dmrconfig/md380.c

1296 lines
37 KiB
C

/*
* Interface to TYT MD-380.
*
* Copyright (C) 2018 Serge Vakulenko, KK6ABQ
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdint.h>
#include <sys/stat.h>
#include "radio.h"
#include "util.h"
#define NCHAN 1000
#define NCONTACTS 1000
#define NZONES 250
#define NGLISTS 250
#define NSCANL 250
#define NMESSAGES 50
#define MEMSZ 0x40000
#define OFFSET_VERSION 0x02001
#define OFFSET_ID 0x02084
#define OFFSET_NAME 0x020b0
#define OFFSET_MSG 0x02180
#define OFFSET_CONTACTS 0x05f80
#define OFFSET_GLISTS 0x0ec20
#define OFFSET_ZONES 0x149e0
#define OFFSET_SCANL 0x18860
#define OFFSET_CHANNELS 0x1ee00
//
// Channel data.
//
typedef struct {
// Byte 0
uint8_t channel_mode : 2, // Mode: Analog or Digital
#define MODE_ANALOG 1
#define MODE_DIGITAL 2
bandwidth : 2, // Bandwidth: 12.5 or 20 or 25 kHz
#define BW_12_5_KHZ 0
#define BW_20_KHZ 1
#define BW_25_KHZ 2
autoscan : 1, // Autoscan Enable
squelch : 1, // Squelch
#define SQ_TIGHT 0
#define SQ_NORMAL 1
_unused1 : 1, // 1
lone_worker : 1; // Lone Worker
// Byte 1
uint8_t talkaround : 1, // Allow Talkaround
rx_only : 1, // RX Only Enable
repeater_slot : 2, // Repeater Slot: 1 or 2
colorcode : 4; // Color Code: 1...15
// Byte 2
uint8_t privacy_no : 4, // Privacy No. (+1): 1...16
privacy : 2, // Privacy: None, Basic or Enhanced
#define PRIV_NONE 0
#define PRIV_BASIC 1
#define PRIV_ENHANCED 2
private_call_conf : 1, // Private Call Confirmed
data_call_conf : 1; // Data Call Confirmed
// Byte 3
uint8_t rx_ref_frequency : 2, // RX Ref Frequency: Low, Medium or High
#define REF_LOW 0
#define REF_MEDIUM 1
#define REF_HIGH 2
_unused2 : 1, // 0
emergency_alarm_ack : 1, // Emergency Alarm Ack
_unused3 : 2, // 0b10
uncompressed_udp : 1, // Compressed UDP Data header (0) Enable, (1) Disable
display_pttid_dis : 1; // Display PTT ID (inverted)
// Byte 4
uint8_t tx_ref_frequency : 2, // RX Ref Frequency: Low, Medium or High
_unused4 : 2, // 0b01
vox : 1, // VOX Enable
power : 1, // Power: Low, High
#define POWER_HIGH 1
#define POWER_LOW 0
admit_criteria : 2; // Admit Criteria: Always, Channel Free or Correct CTS/DCS
#define ADMIT_ALWAYS 0
#define ADMIT_CH_FREE 1
#define ADMIT_TONE 2
// Byte 5
uint8_t _unused5 : 4, // 0
in_call_criteria : 2, // In Call Criteria: Always, Follow Admit Criteria or TX Interrupt
#define INCALL_ALWAYS 0
#define INCALL_ADMIT 1
_unused6 : 2; // 0b11
// Bytes 6-7
uint16_t contact_name_index; // Contact Name: Contact1...
// Bytes 8-9
uint8_t tot; // TOT x 15sec: 0-Infinite, 1=15s... 37=555s
uint8_t tot_rekey_delay; // TOT Rekey Delay: 0s...255s
// Bytes 10-11
uint8_t emergency_system_index; // Emergency System: None, System1...32
uint8_t scan_list_index; // Scan List: None, ScanList1...250
// Bytes 12-13
uint8_t group_list_index; // Group List: None, GroupList1...250
uint8_t _unused7; // 0
// Bytes 14-15
uint8_t _unused8; // 0
uint8_t _unused9; // 0xff
// Bytes 16-23
uint32_t rx_frequency; // RX Frequency: 8 digits BCD
uint32_t tx_frequency; // TX Frequency: 8 digits BCD
// Bytes 24-27
uint16_t ctcss_dcs_decode; // CTCSS/DCS Dec: 4 digits BCD
uint16_t ctcss_dcs_encode; // CTCSS/DCS Enc: 4 digits BCD
// Bytes 28-29
uint8_t rx_signaling_syst; // Rx Signaling System: Off, DTMF-1...4
uint8_t tx_signaling_syst; // Tx Signaling System: Off, DTMF-1...4
// Bytes 30-31
uint8_t _unused10; // 0xff
uint8_t _unused11; // 0xff
// Bytes 32-63
uint16_t name[16]; // Channel Name (Unicode)
} channel_t;
//
// Contact data.
