bump v4.22.0
This commit is contained in:
@@ -34,7 +34,7 @@ $(d + f) + (h + (a + c)) + (g + e + b) = a + b + c + d + e + f + g + h$. -/
|
||||
Statement (a b c d e f g h : ℕ) :
|
||||
(d + f) + (h + (a + c)) + (g + e + b) = a + b + c + d + e + f + g + h := by
|
||||
Hint "Solve this level in one line with `simp only [add_assoc, add_left_comm, add_comm]`"
|
||||
simp only [add_assoc, add_left_comm, add_comm]
|
||||
simp only [add_left_comm, add_comm]
|
||||
|
||||
Conclusion
|
||||
"
|
||||
|
||||
@@ -53,6 +53,7 @@ and goal
|
||||
TacticDoc contrapose
|
||||
|
||||
NewTactic contrapose
|
||||
NewHiddenTactic contrapose!
|
||||
|
||||
/-- `succ_ne_succ m n` is the proof that `m ≠ n → succ m ≠ succ n`. -/
|
||||
TheoremDoc MyNat.succ_ne_succ as "succ_ne_succ" in "Peano"
|
||||
|
||||
@@ -10,7 +10,7 @@ Introduction "If the goal is not *exactly* a hypothesis, we can sometimes
|
||||
use rewrites to fix things up."
|
||||
|
||||
/-- Assuming $0+x=(0+y)+2$, we have $x=y+2$. -/
|
||||
Statement (x : ℕ) (h : 0 + x = 0 + y + 2) : x = y + 2 := by
|
||||
Statement (x y : ℕ) (h : 0 + x = 0 + y + 2) : x = y + 2 := by
|
||||
Hint "You can use `rw [zero_add] at {h}` to rewrite at `{h}` instead
|
||||
of at the goal."
|
||||
rw [zero_add] at h
|
||||
|
||||
@@ -12,7 +12,7 @@ Try this one by yourself; if you need help then click on \"Show more help!\".
|
||||
"
|
||||
|
||||
/-- $x+1=y+1 \implies x=y$. -/
|
||||
Statement (x : ℕ) : x + 1 = y + 1 → x = y := by
|
||||
Statement (x y : ℕ) : x + 1 = y + 1 → x = y := by
|
||||
Hint (hidden := true) "Start with `intro h` to assume the hypothesis."
|
||||
intro h
|
||||
Hint (hidden := true) "Now `repeat rw [← succ_eq_add_one] at h` is the quickest way to
|
||||
|
||||
Reference in New Issue
Block a user