= ( wo wa leo oadp35lembb lear letr lel2or ) FFBCQHIQRZQZEBKQRZFUDSUFEUERUEAB CDEFGHIJKLMNOPTEUEUAUBUC $. $) $( Part of proof (3)=>(5) in Day/Pickering 1982. $) $( oadp35lem0 $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) ) =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $= ? $. $) $} ${ oadp35.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $. oadp35.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $. oadp35.3 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $. $( Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (3)=>(5) $) oadp35 $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) ) =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $= ( wo wa id dp35lem0 ) ADMBEMNCFMNZABCDEFGHABMDEMNZIJKROLQOP $. $( [12-Apr-2012] $) $} $( A modular law experiment. $) testmod $p |- ( ( ( c v a ) v ( ( b v c ) ^ ( d v a ) ) ) ^ ( a v ( b ^ ( d v ( ( a v c ) ^ ( b v d ) ) ) ) ) ) = ( ( b ^ ( ( ( ( a v c ) v ( ( b v c ) ^ ( d v a ) ) ) ^ d ) v ( ( a v c ) ^ ( b v d ) ) ) ) v a ) $= ( wo wa leao1 mli orass ran tr lan ror an12 leo orcom or32 2an 3tr cm ) BAC EZBCEDAEFZEZDFUABDEZFZEZFZAEZCAEUBEZABDUEEZFZEZFZUHACUBEZEZUKFZAEZUOUKAEZFU MUHBUOUJFZFZAEUQUGUTAUFUSBUFUCUJFUSUCDUEUAUDUBGHUCUOUJACUBIJKLMUTUPABUOUJNM KUOUKAAUNOHUOUIURULUOUNAEUIAUNPCUBAQKUKAPRST $. $( [21-Apr-2012] $) $( A modular law experiment. $) testmod1 $p |- ( ( ( c v a ) v ( ( b v c ) ^ ( d v a ) ) ) ^ ( a v ( b ^ ( d v ( ( a v c ) ^ ( b v d ) ) ) ) ) ) = ( a v ( b ^ ( ( ( a v c ) ^ ( b v d ) ) v ( d ^ ( ( a v c ) v ( ( b v c ) ^ ( d v a ) ) ) ) ) ) ) $= ( wo wa testmod orcom ancom lor tr lan ) CAEBCEDAEFZEABDACEZBDEFZEFEFBNMEZD FZOEZFZAEZABODPFZEZFZEZABCDGTASEUDSAHSUCARUBBROQEUBQOHQUAOPDIJKLJKK $. $( [21-Apr-2012] $) $( A modular law experiment. $) testmod2 $p |- ( ( a v b ) ^ ( a v ( c v d ) ) ) = ( a v ( b ^ ( ( ( a v c ) ^ ( b v d ) ) v ( d ^ ( ( a v c ) v ( ( b v c ) ^ ( d v a ) ) ) ) ) ) ) $= ( wo wa orass lan cm leo ler mlduali leor df2le2 ran anass ancom orcom lor tr ler2an an32 mldual2i ror lea leror l42modlem1 2an leao1 ) ABEZACDEEZFZAB ACEZDEZFZEZABUMBDEZFZDUMBCEZDAEZFZEZFEZFZEULUJUNFZUPVEULUNUKUJACDGHIABUNAUM DACJKLTUOVDAUOBUQUMBEZFZUNFZFZVDUOBVGFZUNFZVIVKUOVJBUNBVGBUQVFBDJBUMMUANOIB VGUNPTVHVCBVHURDEZVBFZVCVHVLUNVFFZFZVMVHVLUNFZVFFZVOVHVLVFFZVQVHUQUNFZVFFVR