dmrconfig/uv380.c

857 lines
22 KiB
C
Raw Normal View History

2018-08-20 22:47:13 -07:00
/*
* Interface to TYT MD-UV380.
*
* Copyright (C) 2018 Serge Vakulenko, KK6ABQ
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdint.h>
#include "radio.h"
#include "util.h"
#define NCHAN 1000
#define NZONES 10
#define NPMS 50
#define MEMSZ 0x6fc8
#define OFFSET_VFO 0x0048
#define OFFSET_HOME 0x01c8
#define OFFSET_CHANNELS 0x0248
#define OFFSET_PMS 0x40c8
#define OFFSET_NAMES 0x4708
#define OFFSET_ZONES 0x69c8
#define OFFSET_SCAN 0x6ec8
static const char CHARSET[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ !`o$%&'()*+,-./|;/=>?@[~]^__";
#define NCHARS 65
#define SPACE 36
#define OPENBOX 64
static const char *POWER_NAME[] = { "High", "Med", "Low", "??" };
static const char *SCAN_NAME[] = { "+", "-", "Only", "??" };
enum {
STEP_5 = 0,
STEP_10,
STEP_12_5,
STEP_15,
STEP_20,
STEP_25,
STEP_50,
STEP_100,
};
//
// Data structure for a memory channel.
//
typedef struct {
uint8_t duplex : 4, // Repeater mode
#define D_SIMPLEX 0
#define D_NEG_OFFSET 2
#define D_POS_OFFSET 3
#define D_CROSS_BAND 4
isam : 1, // Amplitude modulation
isnarrow : 1, // Narrow FM modulation
_u1 : 1,
used : 1; // Channel is used
uint8_t rxfreq [3]; // Receive frequency
uint8_t tmode : 3, // CTCSS/DCS mode
#define T_OFF 0
#define T_TONE 1
#define T_TSQL 2
#define T_TSQL_REV 3
#define T_DTCS 4
#define T_D 5
#define T_T_DCS 6
#define T_D_TSQL 7
step : 3, // Frequency step
_u2 : 2;
uint8_t txfreq [3]; // Transmit frequency when cross-band
uint8_t tone : 6, // CTCSS tone select
#define TONE_DEFAULT 12
power : 2; // Transmit power level
uint8_t dtcs : 7, // DCS code select
_u3 : 1;
uint8_t _u4 [2];
uint8_t offset; // TX offset, in 50kHz steps
uint8_t _u5 [3];
} memory_channel_t;
//
// Data structure for a channel name.
//
typedef struct {
uint8_t name[6];
uint8_t _u1 : 7,
used : 1;
uint8_t _u2 : 7,
valid : 1;
} memory_name_t;
//
// Print a generic information about the device.
//
static void uv380_print_version(FILE *out)
{
// Nothing to print.
}
//
// Read block of data, up to 64 bytes.
// When start==0, return non-zero on success or 0 when empty.
// When start!=0, halt the program on any error.
//
static int read_block(int fd, int start, unsigned char *data, int nbytes)
{
unsigned char reply;
int len;
// Read data.
len = serial_read(fd, data, nbytes);
if (len != nbytes) {
if (start == 0)
return 0;
fprintf(stderr, "Reading block 0x%04x: got only %d bytes.\n", start, len);
exit(-1);
}
// Get acknowledge.
serial_write(fd, "\x06", 1);
if (serial_read(fd, &reply, 1) != 1) {
fprintf(stderr, "No acknowledge after block 0x%04x.\n", start);
exit(-1);
}
if (reply != 0x06) {
fprintf(stderr, "Bad acknowledge after block 0x%04x: %02x\n", start, reply);
exit(-1);
}
if (serial_verbose) {
printf("# Read 0x%04x: ", start);
print_hex(data, nbytes);
printf("\n");
} else {
++radio_progress;
if (radio_progress % 16 == 0) {
fprintf(stderr, "#");
fflush(stderr);
}
}
return 1;
}
//
// Write block of data, up to 64 bytes.