//
typedef struct {
// Bytes 0-2
uint32_t id : 24; // Call ID: 1...16777215
// Byte 3
uint8_t type : 2, // Call Type: Group Call, Private Call or All Call
#define CALL_GROUP 1
#define CALL_PRIVATE 2
#define CALL_ALL 3
_unused1 : 3, // 0
receive_tone : 1, // Call Receive Tone: No or yes
_unused2 : 2; // 0b11
// Bytes 4-19
uint16_t name[16]; // Contact Name (Unicode)
} contact_t;
//
// Zone data.
//
typedef struct {
// Bytes 0-31
uint16_t name[16]; // Zone Name (Unicode)
// Bytes 32-63
uint16_t member[16]; // Member: channels 1...16
} zone_t;
//
// Group list data.
//
typedef struct {
// Bytes 0-31
uint16_t name[16]; // Group List Name (Unicode)
// Bytes 32-95
uint16_t member[32]; // Contacts
} grouplist_t;
//
// Scan list data.
//
typedef struct {
// Bytes 0-31
uint16_t name[16]; // Scan List Name (Unicode)
// Bytes 32-37
uint16_t priority_ch1; // Priority Channel 1 or ffff
uint16_t priority_ch2; // Priority Channel 2 or ffff
uint16_t tx_designated_ch; // Tx Designated Channel or ffff
// Bytes 38-41
uint8_t _unused1; // 0xf1
uint8_t sign_hold_time; // Signaling Hold Time (x25 = msec)
uint8_t prio_sample_time; // Priority Sample Time (x250 = msec)
uint8_t _unused2; // 0xff
// Bytes 42-103
uint16_t member[31]; // Channels
} scanlist_t;
static const char *POWER_NAME[] = { "Low", "High" };
static const char *SQUELCH_NAME[] = { "Tight", "Normal" };
static const char *BANDWIDTH[] = { "12.5", "20", "25" };
static const char *CONTACT_TYPE[] = { "-", "Group", "Private", "All" };
static const char *ADMIT_NAME[] = { "-", "Free", "Tone", "Color" };
static const char *INCALL_NAME[] = { "-", "Admit", "???", "???" };
#ifdef PRINT_RARE_PARAMS
static const char *REF_FREQUENCY[] = { "Low", "Med", "High" };
static const char *PRIVACY_NAME[] = { "-", "Basic", "Enhanced" };
static const char *SIGNALING_SYSTEM[] = { "-", "DTMF-1", "DTMF-2", "DTMF-3", "DTMF-4" };
#endif
//
// Print a generic information about the device.
//
static void md380_print_version(FILE *out)
{
// Nothing to print.
}
//
// Read memory image from the device.
//
static void md380_download()
{
int bno;
for (bno=0; bno<MEMSZ/1024; bno++) {
dfu_read_block(bno, &radio_mem[bno*1024], 1024);
++radio_progress;
if (radio_progress % 32 == 0) {
fprintf(stderr, "#");
fflush(stderr);
}
}
}
//
// Write memory image to the device.
//
static void md380_upload(int cont_flag)
{
int bno;
dfu_erase(MEMSZ);
fprintf(stderr, "Sending data... ");
fflush(stderr);
for (bno=0; bno<MEMSZ/1024; bno++) {
dfu_write_block(bno, &radio_mem[bno*1024], 1024);
++radio_progress;
if (radio_progress % 32 == 0) {
fprintf(stderr, "#");
fflush(stderr);
}
}
}
//
// Check whether the memory image is compatible with this device.
//
static int md380_is_compatible()
{
return 1;
}
//
// Set the bitmask of zones for a given channel.
// Return 0 on failure.
//
static void setup_zone(int zone_index, int chan_index)
{
uint8_t *data = &radio_mem[OFFSET_ZONES + zone_index*0x80 + chan_index/8];
*data |= 1 << (chan_index & 7);
}
//
// Print frequency (BCD value).
//
static void print_freq(FILE *out, unsigned data)
{
fprintf(out, "%d%d%d.%d%d%d", (data >> 28) & 15, (data >> 24) & 15,
(data >> 20) & 15, (data >> 16) & 15,
(data >> 12) & 15, (data >> 8) & 15);
if ((data & 0xff) == 0) {
fputs(" ", out);
} else {
fprintf(out, "%d", (data >> 4) & 15);
if ((data & 0x0f) == 0) {
fputs(" ", out);
} else {
fprintf(out, "%d", data & 15);
}
}
}
//
// Set the parameters for a given memory channel.
