cleanup
This commit is contained in:
@@ -17,7 +17,8 @@ If `a` is a natural number, then `add_zero a` is the proof that `a + 0 = a`.
|
||||
`add_zero` is a `simp` lemma, because if you see `a + 0`
|
||||
you usually want to simplify it to `a`.
|
||||
-/
|
||||
@[simp] theorem add_zero (a : MyNat) : a + 0 = a := by rfl
|
||||
@[simp]
|
||||
theorem add_zero (a : MyNat) : a + 0 = a := by rfl
|
||||
|
||||
/--
|
||||
If `a` and `d` are natural numbers, then `add_succ a d` is the proof that
|
||||
|
||||
Reference in New Issue
Block a user