// Halt the program on any error.
// Return 0 on error.
//
static int write_block(int fd, int start, const unsigned char *data, int nbytes)
{
unsigned char reply[64];
int len;
serial_write(fd, data, nbytes);
// Get echo.
len = serial_read(fd, reply, nbytes);
if (len != nbytes) {
fprintf(stderr, "! Echo for block 0x%04x: got only %d bytes.\n", start, len);
return 0;
}
// Get acknowledge.
if (serial_read(fd, reply, 1) != 1) {
fprintf(stderr, "! No acknowledge after block 0x%04x.\n", start);
return 0;
}
if (reply[0] != 0x06) {
fprintf(stderr, "! Bad acknowledge after block 0x%04x: %02x\n", start, reply[0]);
return 0;
}
if (serial_verbose) {
printf("# Write 0x%04x: ", start);
print_hex(data, nbytes);
printf("\n");
} else {
++radio_progress;
if (radio_progress % 16 == 0) {
fprintf(stderr, "#");
fflush(stderr);
}
}
return 1;
}
//
// Read memory image from the device.
//
static void uv380_download()
{
int addr;
// Wait for the first 8 bytes.
while (read_block(radio_port, 0, &radio_mem[0], 8) == 0)
continue;
// Get the rest of data.
for (addr=8; addr<MEMSZ; addr+=64)
read_block(radio_port, addr, &radio_mem[addr], 64);
// Get the checksum.
read_block(radio_port, MEMSZ, &radio_mem[MEMSZ], 1);
}
//
// Write memory image to the device.
//
static void uv380_upload(int cont_flag)
{
int addr;
char buf[80];
if (! fgets(buf, sizeof(buf), stdin))
/*ignore*/;
fprintf(stderr, "Sending data... ");
fflush(stderr);
if (! write_block(radio_port, 0, &radio_mem[0], 8)) {
//TODO
}
for (addr=8; addr<MEMSZ; addr+=64) {
if (! write_block(radio_port, addr, &radio_mem[addr], 64)) {
//TODO
}
}
}
//
// Check whether the memory image is compatible with this device.
//
static int uv380_is_compatible()
{
return strncmp("AH017$", (char*)&radio_mem[0], 6) == 0;
}
//
// Convert a 3-byte frequency value from binary coded decimal
// to integer format (in Hertz).
//
static int freq_to_hz(uint8_t *bcd)
{
int hz;
hz = (bcd[0] & 15) * 100000000 +
((bcd[1] >> 4) & 15) * 10000000 +
(bcd[1] & 15) * 1000000 +
((bcd[2] >> 4) & 15) * 100000 +
(bcd[2] & 15) * 10000;
hz += (bcd[0] >> 6) * 2500;
return hz;
}
//
// Convert an integet frequency value (in Hertz)
// to a 3-byte binary coded decimal format.
//
static void hz_to_freq(int hz, uint8_t *bcd)
{
bcd[0] = (hz / 2500 % 4) << 6 |
(hz / 100000000 % 10);
bcd[1] = (hz / 10000000 % 10) << 4 |
(hz / 1000000 % 10);
bcd[2] = (hz / 100000 % 10) << 4 |
(hz / 10000 % 10);
}
//
// Is this zone non-empty?
//
static int have_zone(int b)
{
unsigned char *data = &radio_mem[OFFSET_ZONES + b * 0x80];
int c;
for (c=0; c<NCHAN/8; c++) {
if (data[c] != 0)
return 1;
}
return 0;
}
//
// Print one line of Zones table.