//
static void setup_channel(int i, char *name, double rx_mhz, double tx_mhz,
int tmode, int power, int wide, int scan, int isam)
{
//TODO: set autoscan=0 for simplex channels and hotspots, 1 for repeaters
//TODO: always set Data Call Confirmed=1 (wait for SMS acknowledge)
//TODO: always set talkaround=0
#if 0
memory_channel_t *ch = i + (memory_channel_t*) &radio_mem[OFFSET_CHANNELS];
hz_to_freq((int) (rx_mhz * 1000000.0), ch->rxfreq);
double offset_mhz = tx_mhz - rx_mhz;
ch->offset = 0;
ch->txfreq[0] = ch->txfreq[1] = ch->txfreq[2] = 0;
if (offset_mhz == 0) {
ch->duplex = D_SIMPLEX;
} else if (offset_mhz > 0 && offset_mhz < 256 * 0.05) {
ch->duplex = D_POS_OFFSET;
ch->offset = (int) (offset_mhz / 0.05 + 0.5);
} else if (offset_mhz < 0 && offset_mhz > -256 * 0.05) {
ch->duplex = D_NEG_OFFSET;
ch->offset = (int) (-offset_mhz / 0.05 + 0.5);
} else {
ch->duplex = D_CROSS_BAND;
hz_to_freq((int) (tx_mhz * 1000000.0), ch->txfreq);
}
ch->used = (rx_mhz > 0);
ch->tmode = tmode;
ch->power = power;
ch->isnarrow = ! wide;
ch->isam = isam;
ch->step = (rx_mhz >= 400) ? STEP_12_5 : STEP_5;
ch->_u1 = 0;
ch->_u2 = (rx_mhz >= 400);
ch->_u3 = 0;
ch->_u4[0] = 15;
ch->_u4[1] = 0;
ch->_u5[0] = ch->_u5[1] = ch->_u5[2] = 0;
// Scan mode.
unsigned char *scan_data = &radio_mem[OFFSET_SCAN + i/4];
int scan_shift = (i & 3) * 2;
*scan_data &= ~(3 << scan_shift);
*scan_data |= scan << scan_shift;
encode_name(i, name);
#endif
}
//
// Convert a 4-byte frequency value from binary coded decimal
// to integer format (in Hertz).
//
static int freq_to_hz(uint32_t bcd)
{
int a = (bcd >> 28) & 15;
int b = (bcd >> 24) & 15;
int c = (bcd >> 20) & 15;
int d = (bcd >> 16) & 15;
int e = (bcd >> 12) & 15;
int f = (bcd >> 8) & 15;
int g = (bcd >> 4) & 15;
int h = bcd & 15;
return (((((((a*10 + b) * 10 + c) * 10 + d) * 10 + e) * 10 + f) * 10 + g) * 10 + h) * 10;
}
//
// Print frequency as MHz.
//
static void print_mhz(FILE *out, uint32_t hz)
{
if (hz % 1000000 == 0)
fprintf(out, "%-8u", hz / 1000000);
else if (hz % 100000 == 0)
fprintf(out, "%-8.1f", hz / 1000000.0);
else if (hz % 10000 == 0)
fprintf(out, "%-8.2f", hz / 1000000.0);
else if (hz % 1000 == 0)
fprintf(out, "%-8.3f", hz / 1000000.0);
else if (hz % 100 == 0)
fprintf(out, "%-8.4f", hz / 1000000.0);
else
fprintf(out, "%-8.5f", hz / 1000000.0);
}
//
// Print the transmit offset or frequency.
//
static void print_offset(FILE *out, uint32_t rx_bcd, uint32_t tx_bcd)
{
int rx_hz = freq_to_hz(rx_bcd);
int tx_hz = freq_to_hz(tx_bcd);
int delta = tx_hz - rx_hz;
if (delta == 0) {
fprintf(out, "+0 ");
} else if (delta > 0 && delta/50000 <= 255) {
fprintf(out, "+");
print_mhz(out, delta);
} else if (delta < 0 && -delta/50000 <= 255) {
fprintf(out, "-");
print_mhz(out, -delta);
} else {
fprintf(out, " ");
print_mhz(out, tx_hz);
}
}
static int compare_uint16(const void *pa, const void *pb)
{
uint16_t a = *(uint16_t*) pa;
uint16_t b = *(uint16_t*) pb;
if (a == 0)
return (b != 0);
if (b == 0)
return -1;
if (a < b)
return -1;
if (a > b)
return 1;
return 0;
}
static void print_chanlist(FILE *out, uint16_t *unsorted, int nchan)
{
int last = -1;
int range = 0;
int n;
uint16_t data[nchan];
// Sort the list before printing.
