This PR changes the current JIT model from trace projection to trace recording. Benchmarking: better pyperformance (about 1.7% overall) geomean versus current https://raw.githubusercontent.com/facebookexperimental/free-threading-benchmarking/refs/heads/main/results/bm-20251108-3.15.0a1%2B-7e2bc1d-JIT/bm-20251108-vultr-x86_64-Fidget%252dSpinner-tracing_jit-3.15.0a1%2B-7e2bc1d-vs-base.svg, 100% faster Richards on the most improved benchmark versus the current JIT. Slowdown of about 10-15% on the worst benchmark versus the current JIT. **Note: the fastest version isn't the one merged, as it relies on fixing bugs in the specializing interpreter, which is left to another PR**. The speedup in the merged version is about 1.1%. https://raw.githubusercontent.com/facebookexperimental/free-threading-benchmarking/refs/heads/main/results/bm-20251112-3.15.0a1%2B-f8a764a-JIT/bm-20251112-vultr-x86_64-Fidget%252dSpinner-tracing_jit-3.15.0a1%2B-f8a764a-vs-base.svg
Stats: 50% more uops executed, 30% more traces entered the last time we ran them. It also suggests our trace lengths for a real trace recording JIT are too short, as a lot of trace too long aborts https://github.com/facebookexperimental/free-threading-benchmarking/blob/main/results/bm-20251023-3.15.0a1%2B-eb73378-CLANG%2CJIT/bm-20251023-vultr-x86_64-Fidget%252dSpinner-tracing_jit-3.15.0a1%2B-eb73378-pystats-vs-base.md .
This new JIT frontend is already able to record/execute significantly more instructions than the previous JIT frontend. In this PR, we are now able to record through custom dunders, simple object creation, generators, etc. None of these were done by the old JIT frontend. Some custom dunders uops were discovered to be broken as part of this work gh-140277
The optimizer stack space check is disabled, as it's no longer valid to deal with underflow.
Pros:
* Ignoring the generated tracer code as it's automatically created, this is only additional 1k lines of code. The maintenance burden is handled by the DSL and code generator.
* `optimizer.c` is now significantly simpler, as we don't have to do strange things to recover the bytecode from a trace.
* The new JIT frontend is able to handle a lot more control-flow than the old one.
* Tracing is very low overhead. We use the tail calling interpreter/computed goto interpreter to switch between tracing mode and non-tracing mode. I call this mechanism dual dispatch, as we have two dispatch tables dispatching to each other. Specialization is still enabled while tracing.
* Better handling of polymorphism. We leverage the specializing interpreter for this.
Cons:
* (For now) requires tail calling interpreter or computed gotos. This means no Windows JIT for now :(. Not to fret, tail calling is coming soon to Windows though https://github.com/python/cpython/pull/139962
Design:
* After each instruction, the `record_previous_inst` function/label is executed. This does as the name suggests.
* The tracing interpreter lowers bytecode to uops directly so that it can obtain "fresh" values at the point of lowering.
* The tracing version behaves nearly identical to the normal interpreter, in fact it even has specialization! This allows it to run without much of a slowdown when tracing. The actual cost of tracing is only a function call and writes to memory.
* The tracing interpreter uses the specializing interpreter's deopt to naturally form the side exit chains. This allows it to side exit chain effectively, without repeating much code. We force a re-specializing when tracing a deopt.
* The tracing interpreter can even handle goto errors/exceptions, but I chose to disable them for now as it's not tested.
* Because we do not share interpreter dispatch, there is should be no significant slowdown to the original specializing interpreter on tailcall and computed got with JIT disabled. With JIT enabled, there might be a slowdown in the form of the JIT trying to trace.
* Things that could have dynamic instruction pointer effects are guarded on. The guard deopts to a new instruction --- `_DYNAMIC_EXIT`.
There were a few thread-safety issues when profiling or tracing all
threads via PyEval_SetProfileAllThreads or PyEval_SetTraceAllThreads:
* The loop over thread states could crash if a thread exits concurrently
(in both the free threading and default build)
* The modification of `c_profilefunc` and `c_tracefunc` wasn't
thread-safe on the free threading build.