//
static void print_zone(FILE *out, int i)
{
uint8_t *data = &radio_mem[OFFSET_ZONES + i * 0x80];
int last = -1;
int range = 0;
int n;
fprintf(out, "%4d ", i + 1);
for (n=0; n<NCHAN; n++) {
int cnum = n + 1;
int chan_in_zone = data[n/8] & (1 << (n & 7));
if (!chan_in_zone)
continue;
if (cnum == last+1) {
range = 1;
} else {
if (range) {
fprintf(out, "-%d", last);
range = 0;
}
if (last >= 0)
fprintf(out, ",");
fprintf(out, "%d", cnum);
}
last = cnum;
}
if (range)
fprintf(out, "-%d", last);
fprintf(out, "\n");
}
//
// Set the bitmask of zones for a given channel.
// Return 0 on failure.
//
static void setup_zone(int zone_index, int chan_index)
{
uint8_t *data = &radio_mem[OFFSET_ZONES + zone_index*0x80 + chan_index/8];
*data |= 1 << (chan_index & 7);
}
//
// Extract channel name.
//
static void decode_name(int i, char *name)
{
memory_name_t *nm = i + (memory_name_t*) &radio_mem[OFFSET_NAMES];
if (nm->valid && nm->used) {
int n, c;
for (n=0; n<6; n++) {
c = nm->name[n];
name[n] = (c < NCHARS) ? CHARSET[c] : ' ';
// Replace spaces by underscore.
if (name[n] == ' ')
name[n] = '_';
}
// Strip trailing spaces.
for (n=5; n>=0 && name[n]=='_'; n--)
name[n] = 0;
name[6] = 0;
}
}
//
// Encode a character from ASCII to internal index.
// Replace underscores by spaces.
// Make all letters uppercase.
//
static int encode_char(int c)
{
int i;
// Replace underscore by space.
if (c == '_')
c = ' ';
if (c >= 'a' && c <= 'z')
c += 'A' - 'a';
for (i=0; i<NCHARS; i++)
if (c == CHARSET[i])
return i;
return OPENBOX;
}
//
// Set a name for the channel.
//
static void encode_name(int i, char *name)
{
memory_name_t *nm = i + (memory_name_t*) &radio_mem[OFFSET_NAMES];
int n;
if (name && *name && *name != '-') {
// Setup channel name.
nm->valid = 1;
nm->used = 1;
for (n=0; n<6 && name[n]; n++) {
nm->name[n] = encode_char(name[n]);
}
for (; n<6; n++)
nm->name[n] = SPACE;
} else {
// Clear name.
nm->valid = 0;
nm->used = 0;
for (n=0; n<6; n++)
nm->name[n] = 0xff;
}
}
//
// Get all parameters for a given channel.
// Seek selects the type of channel:
// OFFSET_VFO - VFO channel, 0..4
// OFFSET_HOME - home channel, 0..4
// OFFSET_CHANNELS - memory channel, 0..999
// OFFSET_PMS - programmable memory scan, i=0..99
//
static void decode_channel(int i, int seek, char *name,
int *rx_hz, int *tx_hz, int *power, int *wide,
int *scan, int *isam, int *step)
{
memory_channel_t *ch = i + (memory_channel_t*) &radio_mem[seek];
int scan_data = radio_mem[OFFSET_SCAN + i/4];
*rx_hz = *tx_hz = 0;
*power = *wide = *scan = *isam = *step = 0;
if (name)
*name = 0;
if (! ch->used && (seek == OFFSET_CHANNELS || seek == OFFSET_PMS))
return;
// Extract channel name.
if (name && seek == OFFSET_CHANNELS)
decode_name(i, name);
// Decode channel frequencies.
*rx_hz = freq_to_hz(ch->rxfreq);
*tx_hz = *rx_hz;
switch (ch->duplex) {
case D_NEG_OFFSET:
*tx_hz -= ch->offset * 50000;
break;
case D_POS_OFFSET:
*tx_hz += ch->offset * 50000;
break;
case D_CROSS_BAND:
*tx_hz = freq_to_hz(ch->txfreq);
break;
}
// Other parameters.