memcpy(data, unsorted, nchan * sizeof(uint16_t));
qsort(data, nchan, sizeof(uint16_t), compare_uint16);
for (n=0; n<=nchan; n++) {
int cnum = data[n];
if (cnum == 0)
break;
if (cnum == last+1) {
range = 1;
} else {
if (range) {
fprintf(out, "-%d", last);
range = 0;
}
if (n > 0)
fprintf(out, ",");
fprintf(out, "%d", cnum);
}
last = cnum;
}
if (range)
fprintf(out, "-%d", last);
}
static void print_id(FILE *out)
{
const unsigned char *data = &radio_mem[OFFSET_VERSION];
fprintf(out, "Radio: TYT MD-380\n");
fprintf(out, "Name: ");
if (radio_mem[OFFSET_NAME] != 0 && *(uint16_t*)&radio_mem[OFFSET_NAME] != 0xffff) {
print_unicode(out, (uint16_t*) &radio_mem[OFFSET_NAME], 16, 0);
} else {
fprintf(out, "-");
}
fprintf(out, "\nID: %u\n", *(uint32_t*) &radio_mem[OFFSET_ID] & 0xffffff);
if (*data != 0xff) {
fprintf(out, "Last Programmed Date: %d%d%d%d-%d%d-%d%d",
data[0] >> 4, data[0] & 15, data[1] >> 4, data[1] & 15,
data[2] >> 4, data[2] & 15, data[3] >> 4, data[3] & 15);
fprintf(out, " %d%d:%d%d:%d%d\n",
data[4] >> 4, data[4] & 15, data[5] >> 4, data[5] & 15,
data[6] >> 4, data[6] & 15);
fprintf(out, "CPS Software Version: V%x%x.%x%x\n",
data[7], data[8], data[9], data[10]);
}
}
//
// Do we have any channels of given mode?
//
static int have_channels(int mode)
{
int i;
for (i=0; i<NCHAN; i++) {
channel_t *ch = (channel_t*) &radio_mem[OFFSET_CHANNELS + i*64];
if (ch->name[0] != 0 && ch->channel_mode == mode)
return 1;
}
return 0;
}
//
// Print CTSS or DCS tone.
//
static void print_tone(FILE *out, uint16_t data)
{
if (data == 0xffff) {
fprintf(out, "- ");
return;
}
unsigned tag = data >> 14;
unsigned a = (data >> 12) & 3;
unsigned b = (data >> 8) & 15;
unsigned c = (data >> 4) & 15;
unsigned d = data & 15;
switch (tag) {
default:
// CTCSS
if (a == 0)
fprintf(out, "%d%d.%d ", b, c, d);
else
fprintf(out, "%d%d%d.%d", a, b, c, d);
break;
case 2:
// DCS-N
fprintf(out, "D%d%d%dN", b, c, d);
break;
case 3:
// DCS-I
fprintf(out, "D%d%d%dI", b, c, d);
break;
}
}
//
// Print base parameters of the channel:
// Name
// RX Frequency
// TX Frequency
// Power
// Scan List
// Squelch
// Admit Criteria
//
static void print_chan_base(FILE *out, channel_t *ch, int cnum)
{
fprintf(out, "%5d ", cnum);
print_unicode(out, ch->name, 16, 1);
fprintf(out, " ");
print_freq(out, ch->rx_frequency);
fprintf(out, " ");
print_offset(out, ch->rx_frequency, ch->tx_frequency);
fprintf(out, "%-4s ", POWER_NAME[ch->power]);
if (ch->scan_list_index == 0)
fprintf(out, "- ");
else
fprintf(out, "%-4d ", ch->scan_list_index);
fprintf(out, "%-7s ", SQUELCH_NAME[ch->squelch]);
if (ch->tot == 0)
fprintf(out, "- ");
else
fprintf(out, "%-3d ", ch->tot * 15);
fprintf(out, "%c ", "-+"[ch->rx_only]);
fprintf(out, "%-6s ", ADMIT_NAME[ch->admit_criteria]);
}
#ifdef PRINT_RARE_PARAMS
//
// Print extended parameters of the channel:
// TOT
// TOT Rekey Delay
// RX Ref Frequency
// RX Ref Frequency
// Autoscan
// RX Only
// Lone Worker
// VOX
//
static void print_chan_ext(FILE *out, channel_t *ch)
{
fprintf(out, "%-3d ", ch->tot_rekey_delay);
fprintf(out, "%-5s ", REF_FREQUENCY[ch->rx_ref_frequency]);
fprintf(out, "%-5s ", REF_FREQUENCY[ch->tx_ref_frequency]);
fprintf(out, "%c ", "-+"[ch->autoscan]);
fprintf(out, "%c ", "-+"[ch->lone_worker]);
fprintf(out, "%c ", "-+"[ch->vox]);
fprintf(out, "%c ", "-+"[ch->talkaround]);
}
#endif
static void print_digital_channels(FILE *out, int verbose)
{
int i;
if (verbose) {
fprintf(out, "# Table of digital channels.\n");
fprintf(out, "# 1) Channel number: 1-%d\n", NCHAN);
fprintf(out, "# 2) Name: up to 16 characters, use '_' instead of space\n");
fprintf(out, "# 3) Receive frequency in MHz\n");
fprintf(out, "# 4) Transmit frequency or +/- offset in MHz\n");
fprintf(out, "# 5) Transmit power: High, Mid, Low\n");
fprintf(out, "# 6) Scan list: - or index in Scanlist table\n");
fprintf(out, "# 7) Squelch level: Normal, Tight\n");
