40 lines
972 B
Lean4
40 lines
972 B
Lean4
import Game.Tactic.LabelAttr -- MyNat_decide attribute
|
||
|
||
/-- Our copy of the natural numbers called `MyNat`, with notation `ℕ`. -/
|
||
inductive MyNat where
|
||
| zero : MyNat
|
||
| succ : MyNat → MyNat
|
||
-- deriving BEq, DecidableEq, Inhabited
|
||
|
||
@[inherit_doc]
|
||
notation (name := MyNatNotation) (priority := 1000000) "ℕ" => MyNat
|
||
-- Note: as long as we do not import `Mathlib.Init.Data.Nat.Notation` this is fine.
|
||
|
||
namespace MyNat
|
||
|
||
instance : Inhabited MyNat where
|
||
default := MyNat.zero
|
||
|
||
@[MyNat_decide]
|
||
def ofNat (x : Nat) : MyNat :=
|
||
match x with
|
||
| Nat.zero => MyNat.zero
|
||
| Nat.succ b => MyNat.succ (ofNat b)
|
||
|
||
@[MyNat_decide]
|
||
def toNat (x : MyNat) : Nat :=
|
||
match x with
|
||
| MyNat.zero => Nat.zero
|
||
| MyNat.succ b => Nat.succ (toNat b)
|
||
|
||
instance instofNat {n : Nat} : OfNat MyNat n where
|
||
ofNat := ofNat n
|
||
|
||
instance : ToString MyNat where
|
||
toString p := toString (toNat p)
|
||
|
||
@[MyNat_decide]
|
||
theorem zero_eq_0 : MyNat.zero = 0 := rfl
|
||
|
||
def one : MyNat := MyNat.succ 0
|