*power = ch->power;
*wide = ! ch->isnarrow;
*scan = (scan_data << ((i & 3) * 2) >> 6) & 3;
*isam = ch->isam;
*step = ch->step;
}
//
// Set the parameters for a given memory channel.
//
static void setup_channel(int i, char *name, double rx_mhz, double tx_mhz,
int tmode, int power, int wide, int scan, int isam)
{
memory_channel_t *ch = i + (memory_channel_t*) &radio_mem[OFFSET_CHANNELS];
hz_to_freq((int) (rx_mhz * 1000000.0), ch->rxfreq);
double offset_mhz = tx_mhz - rx_mhz;
ch->offset = 0;
ch->txfreq[0] = ch->txfreq[1] = ch->txfreq[2] = 0;
if (offset_mhz == 0) {
ch->duplex = D_SIMPLEX;
} else if (offset_mhz > 0 && offset_mhz < 256 * 0.05) {
ch->duplex = D_POS_OFFSET;
ch->offset = (int) (offset_mhz / 0.05 + 0.5);
} else if (offset_mhz < 0 && offset_mhz > -256 * 0.05) {
ch->duplex = D_NEG_OFFSET;
ch->offset = (int) (-offset_mhz / 0.05 + 0.5);
} else {
ch->duplex = D_CROSS_BAND;
hz_to_freq((int) (tx_mhz * 1000000.0), ch->txfreq);
}
ch->used = (rx_mhz > 0);
ch->tmode = tmode;
ch->power = power;
ch->isnarrow = ! wide;
ch->isam = isam;
ch->step = (rx_mhz >= 400) ? STEP_12_5 : STEP_5;
ch->_u1 = 0;
ch->_u2 = (rx_mhz >= 400);
ch->_u3 = 0;
ch->_u4[0] = 15;
ch->_u4[1] = 0;
ch->_u5[0] = ch->_u5[1] = ch->_u5[2] = 0;
// Scan mode.
unsigned char *scan_data = &radio_mem[OFFSET_SCAN + i/4];
int scan_shift = (i & 3) * 2;
*scan_data &= ~(3 << scan_shift);
*scan_data |= scan << scan_shift;
encode_name(i, name);
}
//
// Print the transmit offset or frequency.
//
static void print_offset(FILE *out, int rx_hz, int tx_hz)
{
int delta = tx_hz - rx_hz;
if (delta == 0) {
fprintf(out, "+0 ");
} else if (delta > 0 && delta/50000 <= 255) {
if (delta % 1000000 == 0)
fprintf(out, "+%-7u", delta / 1000000);
else
fprintf(out, "+%-7.3f", delta / 1000000.0);
} else if (delta < 0 && -delta/50000 <= 255) {
delta = - delta;
if (delta % 1000000 == 0)
fprintf(out, "-%-7u", delta / 1000000);
else
fprintf(out, "-%-7.3f", delta / 1000000.0);
} else {
// Cross band mode.
fprintf(out, " %-7.4f", tx_hz / 1000000.0);
}
}
//
// Print full information about the device configuration.
//
static void uv380_print_config(FILE *out, int verbose)
{
int i;
fprintf(out, "Radio: TYT MD-UV380\n");
//
// Memory channels.