fprintf(out, "# 8) Transmit timeout timer in seconds: 0, 15, 30, 45... 555\n");
fprintf(out, "# 9) Receive only: -, +\n");
fprintf(out, "# 10) Admit criteria: -, Free, Color\n");
fprintf(out, "# 11) Color code: 1, 2, 3... 15\n");
fprintf(out, "# 12) Time slot: 1 or 2\n");
fprintf(out, "# 13) In call criteria: -, Admit, TXInt\n");
fprintf(out, "# 14) Receive group list: - or index in Grouplist table\n");
fprintf(out, "# 15) Contact for transmit: - or index in Contacts table\n");
fprintf(out, "#\n");
}
fprintf(out, "Digital Name Receive Transmit Power Scan Squelch TOT RO Admit Color Slot InCall RxGL TxContact");
#ifdef PRINT_RARE_PARAMS
fprintf(out, " Dly RxRef TxRef AS LW VOX TA EmSys Privacy PN PCC EAA DCC CU");
#endif
fprintf(out, "\n");
for (i=0; i<NCHAN; i++) {
channel_t *ch = (channel_t*) &radio_mem[OFFSET_CHANNELS + i*64];
if (ch->name[0] == 0 || ch->channel_mode != MODE_DIGITAL) {
// Select digital channels
continue;
}
print_chan_base(out, ch, i+1);
// Print digital parameters of the channel:
// Color Code
// Repeater Slot
// In Call Criteria
// Group List
// Contact Name
fprintf(out, "%-5d %-3d ", ch->colorcode, ch->repeater_slot);
fprintf(out, "%-6s ", INCALL_NAME[ch->in_call_criteria]);
if (ch->group_list_index == 0)
fprintf(out, "- ");
else
fprintf(out, "%-4d ", ch->group_list_index);
if (ch->contact_name_index == 0)
fprintf(out, "-");
else
fprintf(out, "%d", ch->contact_name_index);
#ifdef PRINT_RARE_PARAMS
print_chan_ext(out, ch);
// Extended digital parameters of the channel:
// Emergency System
// Privacy
// Privacy No. (+1)
// Private Call Confirmed
// Emergency Alarm Ack
// Data Call Confirmed
// DCDM switch (inverted)
// Leader/MS
if (ch->emergency_system_index == 0)
fprintf(out, "- ");
else
fprintf(out, "%-5d ", ch->emergency_system_index);
fprintf(out, "%-8s ", PRIVACY_NAME[ch->privacy]);
if (ch->privacy == PRIV_NONE)
fprintf(out, "- ");
else
fprintf(out, "%-2d ", ch->privacy_no + 1);
fprintf(out, "%c ", "-+"[ch->private_call_conf]);
fprintf(out, "%c ", "-+"[ch->emergency_alarm_ack]);
fprintf(out, "%c ", "-+"[ch->data_call_conf]);
fprintf(out, "%c ", "+-"[ch->uncompressed_udp]);
#endif
fprintf(out, "\n");
}
}
static void print_analog_channels(FILE *out, int verbose)
{
int i;
if (verbose) {
fprintf(out, "# Table of analog channels.\n");
fprintf(out, "# 1) Channel number: 1-%d\n", NCHAN);
fprintf(out, "# 2) Name: up to 16 characters, use '_' instead of space\n");
fprintf(out, "# 3) Receive frequency in MHz\n");
fprintf(out, "# 4) Transmit frequency or +/- offset in MHz\n");
fprintf(out, "# 5) Transmit power: High, Mid, Low\n");
fprintf(out, "# 6) Scan list: - or index\n");
fprintf(out, "# 7) Squelch level: Normal, Tight\n");
fprintf(out, "# 8) Transmit timeout timer in seconds: 0, 15, 30, 45... 555\n");
fprintf(out, "# 9) Receive only: -, +\n");
fprintf(out, "# 10) Admit criteria: -, Free, Tone\n");
fprintf(out, "# 11) Guard tone for receive, or '-' to disable\n");
fprintf(out, "# 12) Guard tone for transmit, or '-' to disable\n");
fprintf(out, "# 13) Bandwidth in kHz: 12.5, 20, 25\n");
fprintf(out, "#\n");
}
fprintf(out, "Analog Name Receive Transmit Power Scan Squelch TOT RO Admit RxTone TxTone Width");
#ifdef PRINT_RARE_PARAMS
fprintf(out, " Dly RxRef TxRef AS LW VOX TA RxSign TxSign ID");
#endif
fprintf(out, "\n");
for (i=0; i<NCHAN; i++) {
channel_t *ch = (channel_t*) &radio_mem[OFFSET_CHANNELS + i*64];
if (ch->name[0] == 0 || ch->channel_mode != MODE_ANALOG) {
// Select analog channels
continue;
}
print_chan_base(out, ch, i+1);
// Print analog parameters of the channel:
// CTCSS/DCS Dec
// CTCSS/DCS Enc
// Bandwidth
print_tone(out, ch->ctcss_dcs_decode);
fprintf(out, " ");
print_tone(out, ch->ctcss_dcs_encode);
fprintf(out, " %s", BANDWIDTH[ch->bandwidth]);
#ifdef PRINT_RARE_PARAMS
print_chan_ext(out, ch);
// Extended analog parameters of the channel:
// Rx Signaling System
// Tx Signaling System
// Display PTT ID (inverted)
// Non-QT/DQT Turn-off Freq.