De-instrumenting code objects modifies the thread local bytecode for all threads as such, holding the critical section on the code object is not sufficient and leads to data races. Now, the de-instrumentation is now performed under a stop the world pause as such no thread races with executing the thread local bytecode while it is being de-instrumented.
Mark a few functions used by the interpreter loop as noinline
These are all the slow path and should not be inlined into the interpreter
loop. Unfortunately, they end up being inlined with LTO and the current PGO
task.
This is a precursor to the actual fix for gh-114940, where we will change these macros to use the new lock. This change is almost entirely mechanical; the exceptions are the loops in codeobject.c and ceval.c, which now hold the "head" lock. Note that almost all of the uses of _Py_FOR_EACH_TSTATE_UNLOCKED() here will change to _Py_FOR_EACH_TSTATE_BEGIN() once we add the new per-interpreter lock.
Each thread specializes a thread-local copy of the bytecode, created on the first RESUME, in free-threaded builds. All copies of the bytecode for a code object are stored in the co_tlbc array on the code object. Threads reserve a globally unique index identifying its copy of the bytecode in all co_tlbc arrays at thread creation and release the index at thread destruction. The first entry in every co_tlbc array always points to the "main" copy of the bytecode that is stored at the end of the code object. This ensures that no bytecode is copied for programs that do not use threads.
Thread-local bytecode can be disabled at runtime by providing either -X tlbc=0 or PYTHON_TLBC=0. Disabling thread-local bytecode also disables specialization.
Concurrent modifications to the bytecode made by the specializing interpreter and instrumentation use atomics, with specialization taking care not to overwrite an instruction that was instrumented concurrently.
The code for Tier 2 is now only compiled when configured
with `--enable-experimental-jit[=yes|interpreter]`.
We drop support for `PYTHON_UOPS` and -`Xuops`,
but you can disable the interpreter or JIT
at runtime by setting `PYTHON_JIT=0`.
You can also build it without enabling it by default
using `--enable-experimental-jit=yes-off`;
enable with `PYTHON_JIT=1`.
On Windows, the `build.bat` script supports
`--experimental-jit`, `--experimental-jit-off`,
`--experimental-interpreter`.
In the C code, `_Py_JIT` is defined as before
when the JIT is enabled; the new variable
`_Py_TIER2` is defined when the JIT *or* the
interpreter is enabled. It is actually a bitmask:
1: JIT; 2: default-off; 4: interpreter.
Makes sys.settrace, sys.setprofile, and monitoring generally thread-safe.
Mostly uses a stop-the-world approach and synchronization around the code object's _co_instrumentation_version. There may be a little bit of extra synchronization around the monitoring data that's required to be TSAN clean.
Introduce a unified 16-bit backoff counter type (``_Py_BackoffCounter``),
shared between the Tier 1 adaptive specializer and the Tier 2 optimizer. The
API used for adaptive specialization counters is changed but the behavior is
(supposed to be) identical.
The behavior of the Tier 2 counters is changed:
- There are no longer dynamic thresholds (we never varied these).
- All counters now use the same exponential backoff.
- The counter for ``JUMP_BACKWARD`` starts counting down from 16.
- The ``temperature`` in side exits starts counting down from 64.
A previous commit introduced a bug to `interpreter_clear()`: it set
`interp->ceval.instrumentation_version` to 0, without making the corresponding
change to `tstate->eval_breaker` (which holds a thread-local copy of the
version). After this happens, Python code can still run due to object finalizers
during a GC, and the version check in bytecodes.c will see a different result
than the one in instrumentation.c causing an infinite loop.
The fix itself is straightforward: clear `tstate->eval_breaker` when clearing
`interp->ceval.instrumentation_version`.
This change adds an `eval_breaker` field to `PyThreadState`. The primary
motivation is for performance in free-threaded builds: with thread-local eval
breakers, we can stop a specific thread (e.g., for an async exception) without
interrupting other threads.
The source of truth for the global instrumentation version is stored in the
`instrumentation_version` field in PyInterpreterState. Threads usually read the
version from their local `eval_breaker`, where it continues to be colocated
with the eval breaker bits.