bump v4.22.0

This commit is contained in:
Jon Eugster
2025-08-30 00:44:07 +02:00
parent fe719fcfd3
commit 3558f5bfb6
6 changed files with 25 additions and 24 deletions

View File

@@ -34,7 +34,7 @@ $(d + f) + (h + (a + c)) + (g + e + b) = a + b + c + d + e + f + g + h$. -/
Statement (a b c d e f g h : ) :
(d + f) + (h + (a + c)) + (g + e + b) = a + b + c + d + e + f + g + h := by
Hint "Solve this level in one line with `simp only [add_assoc, add_left_comm, add_comm]`"
simp only [add_assoc, add_left_comm, add_comm]
simp only [add_left_comm, add_comm]
Conclusion
"

View File

@@ -53,6 +53,7 @@ and goal
TacticDoc contrapose
NewTactic contrapose
NewHiddenTactic contrapose!
/-- `succ_ne_succ m n` is the proof that `m ≠ n → succ m ≠ succ n`. -/
TheoremDoc MyNat.succ_ne_succ as "succ_ne_succ" in "Peano"

View File

@@ -10,7 +10,7 @@ Introduction "If the goal is not *exactly* a hypothesis, we can sometimes
use rewrites to fix things up."
/-- Assuming $0+x=(0+y)+2$, we have $x=y+2$. -/
Statement (x : ) (h : 0 + x = 0 + y + 2) : x = y + 2 := by
Statement (x y : ) (h : 0 + x = 0 + y + 2) : x = y + 2 := by
Hint "You can use `rw [zero_add] at {h}` to rewrite at `{h}` instead
of at the goal."
rw [zero_add] at h

View File

@@ -12,7 +12,7 @@ Try this one by yourself; if you need help then click on \"Show more help!\".
"
/-- $x+1=y+1 \implies x=y$. -/
Statement (x : ) : x + 1 = y + 1 x = y := by
Statement (x y : ) : x + 1 = y + 1 x = y := by
Hint (hidden := true) "Start with `intro h` to assume the hypothesis."
intro h
Hint (hidden := true) "Now `repeat rw [← succ_eq_add_one] at h` is the quickest way to