fprintf(out, "%-6s ", SIGNALING_SYSTEM[ch->rx_signaling_syst]);
fprintf(out, "%-6s ", SIGNALING_SYSTEM[ch->tx_signaling_syst]);
fprintf(out, "%c ", "+-"[ch->display_pttid_dis]);
#endif
fprintf(out, "\n");
}
}
static int have_zones()
{
zone_t *z = (zone_t*) &radio_mem[OFFSET_ZONES];
return z->name[0] != 0 && z->name[0] != 0xffff;
}
static int have_scanlists()
{
scanlist_t *sl = (scanlist_t*) &radio_mem[OFFSET_SCANL];
return sl->name[0] != 0 && sl->name[0] != 0xffff;
}
static int have_contacts()
{
contact_t *ct = (contact_t*) &radio_mem[OFFSET_CONTACTS];
return ct->name[0] != 0 && ct->name[0] != 0xffff;
}
static int have_grouplists()
{
grouplist_t *gl = (grouplist_t*) &radio_mem[OFFSET_GLISTS];
return gl->name[0] != 0 && gl->name[0] != 0xffff;
}
static int have_messages()
{
uint16_t *msg = (uint16_t*) &radio_mem[OFFSET_MSG];
return msg[0] != 0 && msg[0] != 0xffff;
}
//
// Print full information about the device configuration.
//
static void md380_print_config(FILE *out, int verbose)
{
int i;
print_id(out);
//
// Channels.
//
if (have_channels(MODE_DIGITAL)) {
fprintf(out, "\n");
print_digital_channels(out, verbose);
}
if (have_channels(MODE_ANALOG)) {
fprintf(out, "\n");
print_analog_channels(out, verbose);
}
//
// Zones.
//
if (have_zones()) {
fprintf(out, "\n");
if (verbose) {
fprintf(out, "# Table of channel zones.\n");
fprintf(out, "# 1) Zone number: 1-%d\n", NZONES);
fprintf(out, "# 2) Name: up to 16 characters, use '_' instead of space\n");
fprintf(out, "# 3) List of channels: numbers and ranges (N-M) separated by comma\n");
fprintf(out, "#\n");
}
fprintf(out, "Zone Name Channels\n");
for (i=0; i<NZONES; i++) {
zone_t *z = (zone_t*) &radio_mem[OFFSET_ZONES + i*64];
if (z->name[0] == 0 || z->name[0] == 0xffff) {
// Zone is disabled.
continue;
}
fprintf(out, "%4d ", i + 1);
print_unicode(out, z->name, 16, 1);
fprintf(out, " ");
if (z->member[0]) {
print_chanlist(out, z->member, 16);
} else {
fprintf(out, "-");
}
fprintf(out, "\n");
}
}
//
// Scan lists.
//
if (have_scanlists()) {
fprintf(out, "\n");
if (verbose) {
fprintf(out, "# Table of scan lists.\n");
fprintf(out, "# 1) Zone number: 1-%d\n", NSCANL);
fprintf(out, "# 2) Name: up to 16 characters, use '_' instead of space\n");
fprintf(out, "# 3) Priority channel 1 (50%% of scans): -, Sel or index\n");
fprintf(out, "# 4) Priority channel 2 (25%% of scans): -, Sel or index\n");
fprintf(out, "# 5) Designated transmit channel: -, Last or index\n");
fprintf(out, "# 6) List of channels: numbers and ranges (N-M) separated by comma\n");
fprintf(out, "#\n");
}
fprintf(out, "Scanlist Name PCh1 PCh2 TxCh ");
#ifdef PRINT_RARE_PARAMS
fprintf(out, "Hold Smpl ");
#endif
fprintf(out, "Channels\n");
for (i=0; i<NSCANL; i++) {
scanlist_t *sl = (scanlist_t*) &radio_mem[OFFSET_SCANL + i*104];
if (sl->name[0] == 0 || sl->name[0] == 0xffff) {
// Scan list is disabled.
continue;
}
fprintf(out, "%5d ", i + 1);
print_unicode(out, sl->name, 16, 1);
if (sl->priority_ch1 == 0xffff) {
fprintf(out, " - ");
} else if (sl->priority_ch1 == 0) {
fprintf(out, " Sel ");
} else {
fprintf(out, " %-4d ", sl->priority_ch1);
}
if (sl->priority_ch2 == 0xffff) {
fprintf(out, "- ");
} else if (sl->priority_ch2 == 0) {
fprintf(out, "Sel ");
} else {
fprintf(out, "%-4d ", sl->priority_ch2);
}
if (sl->tx_designated_ch == 0xffff) {
fprintf(out, "- ");
} else if (sl->tx_designated_ch == 0) {
fprintf(out, "Last ");
} else {
fprintf(out, "%-4d ", sl->tx_designated_ch);
}
#ifdef PRINT_RARE_PARAMS
fprintf(out, "%-4d %-4d ",
sl->sign_hold_time * 25, sl->prio_sample_time * 250);
#endif
if (sl->member[0]) {
print_chanlist(out, sl->member, 31);
} else {
fprintf(out, "-");
}
fprintf(out, "\n");
}
}
//
// Contacts.