//
fprintf(out, "\n");
if (verbose) {
fprintf(out, "# Table of preprogrammed channels.\n");
fprintf(out, "# 1) Channel number: 1-%d\n", NCHAN);
fprintf(out, "# 2) Name: up to 6 characters, no spaces\n");
fprintf(out, "# 3) Receive frequency in MHz\n");
fprintf(out, "# 4) Transmit frequency or +/- offset in MHz\n");
fprintf(out, "# 5) Squelch tone for receive, or '-' to disable\n");
fprintf(out, "# 6) Squelch tone for transmit, or '-' to disable\n");
fprintf(out, "# 7) Transmit power: High, Mid, Low\n");
fprintf(out, "# 8) Modulation: Wide, Narrow, AM\n");
fprintf(out, "# 9) Scan mode: +, -, Only\n");
fprintf(out, "#\n");
}
fprintf(out, "Channel Name Receive Transmit Power Modulation Scan\n");
for (i=0; i<NCHAN; i++) {
int rx_hz, tx_hz, power, wide, scan, isam, step;
char name[17];
decode_channel(i, OFFSET_CHANNELS, name, &rx_hz, &tx_hz, &power, &wide, &scan, &isam, &step);
if (rx_hz == 0) {
// Channel is disabled
continue;
}
fprintf(out, "%5d %-7s %8.4f ", i+1, name[0] ? name : "-", rx_hz / 1000000.0);
print_offset(out, rx_hz, tx_hz);
fprintf(out, " %-4s %-10s %s\n", POWER_NAME[power],
isam ? "AM" : wide ? "Wide" : "Narrow", SCAN_NAME[scan]);
}
//
// Zones.
//
fprintf(out, "\n");
if (verbose) {
fprintf(out, "# Table of channel zones.\n");
fprintf(out, "# 1) Zone number: 1-%d\n", NZONES);
fprintf(out, "# 2) List of channels: numbers and ranges (N-M) separated by comma\n");
fprintf(out, "#\n");
}
fprintf(out, "Zone Channels\n");
for (i=0; i<NZONES; i++) {
if (have_zone(i))
print_zone(out, i);
}
}
//
// Read memory image from the binary file.
//
static void uv380_read_image(FILE *img)
{
if (fread(&radio_mem[0], 1, MEMSZ, img) != MEMSZ) {
fprintf(stderr, "Error reading image data.\n");
exit(-1);
}
}
//
// Save memory image to the binary file.
//
static void uv380_save_image(FILE *img)
{
fwrite(&radio_mem[0], 1, MEMSZ+1, img);
}
//
// Parse the scalar parameter.
//
static void uv380_parse_parameter(char *param, char *value)
{
if (strcasecmp("Radio", param) == 0) {
if (strcasecmp("TYT MD-UV380", value) != 0) {
fprintf(stderr, "Bad value for %s: %s\n", param, value);
exit(-1);
}
return;
}
fprintf(stderr, "Unknown parameter: %s = %s\n", param, value);
exit(-1);
}
//
// Check that the radio does support this frequency.
//
static int is_valid_frequency(int mhz)
{
if (mhz >= 108 && mhz <= 520)
return 1;
if (mhz >= 700 && mhz <= 999)
return 1;
return 0;
}
//
// Parse one line of memory channel table.
// Start_flag is 1 for the first table row.
// Return 0 on failure.
//
static int parse_channel(int first_row, char *line)
{
char num_str[256], name_str[256], rxfreq_str[256], offset_str[256];
char power_str[256], wide_str[256], scan_str[256];
int num, tmode, power, wide, scan, isam;
double rx_mhz, tx_mhz;
if (sscanf(line, "%s %s %s %s %s %s %s",
num_str, name_str, rxfreq_str, offset_str, power_str,
wide_str, scan_str) != 9)
return 0;
num = atoi(num_str);
if (num < 1 || num > NCHAN) {
fprintf(stderr, "Bad channel number.\n");
return 0;
}
if (sscanf(rxfreq_str, "%lf", &rx_mhz) != 1 ||
! is_valid_frequency(rx_mhz)) {
fprintf(stderr, "Bad receive frequency.\n");
return 0;
}
if (sscanf(offset_str, "%lf", &tx_mhz) != 1) {
badtx: fprintf(stderr, "Bad transmit frequency.\n");
return 0;
}
if (offset_str[0] == '-' || offset_str[0] == '+')
tx_mhz += rx_mhz;
if (! is_valid_frequency(tx_mhz))
goto badtx;
//TODO
tmode = 0;
if (strcasecmp("High", power_str) == 0) {
power = 0;
} else if (strcasecmp("Mid", power_str) == 0) {
power = 1;
} else if (strcasecmp("Low", power_str) == 0) {
power = 2;
} else {
fprintf(stderr, "Bad power level.\n");
return 0;
}
if (strcasecmp("Wide", wide_str) == 0) {
wide = 1;
isam = 0;
} else if(strcasecmp("Narrow", wide_str) == 0) {
wide = 0;
isam = 0;
} else if(strcasecmp("AM", wide_str) == 0) {
wide = 1;
isam = 1;
} else {
fprintf(stderr, "Bad modulation width.\n");
return 0;
}
if (*scan_str == '+') {
scan = 0;
} else if (*scan_str == '-') {
scan = 1;
} else if (strcasecmp("Only", scan_str) == 0) {
scan = 2;
} else {
fprintf(stderr, "Bad scan flag.\n");
return 0;
}
if (first_row) {
// On first entry, erase the channel table.