UQVFUNUBVSVLVFVSUQUMFZDEVLDUMUQDBMUCVTURDUQUMQUDTOTVQVRVPVLVFVLUNURUMDUMUQU EUFNOITVLUNVFPTVNVBVLVNUMADEZCBEZFZEVBACDBUGWCVAUMWCUTUSFVAWAUTWBUSADRCBRUH UTUSQTSTHTURDVBUMUQVAUILTHTST $. $( [21-Apr-2012] $) $( A modular law experiment. $) testmod2expanded $p |- ( ( a v b ) ^ ( a v ( c v d ) ) ) = ( a v ( b ^ ( ( ( a v c ) ^ ( b v d ) ) v ( d ^ ( ( a v c ) v ( ( b v c ) ^ ( d v a ) ) ) ) ) ) ) $= ( wo wa orass lan cm leo ler mlduali leor df2le2 ran lor anass ancom orcom tr ler2an an32 mldual2i ror lea leror l42modlem1 2an leao1 ) ABEZACDEEZFZAB ACEZBDEZFZDEZUMBCEZDAEZFZEZFZFZEZABUODUTFEZFZEULABUPUMADEZCBEZFZEZFZFZEZVCU LABUPUMDEZUMBEZFZFZFZEZVLULABUPVNFZFZEZVRULABUNUMFZDEZVNFZFZEZWAULABUNVMFZV NFZFZEZWFULABUNVNFZVMFZFZEZWJULABWKFZVMFZEZWNULABVMFZEZWQULUJVMFZWSWTULVMUK UJACDGHIABVMAUMDACJKLTWRWPAWPWRWOBVMBWKBUNVNBDJBUMMUANOIPTWPWMABWKVMQPTWMWI AWLWHBUNVNVMUBHPTWIWEAWHWDBWGWCVNDUMUNDBMUCOHPTWEVTAWDVSBWCUPVNWBUODUNUMRUD OHPTVTVQAVSVPBVSUPVMFZVNFZVPXBVSXAUPVNUPVMUOUMDUMUNUEUFNOIUPVMVNQTHPTVQVKAV PVJBVOVIUPACDBUGHHPTVKVBAVJVABVIUTUPVHUSUMVHURUQFUSVFURVGUQADSCBSUHURUQRTPH HPTVBVEAVAVDBUODUTUMUNUSUILHPT $. $( [21-Apr-2012] $) $( A modular law experiment. $) testmod3 $p |- ( ( ( c v a ) v ( ( b v c ) ^ ( d v a ) ) ) ^ ( a v ( b ^ ( d v ( ( a v c ) ^ ( b v d ) ) ) ) ) ) = ( a v ( ( ( c v a ) v ( ( b v c ) ^ ( d v a ) ) ) ^ ( b ^ ( d v ( ( a v c ) ^ ( b v d ) ) ) ) ) ) $= ( wo wa orcom leor ler mli tr lan cm ) ACAEZBCEDAEFZEZBDACEBDEFEFZFZEZPAQEZ FZSPQAEZFZUASRAEUCARGPQAANOACHIJKUBTPQAGLKM $. $( [21-Apr-2012] $) $( A modular law experiment. $) $( testmod4 $p |- ( ( ( c v a ) v ( ( b v c ) ^ ( d v a ) ) ) ^ ( a v ( b ^ ( d v ( ( a v c ) ^ ( b v d ) ) ) ) ) ) = ( a v ( ( ( c v a ) v ( ( b v c ) ^ ( d v a ) ) ) ^ ( b ^ ( d v ( ( a v c ) ^ ( b v d ) ) ) ) ) ) $= ( wvx wvr wvy wvq wvp wo wa leo id lor lan lear lea lelor ax-a3 cm lbtr letr bltr ler2an leor mldual2i ancom ror tr orcom leid lel2or lebi ) CAJBCJ DAJKJZABDACJBDJKJKZJKEFAGJZHKZJZKZAUNUOKJZ?UTUSUTGFAJZIKZJZUS?VCUS?USVAUSGJ ZKZVCJZVCUSVEGJZVFUSVDVAGJZKZVGUSVDVHUSGLUSUSVHURUREUQUQFUQMNOUSURVHEURPURF UPJZVHUQUPFUPHQRVHVJFAGSTUAUBUCUDVIVDVAKZGJVGGVAVDGUSUEUFVKVEGVDVAUGUHUIUAG VCVEGVBLRUBVEVCVCVEVBGJZVCVEVBGVAKZJZVLVEVAIVMJZKVNVEVAVOVAVDQ?UDVMIVAGVAPU FUAVMGVBGVAQRUBVBGUJUAVCUKULUBUMUITUI $. $) $( [22-Apr-2012] $)