//
if (have_contacts()) {
fprintf(out, "\n");
if (verbose) {
fprintf(out, "# Table of contacts.\n");
fprintf(out, "# 1) Contact number: 1-%d\n", NCONTACTS);
fprintf(out, "# 2) Name: up to 16 characters, use '_' instead of space\n");
fprintf(out, "# 3) Call type: Group, Private, All\n");
fprintf(out, "# 4) Call ID: 1...16777215\n");
fprintf(out, "# 5) Call receive tone: -, Yes\n");
fprintf(out, "#\n");
}
fprintf(out, "Contact Name Type ID RxTone\n");
for (i=0; i<NCONTACTS; i++) {
contact_t *ct = (contact_t*) &radio_mem[OFFSET_CONTACTS + i*36];
if (ct->name[0] == 0 || ct->name[0] == 0xffff) {
// Contact is disabled
continue;
}
fprintf(out, "%5d ", i+1);
print_unicode(out, ct->name, 16, 1);
fprintf(out, " %-7s %-8d %s\n",
CONTACT_TYPE[ct->type], ct->id, ct->receive_tone ? "Yes" : "-");
}
}
//
// Group lists.
//
if (have_grouplists()) {
fprintf(out, "\n");
if (verbose) {
fprintf(out, "# Table of group lists.\n");
fprintf(out, "# 1) Group list number: 1-%d\n", NGLISTS);
fprintf(out, "# 2) List of contacts: numbers and ranges (N-M) separated by comma\n");
fprintf(out, "#\n");
}
fprintf(out, "Grouplist Contacts\n");
for (i=0; i<NGLISTS; i++) {
grouplist_t *gl = (grouplist_t*) &radio_mem[OFFSET_GLISTS + i*96];
if (gl->name[0] == 0 || gl->name[0] == 0xffff) {
// Group list is disabled.
continue;
}
fprintf(out, "%5d ", i + 1);
if (gl->member[0]) {
print_chanlist(out, gl->member, 32);
} else {
fprintf(out, "-");
}
fprintf(out, "\n");
}
}
//
// Text messages.
//
if (have_messages()) {
fprintf(out, "\n");
if (verbose) {
fprintf(out, "# Table of text messages.\n");
fprintf(out, "# 1) Message number: 1-%d\n", NMESSAGES);
fprintf(out, "# 2) Text: up to 144 characters\n");
fprintf(out, "#\n");
}
fprintf(out, "Message Text\n");
for (i=0; i<NMESSAGES; i++) {
uint16_t *msg = (uint16_t*) &radio_mem[OFFSET_MSG + i*288];
if (msg[0] == 0 || msg[0] == 0xffff) {
// Message is disabled
continue;
}
fprintf(out, "%5d ", i+1);
print_unicode(out, msg, 144, 0);
fprintf(out, "\n");
}
}
}
//
// Read memory image from the binary file.
//
static void md380_read_image(FILE *img)
{
struct stat st;
// Guess device type by file size.
if (fstat(fileno(img), &st) < 0) {
fprintf(stderr, "Cannot get file size.\n");
exit(-1);
}
switch (st.st_size) {
case MEMSZ:
// IMG file.
if (fread(&radio_mem[0], 1, MEMSZ, img) != MEMSZ) {
fprintf(stderr, "Error reading image data.\n");
exit(-1);
}
break;
case MEMSZ + 0x225 + 0x10:
// RTD file.
// Header 0x225 bytes and footer 0x10 bytes at 0x40225.
fseek(img, 0x225, SEEK_SET);
if (fread(&radio_mem[0], 1, MEMSZ, img) != MEMSZ) {
fprintf(stderr, "Error reading image data.\n");
exit(-1);
}
break;
default:
fprintf(stderr, "Unrecognized file size %u bytes.\n", (int) st.st_size);
exit(-1);
}
}
//
// Save memory image to the binary file.
//
static void md380_save_image(FILE *img)
{
fwrite(&radio_mem[0], 1, MEMSZ, img);
}
//
// Parse the scalar parameter.
//
static void md380_parse_parameter(char *param, char *value)
{
if (strcasecmp("Radio", param) == 0) {
if (strcasecmp("TYT MD-380", value) != 0) {
fprintf(stderr, "Bad value for %s: %s\n", param, value);
exit(-1);
}
return;
}
fprintf(stderr, "Unknown parameter: %s = %s\n", param, value);
exit(-1);
}
//
// Check that the radio does support this frequency.
//
static int is_valid_frequency(int mhz)
{
if (mhz >= 108 && mhz <= 520)
return 1;
if (mhz >= 700 && mhz <= 999)
return 1;
return 0;
}
//
// Parse one line of memory channel table.
// Start_flag is 1 for the first table row.