int i;
for (i=0; i<NCHAN; i++) {
setup_channel(i, 0, 0, 0, 0, TONE_DEFAULT, 1, 0, 0);
}
}
setup_channel(num-1, name_str, rx_mhz, tx_mhz,
tmode, power, wide, scan, isam);
return 1;
}
//
// Parse one line of Zones table.
// Return 0 on failure.
//
static int parse_zones(int first_row, char *line)
{
char num_str[256], chan_str[256];
int bnum;
if (sscanf(line, "%s %s", num_str, chan_str) != 2)
return 0;
bnum = atoi(num_str);
if (bnum < 1 || bnum > NZONES) {
fprintf(stderr, "Bad zone number.\n");
return 0;
}
if (first_row) {
// On first entry, erase the Zones table.
memset(&radio_mem[OFFSET_ZONES], 0, NZONES * 0x80);
}
if (*chan_str == '-')
return 1;
char *str = chan_str;
int nchan = 0;
int range = 0;
int last = 0;
// Parse channel list.
for (;;) {
char *eptr;
int cnum = strtoul(str, &eptr, 10);
if (eptr == str) {
fprintf(stderr, "Zone %d: wrong channel list '%s'.\n", bnum, str);
return 0;
}
if (cnum < 1 || cnum > NCHAN) {
fprintf(stderr, "Zone %d: wrong channel number %d.\n", bnum, cnum);
return 0;
}
if (range) {
// Add range.
int c;
for (c=last; c<cnum; c++) {
setup_zone(bnum-1, c);
nchan++;
}
} else {
// Add single channel.
setup_zone(bnum-1, cnum-1);
nchan++;
}
if (*eptr == 0)
break;
if (*eptr != ',' && *eptr != '-') {
fprintf(stderr, "Zone %d: wrong channel list '%s'.\n", bnum, eptr);
return 0;
}
range = (*eptr == '-');
last = cnum;
str = eptr + 1;
}
return 1;
}
//
// Parse table header.
// Return table id, or 0 in case of error.
//
static int uv380_parse_header(char *line)
{
if (strncasecmp(line, "Channel", 7) == 0)
return 'C';
if (strncasecmp(line, "Zone", 4) == 0)
return 'Z';
return 0;
}
//
// Parse one line of table data.
// Return 0 on failure.
//
static int uv380_parse_row(int table_id, int first_row, char *line)
{
switch (table_id) {
case 'C': return parse_channel(first_row, line);
case 'Z': return parse_zones(first_row, line);
}
return 0;
}
//
// TYT MD-UV380
//
radio_device_t radio_uv380 = {
"TYT MD-UV380",
uv380_download,
uv380_upload,
uv380_is_compatible,
uv380_read_image,
uv380_save_image,
uv380_print_version,
uv380_print_config,
uv380_parse_parameter,
uv380_parse_header,
uv380_parse_row,
};