// Return 0 on failure.
//
static int parse_channel(int first_row, char *line)
{
char num_str[256], name_str[256], rxfreq_str[256], offset_str[256];
char power_str[256], wide_str[256], scan_str[256];
int num, tmode, power, wide, scan, isam;
double rx_mhz, tx_mhz;
if (sscanf(line, "%s %s %s %s %s %s %s",
num_str, name_str, rxfreq_str, offset_str, power_str,
wide_str, scan_str) != 9)
return 0;
num = atoi(num_str);
if (num < 1 || num > NCHAN) {
fprintf(stderr, "Bad channel number.\n");
return 0;
}
if (sscanf(rxfreq_str, "%lf", &rx_mhz) != 1 ||
! is_valid_frequency(rx_mhz)) {
fprintf(stderr, "Bad receive frequency.\n");
return 0;
}
if (sscanf(offset_str, "%lf", &tx_mhz) != 1) {
badtx: fprintf(stderr, "Bad transmit frequency.\n");
return 0;
}
if (offset_str[0] == '-' || offset_str[0] == '+')
tx_mhz += rx_mhz;
if (! is_valid_frequency(tx_mhz))
goto badtx;
//TODO
tmode = 0;
if (strcasecmp("High", power_str) == 0) {
power = 0;
} else if (strcasecmp("Mid", power_str) == 0) {
power = 1;
} else if (strcasecmp("Low", power_str) == 0) {
power = 2;
} else {
fprintf(stderr, "Bad power level.\n");
return 0;
}
if (strcasecmp("Wide", wide_str) == 0) {
wide = 1;
isam = 0;
} else if(strcasecmp("Narrow", wide_str) == 0) {
wide = 0;
isam = 0;
} else if(strcasecmp("AM", wide_str) == 0) {
wide = 1;
isam = 1;
} else {
fprintf(stderr, "Bad modulation width.\n");
return 0;
}
if (*scan_str == '+') {
scan = 0;
} else if (*scan_str == '-') {
scan = 1;
} else if (strcasecmp("Only", scan_str) == 0) {
scan = 2;
} else {
fprintf(stderr, "Bad scan flag.\n");
return 0;
}
if (first_row) {
// On first entry, erase the channel table.
int i;
for (i=0; i<NCHAN; i++) {
setup_channel(i, 0, 0, 0, 0, 12, 1, 0, 0);
}
}
setup_channel(num-1, name_str, rx_mhz, tx_mhz,
tmode, power, wide, scan, isam);
return 1;
}
//
// Parse one line of Zones table.
// Return 0 on failure.
//
static int parse_zones(int first_row, char *line)
{
char num_str[256], chan_str[256];
int bnum;
if (sscanf(line, "%s %s", num_str, chan_str) != 2)
return 0;
bnum = atoi(num_str);
if (bnum < 1 || bnum > NZONES) {
fprintf(stderr, "Bad zone number.\n");
return 0;
}
if (first_row) {
// On first entry, erase the Zones table.
memset(&radio_mem[OFFSET_ZONES], 0, NZONES * 0x80);
}
if (*chan_str == '-')
return 1;
char *str = chan_str;
int nchan = 0;
int range = 0;
int last = 0;
// Parse channel list.
for (;;) {
char *eptr;
int cnum = strtoul(str, &eptr, 10);
if (eptr == str) {
fprintf(stderr, "Zone %d: wrong channel list '%s'.\n", bnum, str);
return 0;
}
if (cnum < 1 || cnum > NCHAN) {
fprintf(stderr, "Zone %d: wrong channel number %d.\n", bnum, cnum);
return 0;
}
if (range) {
// Add range.
int c;
for (c=last; c<cnum; c++) {
setup_zone(bnum-1, c);
nchan++;
}
} else {
// Add single channel.
setup_zone(bnum-1, cnum-1);
nchan++;
}
if (*eptr == 0)
break;
if (*eptr != ',' && *eptr != '-') {
fprintf(stderr, "Zone %d: wrong channel list '%s'.\n", bnum, eptr);
return 0;
}
range = (*eptr == '-');
last = cnum;
str = eptr + 1;
}
return 1;
}
//
// Parse table header.
// Return table id, or 0 in case of error.
//
static int md380_parse_header(char *line)
{
if (strncasecmp(line, "Channel", 7) == 0)
return 'C';
if (strncasecmp(line, "Zone", 4) == 0)
return 'Z';
return 0;
}
//
// Parse one line of table data.
// Return 0 on failure.
//
static int md380_parse_row(int table_id, int first_row, char *line)
{
switch (table_id) {
case 'C': return parse_channel(first_row, line);
case 'Z': return parse_zones(first_row, line);
}
return 0;
}
//
// TYT MD-380
//
radio_device_t radio_md380 = {
"TYT MD-380",
md380_download,
md380_upload,
md380_is_compatible,
md380_read_image,
md380_save_image,
md380_print_version,
md380_print_config,
md380_parse_parameter,
md380_parse_header,
md380_parse_row,
};